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Let ΠDT(λ, µ, ν) := {3d partitions with legs λ, µ, ν}.

The
localization contributions of a single C3 chart form the equivariant
DT vertex

wK (π) = (rational function in x , y , z).
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∅,∅,∅ (non-equivariant) =

∏
n>0(1− Qn)−n is MacMahon’s
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X ,0.

Known for
smooth 3-folds X which are:
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(corollary of our main theorem) quasi-projective toric, since
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Previous work also includes combinatorial approaches to the
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lim
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∅,∅,∅ .

In this Calabi–Yau limit, the equivariant term wK (π) disappears
and vertices become generating functions.

(Kononov–Okounkov–Osinenko ’19) Holds for up to two
non-trivial λ, µ, ν. (“Easy”)
(Jenne–Webb–Young ’20) Holds for arbitrary λ, µ, ν. (Hard!)
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There is a symmetric obstruction theory on N(λ,µ,ν),n, given by
ExtX (I, I(−D)), such that
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VPT,K
λ,µ,ν =
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Nekrasov–Okounkov symmetrization Ôvir := K1/2
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]

(from properness of MT + a bit more)

where k := Z[x±, y±, z±, (xyz)±1/2, u±1/2]. Apply K-theoretic
residue map:

0 =
∑

F⊂MC×

ResK
u χ

(
F , Ôvir

F
∧̂•−1(N vir)∨

)
.

where ResK
u (f ) := (resu=0 + resu=∞)(f u−1 du).
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F , Ôvir

F
∧̂•−1(N vir)∨

)

∈

∈

k

[ 1
1− tω

]

k

[ 1
1− uatω

]

(from properness of MT + a bit more)

where k := Z[x±, y±, z±, (xyz)±1/2, u±1/2].

Apply K-theoretic
residue map:

0 =
∑

F⊂MC×

ResK
u χ

(
F , Ôvir
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Proof strategy, step 3: master space

0 =
∑

F⊂MC×

ResK
u χ

(
F , Ôvir

F
∧̂•−1(N vir)∨

)
.

The goal: put an obstruction theory on M such that these residues
are understandable and explicit.



Interlude: symmetric obstruction theories

A symmetric (perfect) obstruction theory E ∈ DQCoh satisfies

E ' κ⊗ E∨[1]

for some weight κ of T.

E.g. in equivariant K-theory on X :

χ(I, I(−D)) ' −χ(I(−D), I ⊗KX )∨

= −κ⊗ χ(I, I(−D))∨.

for κ := xyz .

(Restriction to any semistable = stable locus is automatically
perfect!)
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Key observation: if N vir = F − κ−1 ⊗F∨ is symmetric, then

1
∧̂•−1(N vir)∨

=
∏

w∈F
−(κw)1/2 − (κw)−1/2

w1/2 − w−1/2 .

Let F = F>0 + F<0 be the decomposition into positive and
negative C×u -weight. Then

ResK
u

1
∧̂•−1(N vir)∨

= (−1)ind(κind/2 − κ−ind/2)

where ind := rankF>0 − rankF<0 is a kind of Morse–Bott index of
each C×-fixed component.
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Interlude: symmetric obstruction theories

Better attempt: do the naive thing, but using Kiem–Savvas’
étale-local notion of almost-perfect obstruction theory (APOT)
assuming X is DM. This is:

an étale atlas {Ui → X}i (can assume Ui affine and
T-equivariant, by [Alper–Hall–Rydh ’20]);
perfect obstruction theories φi : Ei → LUi ;
descent data for a global obstruction sheaf Obφ such that
Obφ|Ui ' h1(E∨i ).

Theorem (Kiem–Savvas ’20, ’21)
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= χ(PN−1, ∧̂•−1(κ−1 ⊗ TPN−1)).
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Concretely, in our DT/PT setup:

classes have the form α = ((1,−βC ,−n),d);
strictly semistable splittings have the form

with some condition like e > f (lexicographic order);
d , e, f are always full flags;
invariants for ((0, 0,−m), f ) have trivial wall-crossing.
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Proof strategy, step 4: put it all together

Iterated simple wall-crossings produce complicated combinatorics.

Becomes DT/PT via a (new?) κ-identity on word rearrangements.

Proposition (Kuhn–L.–Thimm)
For k ≥ 0 and m1, . . . ,mk ,mk+1 ≥ 1,

1
k!
∑
σ∈Sk

∑
w∈R(m1,...,mk+1)

oσ(1)(w)>···>oσ(k)(w)

k∏
i=1

[mσ(i)−
k+1∑

j=i+1

c(eσ(i), eσ(j))]κ = [m1 + · · · + mk+1]κ!
[mk+1]κ!

∏k−1
i=1 [mi − 1]κ!

where oi (w) is the index of the first occurrence of i in w, and
c(e i , ej) ≈ the number of inversions in w for i and j.
Alternatively, can sidestep this by a trick using the freedom to
choose p ≥ 1 in the framing functor Fk,p = · · · ⊕ L⊕p.
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Proof strategy, step 4: put it all together

We give two different implementations of the master space and
wall-crossing.

Mochizuki-style (cf. [Nakajima–Yoshioka], [Kuhn–Tanaka]):
ad-hoc auxiliary stability τ̃ and master space;
direct wall-crossing from τ− to τ+;

Joyce-style (“universal wall-crossing”):
“universal” auxiliary stability τ̃ and master space which
works for many other abelian categories;
indirect wall-crossing from τ− to τ0, and then τ0 to τ+.

However, τ̃0-stable loci on auxiliary stacks are interesting in
their own right, e.g. they include Quot(O⊕2
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Possible future applications of our ideas

Conjecture (Cao–Kool–Monavari ’19)

VDT,K
π1,π2,π3,π4 = VPT,K

π1,π2,π3,π4VDT,K
∅,∅,∅,∅.

Conjecture (L. ’19)
For an appropriate notion of the Bryan–Steinberg vertex of a
singularity [C3/G ] satisfying the hard Lefschetz condition,

VPT,K
λ (G) = VBS,K

λ (G)VPT,K
∅ (G).

Finally, we may try to obtain formulas for DT/PT descendent
transformations.
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Thank you!


