The 3-fold K-theoretic DT/PT vertex correspondence holds

Henry Liu
Kavli IPMU

December 22, 2023
Joint with Nikolas Kuhn and Felix Thimm [arXiv:2311.15697]

Donaldson-Thomas theory

Setting:
$X=$ smooth (quasi-)projective 3-fold over \mathbb{C}
$\mathcal{M}^{\mathrm{DT}}(X)=\{$ ideal sheaves of curves on $X\}$.

Donaldson-Thomas theory

Setting:
$X=$ smooth (quasi-)projective 3-fold over \mathbb{C} $\mathcal{M}^{\mathrm{DT}}(X)=\{$ ideal sheaves of curves on $X\}$.

$$
0 \rightarrow \mathcal{I}_{Z} \rightarrow \mathcal{O}_{X} \rightarrow \mathcal{O}_{Z} \rightarrow 0
$$

Donaldson-Thomas theory

Setting:

$X=$ smooth (quasi-)projective 3-fold over \mathbb{C} $\mathcal{M}^{\mathrm{DT}}(X)=\{$ ideal sheaves of curves on $X\}$.

$$
0 \rightarrow \mathcal{I}_{Z} \rightarrow \mathcal{O}_{X} \rightarrow \mathcal{O}_{Z} \rightarrow 0
$$

X toric
$\mathbb{C}^{3} \subset X$
toric chart

$$
0 \rightarrow I \rightarrow \mathbb{C}[x, y, z] \rightarrow \mathbb{C}[x, y, z] / I \rightarrow 0
$$

Donaldson-Thomas theory

Setting:
$X=$ smooth (quasi-)projective toric 3 -fold over \mathbb{C} $\mathcal{M}^{\mathrm{DT}}(X)=\{$ ideal sheaves of curves on $X\}$.

$$
0 \rightarrow I \rightarrow \mathbb{C}[x, y, z] \rightarrow \mathbb{C}[x, y, z] / I \rightarrow 0
$$

Donaldson-Thomas theory

Setting:

$X=$ smooth (quasi-)projective toric 3-fold over \mathbb{C} $\mathcal{M}^{\mathrm{DT}}(X)=\{$ ideal sheaves of curves on $X\}$.

Donaldson-Thomas theory

Setting:

$X=$ smooth (quasi-)projective toric 3-fold over \mathbb{C} $\mathcal{M}^{\mathrm{DT}}(X)=\{$ ideal sheaves of curves on $X\}$.

Donaldson-Thomas theory

Setting:

$X=$ smooth (quasi-)projective toric 3-fold over \mathbb{C} $\mathcal{M}^{\mathrm{DT}}(X)=\{$ ideal sheaves of curves on $X\}$.

Donaldson-Thomas theory

Let $\Pi^{\mathrm{DT}}(\lambda, \mu, \nu):=\{3 \mathrm{~d}$ partitions with legs $\lambda, \mu, \nu\}$.

Donaldson-Thomas theory

Let $\Pi^{\mathrm{DT}}(\lambda, \mu, \nu):=\{3 \mathrm{~d}$ partitions with legs $\lambda, \mu, \nu\}$. The localization contributions of a single \mathbb{C}^{3} chart form the equivariant DT vertex

$$
\mathrm{V}_{\lambda, \mu, \nu}^{\mathrm{DT}}(x, y, z):=\sum_{\pi \in \Pi^{\mathrm{DT}}(\lambda, \mu, \nu)} w^{\mathrm{Coh}}(\pi) Q^{|\pi|} \in H_{\mathrm{T}, \mathrm{loc}}^{*}(\mathrm{pt})((Q)) .
$$

Donaldson-Thomas theory

Let $\Pi^{\mathrm{DT}}(\lambda, \mu, \nu):=\{3 \mathrm{~d}$ partitions with legs $\lambda, \mu, \nu\}$. The localization contributions of a single \mathbb{C}^{3} chart form the equivariant DT vertex

$$
\mathrm{V}_{\lambda, \mu, \nu}^{\mathrm{DT}, K}(x, y, z):=\sum_{\pi \in \Pi^{\mathrm{DT}}(\lambda, \mu, \nu)} w^{K}(\pi) Q^{|\pi|} \in K_{\mathrm{T}, \mathrm{loc}}(\mathrm{pt})((Q)) .
$$

Donaldson-Thomas theory

Let $\Pi^{\mathrm{DT}}(\lambda, \mu, \nu):=\{3 \mathrm{~d}$ partitions with legs $\lambda, \mu, \nu\}$. The localization contributions of a single \mathbb{C}^{3} chart form the equivariant DT vertex

$$
\begin{gathered}
\mathrm{V}_{\lambda, \mu, \nu}^{\mathrm{DT}, K}(x, y, z):=\sum_{\pi \in \Pi^{\mathrm{DT}}(\lambda, \mu, \nu)} w^{K}(\pi) Q^{|\pi|} \in K_{\mathrm{T}, \mathrm{loc}}(\mathrm{pt})((Q)) . \\
w^{K}(\pi)=(\text { rational function in } x, y, z) .
\end{gathered}
$$

Donaldson-Thomas theory

Let $\Pi^{\mathrm{DT}}(\lambda, \mu, \nu):=\{3 \mathrm{~d}$ partitions with legs $\lambda, \mu, \nu\}$. The localization contributions of a single \mathbb{C}^{3} chart form the equivariant DT vertex

$$
\begin{gathered}
\mathrm{V}_{\lambda, \mu, \nu}^{\mathrm{DT}, K}(x, y, z):=\sum_{\pi \in \Pi^{\mathrm{DT}}(\lambda, \mu, \nu)} w^{K}(\pi) Q^{|\pi|} \in K_{\mathrm{T}, \mathrm{loc}}(\mathrm{pt})((Q)) . \\
w^{K}(\pi)=(\text { rational function in } x, y, z) .
\end{gathered}
$$

E.g. $\mathrm{V}_{\emptyset, \emptyset, \emptyset}^{\mathrm{DT}, K}$ (non-equivariant $)=\prod_{n>0}\left(1-Q^{n}\right)^{-n}$ is MacMahon's famous enumeration of 3d partitions.

Pandharipande-Thomas theory

Setting:

$X=$ smooth (quasi-)projective 3-fold over \mathbb{C} $\mathcal{M}^{\mathrm{PT}}(X)=\left\{\right.$ stable pairs $\left[\mathcal{O}_{X} \xrightarrow{s} \mathcal{F}\right]$ on $\left.X\right\}$.

Pandharipande-Thomas theory

Setting:

$X=$ smooth (quasi-)projective 3-fold over \mathbb{C} $\mathcal{M}^{\mathrm{PT}}(X)=\left\{\right.$ stable pairs $\left[\mathcal{O}_{X} \xrightarrow{s} \mathcal{F}\right]$ on $\left.X\right\}$.

$$
\begin{array}{r}
0 \rightarrow \mathcal{I}_{C} \rightarrow \mathcal{O}_{X} \rightarrow \mathcal{F} \rightarrow \mathcal{Q} \rightarrow 0 \\
\text { pure 1-dim 0-dim }
\end{array}
$$

Pandharipande-Thomas theory

Setting:

$X=$ smooth (quasi-)projective 3-fold over \mathbb{C} $\mathcal{M}^{\mathrm{PT}}(X)=\left\{\right.$ stable pairs $\left[\mathcal{O}_{X} \xrightarrow{s} \mathcal{F}\right]$ on $\left.X\right\}$.

$$
0 \rightarrow \mathcal{I}_{C} \rightarrow \mathcal{O}_{X} \rightarrow \mathcal{F} \rightarrow \mathcal{Q} \rightarrow 0
$$

$$
X \text { toric }
$$

$$
\mathbb{C}^{3} \subset X
$$

toric chart

$$
0 \rightarrow I_{C} \rightarrow \mathbb{C}[x, y, z] \xrightarrow{s} F \rightarrow Q \rightarrow 0
$$

Pandharipande-Thomas theory

Setting:

$X=$ smooth (quasi-)projective toric 3 -fold over \mathbb{C} $\mathcal{M}^{\mathrm{PT}}(X)=\left\{\right.$ stable pairs $\left[\mathcal{O}_{X} \xrightarrow{s} \mathcal{F}\right]$ on $\left.X\right\}$.

$$
0 \rightarrow I_{C} \rightarrow \mathbb{C}[x, y, z] \xrightarrow{s} F \rightarrow Q \rightarrow 0
$$

Pandharipande-Thomas theory

Setting:

$X=$ smooth (quasi-)projective toric 3-fold over \mathbb{C} $\mathcal{M}^{\mathrm{PT}}(X)=\left\{\right.$ stable pairs $\left[\mathcal{O}_{X} \xrightarrow{s} \mathcal{F}\right]$ on $\left.X\right\}$.

Pandharipande-Thomas theory

Setting:

$X=$ smooth (quasi-)projective toric 3-fold over \mathbb{C} $\mathcal{M}^{\mathrm{PT}}(X)=\left\{\right.$ stable pairs $\left[\mathcal{O}_{X} \xrightarrow{s} \mathcal{F}\right]$ on $\left.X\right\}$.

Pandharipande-Thomas theory

Setting:

$X=$ smooth (quasi-)projective toric 3-fold over \mathbb{C} $\mathcal{M}^{\mathrm{PT}}(X)=\left\{\right.$ stable pairs $\left[\mathcal{O}_{X} \xrightarrow{s} \mathcal{F}\right]$ on $\left.X\right\}$.

Pandharipande-Thomas theory

Setting:

$X=$ smooth (quasi-)projective toric 3-fold over \mathbb{C} $\mathcal{M}^{\mathrm{PT}}(X)=\left\{\right.$ stable pairs $\left[\mathcal{O}_{X} \xrightarrow{s} \mathcal{F}\right]$ on $\left.X\right\}$.

Pandharipande-Thomas theory

Let $\Pi^{\mathrm{PT}}(\lambda, \mu, \nu):=\{\mathrm{PT}$ configurations with legs $\lambda, \mu, \nu\}$.

Pandharipande-Thomas theory

Let $\Pi^{\mathrm{PT}}(\lambda, \mu, \nu):=\{\mathrm{PT}$ configurations with legs $\lambda, \mu, \nu\}$. The localization contributions of a single \mathbb{C}^{3} chart form the equivariant PT vertex

$$
\mathrm{V}_{\lambda, \mu, \nu}^{\mathrm{PT}}(x, y, z):=\sum_{\pi \in \Pi^{\mathrm{PT}}(\lambda, \mu, \nu)} w^{\mathrm{Coh}}(\pi) Q^{|\pi|} \in H_{\mathrm{T}, \mathrm{loc}}^{*}(\mathrm{pt})((Q)) .
$$

Pandharipande-Thomas theory

Let $\Pi^{\mathrm{PT}}(\lambda, \mu, \nu):=\{\mathrm{PT}$ configurations with legs $\lambda, \mu, \nu\}$. The localization contributions of a single \mathbb{C}^{3} chart form the equivariant PT vertex

$$
\mathrm{V}_{\lambda, \mu, \nu}^{\mathrm{PT}, K}(x, y, z):=\sum_{\pi \in \Pi^{\mathrm{PT}}(\lambda, \mu, \nu)} w^{K}(\pi) Q^{|\pi|} \in K_{\mathrm{T}, \mathrm{loc}}(\mathrm{pt})((Q)) .
$$

Pandharipande-Thomas theory

Let $\Pi^{\mathrm{PT}}(\lambda, \mu, \nu):=\{\mathrm{PT}$ configurations with legs $\lambda, \mu, \nu\}$. The localization contributions of a single \mathbb{C}^{3} chart form the equivariant PT vertex

$$
\begin{gathered}
\mathrm{V}_{\lambda, \mu, \nu}^{\mathrm{PT}, K}(x, y, z):=\sum_{\pi \in \Pi^{\mathrm{PT}}(\lambda, \mu, \nu)} w^{K}(\pi) Q^{|\pi|} \in K_{\mathrm{T}, \mathrm{loc}}(\mathrm{pt})((Q)) . \\
w^{K}(\pi)=(\text { rational function in } x, y, z) .
\end{gathered}
$$

Pandharipande-Thomas theory

Let $\Pi^{\mathrm{PT}}(\lambda, \mu, \nu):=\{\mathrm{PT}$ configurations with legs $\lambda, \mu, \nu\}$. The localization contributions of a single \mathbb{C}^{3} chart form the equivariant PT vertex

$$
\begin{gathered}
\mathrm{V}_{\lambda, \mu, \nu}^{\mathrm{PT}, K}(x, y, z):=\sum_{\pi \in \Pi^{\mathrm{PT}}(\lambda, \mu, \nu)} w^{K}(\pi) Q^{|\pi|} \in K_{\mathrm{T}, \mathrm{loc}}(\mathrm{pt})((Q)) . \\
w^{K}(\pi)=(\text { rational function in } x, y, z) .
\end{gathered}
$$

"Fewer" PT configurations than DT configurations, but with much more complexity, possibly in positive-dimensional families.

Pandharipande-Thomas theory

Let $\Pi^{\mathrm{PT}}(\lambda, \mu, \nu):=\{\mathrm{PT}$ configurations with legs $\lambda, \mu, \nu\}$. The localization contributions of a single \mathbb{C}^{3} chart form the equivariant PT vertex

$$
\begin{gathered}
\mathrm{V}_{\lambda, \mu, \nu}^{\mathrm{PT}, K}(x, y, z):=\sum_{\pi \in \Pi^{\mathrm{PT}}(\lambda, \mu, \nu)} w^{K}(\pi) Q^{|\pi|} \in K_{\mathrm{T}, \mathrm{loc}}(\mathrm{pt})((Q)) . \\
w^{K}(\pi)=(\text { rational function in } x, y, z) .
\end{gathered}
$$

"Fewer" PT configurations than DT configurations, but with much more complexity, possibly in positive-dimensional families.

$$
\vee_{\emptyset, \emptyset, \emptyset}^{\mathrm{PT}, K}(x, y, z)=1
$$

DT/PT vertex correspondence

Conjecture (PT '07

$$
\mathrm{V}_{\lambda, \mu, \nu}^{\mathrm{DT}}=\mathrm{V}_{\lambda, \mu, \nu}^{\mathrm{PT}} \mathrm{~V}_{\|,, \bar{\emptyset}, \vartheta}^{\mathrm{DT}} .
$$

DT/PT vertex correspondence

Conjecture (PT '07)

$$
V_{\lambda, \mu, \nu}^{\mathrm{DT}}=V_{\lambda, \mu, \nu}^{\mathrm{PT}} \mathrm{~V}_{\emptyset,, \emptyset, \vartheta}^{\mathrm{D}} \mathrm{~T}
$$

"[This] has the form of a wall crossing formula envisaged by Joyce for invariants counting stable objects in $D^{b}(X)$ ".

DT/PT vertex correspondence

Conjecture (PT '07, Nekrasov-Okounkov '14)

$$
\mathrm{V}_{\lambda, \mu, \nu}^{\mathrm{DT}, K}=\mathrm{V}_{\lambda, \mu, \nu}^{\mathrm{PT}, K} \mathrm{~V}_{\emptyset, \emptyset, \emptyset}^{\mathrm{DT}, K} .
$$

"[This] has the form of a wall crossing formula envisaged by Joyce for invariants counting stable objects in $D^{b}(X)$ ".

DT/PT vertex correspondence

Conjecture (PT '07, Nekrasov-Okounkov '14)

$$
\mathrm{V}_{\lambda, \mu, \nu}^{\mathrm{DT}, K}=\mathrm{V}_{\lambda, \mu, \nu}^{\mathrm{PT}, K} \mathrm{~V}_{\emptyset, \emptyset, \emptyset}^{\mathrm{DT}, K} .
$$

"[This] has the form of a wall crossing formula envisaged by Joyce for invariants counting stable objects in $D^{b}(X)$ ".

Theorem (Kuhn-L.-Thimm '23)
This conjecture holds, in equivariant K-theory.

DT/PT vertex correspondence

Conjecture (PT '07, Nekrasov-Okounkov '14)

$$
\mathrm{V}_{\lambda, \mu, \nu}^{\mathrm{DT}, K}=\mathrm{V}_{\lambda, \mu, \nu}^{\mathrm{PT}, K} \mathrm{~V}_{\emptyset, \emptyset, \emptyset}^{\mathrm{DT}, K} .
$$

"[This] has the form of a wall crossing formula envisaged by Joyce for invariants counting stable objects in $D^{b}(X)$ ".

Theorem (Kuhn-L.-Thimm '23)
This conjecture holds, in equivariant K-theory.
Indeed, we use wall-crossing techniques (which work equally well in equivariant cohomology).

DT/PT (vertex) correspondence

Previous work mostly studied cohomological partition functions

$$
\left.\mathrm{Z}_{X, \beta}^{M}:=\sum_{n \in \mathbb{Z}} Q^{n} \int_{\left[\mathcal{M}_{\beta}, n\right.}^{M}(X)\right]^{\mathrm{vir}} \mathrm{i} \quad 1, \quad M \in\{\mathrm{DT}, \mathrm{PT}\}
$$

and the DT/PT correspondence $\mathrm{Z}_{X, \beta_{C}}^{\mathrm{DT}}=\mathrm{Z}_{X, \beta_{C}}^{\mathrm{PT}} \mathrm{Z}_{X, 0}^{\mathrm{DT}}$.

DT/PT (vertex) correspondence

Previous work mostly studied cohomological partition functions

$$
\left.\mathrm{Z}_{X, \beta}^{M}:=\sum_{n \in \mathbb{Z}} Q^{n} \int_{\left[\mathcal{M}_{\beta}, n\right.}^{M}(X)\right]^{\mathrm{vir}} \mathrm{M}, \quad M \in\{\mathrm{DT}, \mathrm{PT}\}
$$

and the DT/PT correspondence $\mathrm{Z}_{X, \beta_{C}}^{\mathrm{DT}}=\mathrm{Z}_{X, \beta_{C}}^{\mathrm{PT}} \mathrm{Z}_{X, 0}^{\mathrm{DT}}$. Known for smooth 3 -folds X which are:

DT/PT (vertex) correspondence

Previous work mostly studied cohomological partition functions

$$
\mathrm{Z}_{X, \beta}^{M}:=\sum_{n \in \mathbb{Z}} Q^{n} \int_{\left[\mathcal{M}_{\beta_{C}, n}^{M}(X)\right]^{\mathrm{vir}}} 1, \quad M \in\{\mathrm{DT}, \mathrm{PT}\}
$$

and the DT/PT correspondence $\mathrm{Z}_{X, \beta_{C}}^{\mathrm{DT}}=\mathrm{Z}_{X, \beta_{C}}^{\mathrm{PT}} \mathrm{Z}_{X, 0}^{\mathrm{DT}}$. Known for smooth 3 -folds X which are:
(Bridgeland '10) projective Calabi-Yau with $H^{1}\left(\mathcal{O}_{X}\right)=0$;

DT/PT (vertex) correspondence

Previous work mostly studied cohomological partition functions

$$
\mathrm{Z}_{X, \beta}^{M}:=\sum_{n \in \mathbb{Z}} Q^{n} \int_{\left[\mathcal{M}_{\beta_{C}, n}^{M}(X)\right]^{\mathrm{vir}}} 1, \quad M \in\{\mathrm{DT}, \mathrm{PT}\}
$$

and the DT/PT correspondence $\mathrm{Z}_{X, \beta_{C}}^{\mathrm{DT}}=\mathrm{Z}_{X, \beta_{C}}^{\mathrm{PT}} \mathrm{Z}_{X, 0}^{\mathrm{DT}}$. Known for smooth 3 -folds X which are:
(Bridgeland '10) projective Calabi-Yau with $H^{1}\left(\mathcal{O}_{X}\right)=0$;
(Toda '09, Toda '16) projective Calabi-Yau;

DT/PT (vertex) correspondence

Previous work mostly studied cohomological partition functions

$$
Z_{X, \beta}^{M}:=\sum_{n \in \mathbb{Z}} Q^{n} \int_{\left[\mathcal{M}_{\beta C, n}^{M}(X)\right]^{\mathrm{vir}}} 1, \quad M \in\{\mathrm{DT}, \mathrm{PT}\}
$$

and the DT/PT correspondence $\mathrm{Z}_{X, \beta_{C}}^{\mathrm{DT}}=\mathrm{Z}_{X, \beta_{C}}^{\mathrm{PT}} \mathrm{Z}_{X, 0}^{\mathrm{DT}}$. Known for smooth 3 -folds X which are:
(Bridgeland '10) projective Calabi-Yau with $H^{1}\left(\mathcal{O}_{X}\right)=0$;
(Toda '09, Toda '16) projective Calabi-Yau;
(corollary of our main theorem) quasi-projective toric, since

DT/PT (vertex) correspondence

Previous work mostly studied cohomological partition functions

$$
\mathrm{Z}_{X, \beta}^{M}:=\sum_{n \in \mathbb{Z}} Q^{n} \int_{\left[\mathcal{M}_{\beta \subset, n}^{M}(X)\right]^{\mathrm{vir}}} 1, \quad M \in\{\mathrm{DT}, \mathrm{PT}\}
$$

and the DT/PT correspondence $\mathrm{Z}_{X, \beta_{C}}^{\mathrm{DT}}=\mathrm{Z}_{X, \beta_{C}}^{\mathrm{PT}} \mathrm{Z}_{X, 0}^{\mathrm{DT}}$. Known for smooth 3 -folds X which are:
(Bridgeland '10) projective Calabi-Yau with $H^{1}\left(\mathcal{O}_{X}\right)=0$;
(Toda '09, Toda '16) projective Calabi-Yau;
(corollary of our main theorem) quasi-projective toric, since

$$
\mathrm{Z}_{X, \beta_{C}}^{M}=\sum_{\lambda \vdash \beta_{C}} \prod_{e} \mathrm{E}_{\lambda(e)}(x, y, z) \prod_{v} \mathrm{~V}_{\lambda\left(e_{1}\right), \lambda\left(e_{2}\right), \lambda\left(e_{3}\right)}^{M}(x, y, z)
$$

DT/PT (vertex) correspondence

Previous work mostly studied cohomological partition functions

$$
\mathrm{Z}_{X, \beta}^{M}:=\sum_{n \in \mathbb{Z}} Q^{n} \int_{\left[\mathcal{M}_{\beta \subset, n}^{M}(X)\right]^{\mathrm{vir}}} 1, \quad M \in\{\mathrm{DT}, \mathrm{PT}\}
$$

and the DT/PT correspondence $\mathrm{Z}_{X, \beta_{C}}^{\mathrm{DT}}=\mathrm{Z}_{X, \beta_{C}}^{\mathrm{PT}} \mathrm{Z}_{X, 0}^{\mathrm{DT}}$. Known for smooth 3 -folds X which are:
(Bridgeland '10) projective Calabi-Yau with $H^{1}\left(\mathcal{O}_{X}\right)=0$;
(Toda '09, Toda '16) projective Calabi-Yau;
(corollary of our main theorem) quasi-projective toric, since

$$
\mathrm{Z}_{X, \beta_{C}}^{M}=\sum_{\lambda \vdash \beta_{C}} \prod_{e} \mathrm{E}_{\lambda(e)}(x, y, z) \prod_{v} \mathrm{~V}_{\lambda\left(e_{1}\right), \lambda\left(e_{2}\right), \lambda\left(e_{3}\right)}^{M}(x, y, z)
$$

DT/PT vertex correspondence

Previous work also includes combinatorial approaches to the numerical DT/PT vertex correspondence

$$
\lim _{x y z \rightarrow 1} \mathrm{~V}_{\lambda, \mu, \nu}^{\mathrm{DT}, K}=\lim _{x y z \rightarrow 1} \mathrm{~V}_{\lambda, \mu, \nu}^{\mathrm{PT}, K} \mathrm{~V}_{\emptyset, \emptyset, \emptyset}^{\mathrm{DT}, K}
$$

DT/PT vertex correspondence

Previous work also includes combinatorial approaches to the numerical DT/PT vertex correspondence

$$
\lim _{x y z \rightarrow 1} \mathrm{~V}_{\lambda, \mu, \nu}^{\mathrm{DT}, K}=\lim _{x y z \rightarrow 1} \mathrm{~V}_{\lambda, \mu, \nu}^{\mathrm{PT}, K} \mathrm{~V}_{\emptyset, \emptyset, \emptyset}^{\mathrm{DT}, K}
$$

In this Calabi-Yau limit, the equivariant term $w^{K}(\pi)$ disappears and vertices become generating functions.

DT/PT vertex correspondence

Previous work also includes combinatorial approaches to the numerical DT/PT vertex correspondence

$$
\lim _{x y z \rightarrow 1} \mathrm{~V}_{\lambda, \mu, \nu}^{\mathrm{DT}, K}=\lim _{x y z \rightarrow 1} \mathrm{~V}_{\lambda, \mu, \nu}^{\mathrm{PT}, K} \mathrm{~V}_{\emptyset, \emptyset, \emptyset}^{\mathrm{DT}, K}
$$

In this Calabi-Yau limit, the equivariant term $w^{K}(\pi)$ disappears and vertices become generating functions.
(Kononov-Okounkov-Osinenko '19) Holds for up to two non-trivial λ, μ, ν. ("Easy")

DT/PT vertex correspondence

Previous work also includes combinatorial approaches to the numerical DT/PT vertex correspondence

$$
\lim _{x y z \rightarrow 1} \mathrm{~V}_{\lambda, \mu, \nu}^{\mathrm{DT}, K}=\lim _{x y z \rightarrow 1} \mathrm{~V}_{\lambda, \mu, \nu}^{\mathrm{PT}, K} \mathrm{~V}_{\emptyset, \emptyset, \emptyset}^{\mathrm{DT}, K}
$$

In this Calabi-Yau limit, the equivariant term $w^{K}(\pi)$ disappears and vertices become generating functions.
(Kononov-Okounkov-Osinenko '19) Holds for up to two non-trivial λ, μ, ν. ("Easy")
(Jenne-Webb-Young '20) Holds for arbitrary λ, μ, ν. (Hard!)

DT/PT vertex correspondence

The full $\mathrm{V}_{\lambda, \mu, \nu}^{M, K}(x, y, z)$ are genuinely equivariant objects, much more sophisticated than $Z_{X, \beta}^{M, K}, Z_{X, \beta}^{M}$, or $\lim _{x y z \rightarrow 1} V_{\lambda, \mu, \nu}^{M, K}$.

DT/PT vertex correspondence

The full $\mathrm{V}_{\lambda, \mu, \nu}^{M, K}(x, y, z)$ are genuinely equivariant objects, much more sophisticated than $Z_{X, \beta}^{M, K}, Z_{X, \beta}^{M}$, or $\lim _{x y z \rightarrow 1} V_{\lambda, \mu, \nu}^{M, K}$.

We always work equivariantly with respect to the obvious action of $\mathrm{T}=\left(\mathbb{C}^{\times}\right)^{3}$.

Proof strategy, step 1: formulate the wall-crossing problem
Let $\bar{X}:=\mathbb{P}^{1} \times \mathbb{P}^{1} \times \mathbb{P}^{1}$ and fix λ, μ, ν.

Proof strategy, step 1: formulate the wall-crossing problem
Let $\bar{X}:=\mathbb{P}^{1} \times \mathbb{P}^{1} \times \mathbb{P}^{1}$ and fix λ, μ, ν.

Proof strategy, step 1: formulate the wall-crossing problem

Let $\bar{X}:=\mathbb{P}^{1} \times \mathbb{P}^{1} \times \mathbb{P}^{1}$ and fix λ, μ, ν.

There is a moduli stack $\mathfrak{N}_{(\lambda, \mu, \nu), n}$ of pairs $I=\left[\mathcal{O}_{\bar{X}} \rightarrow \mathcal{E}\right]$ with this prescribed (derived) restriction to the boundary $D=D_{1} \cup D_{2} \cup D_{3}$, and numerical class

$$
\operatorname{ch}(I)=\left(1,0,-\beta_{C},-n\right), \quad \beta_{C}:=(|\lambda|,|\mu|,|\nu|) .
$$

Proof strategy, step 1: formulate the wall-crossing problem

Toda has a continuous family $\left(\tau_{\xi}\right)_{\xi}$ of weak stability conditions, on the underlying abelian category $\left\langle\mathcal{O}_{\bar{X}}, \operatorname{Coh}(\bar{X})[-1]\right\rangle$, such that:

Proof strategy, step 1: formulate the wall-crossing problem

Toda has a continuous family $\left(\tau_{\xi}\right)_{\xi}$ of weak stability conditions, on the underlying abelian category $\left\langle\mathcal{O}_{\bar{X}}, \operatorname{Coh}(\bar{X})[-1]\right\rangle$, such that:

$[\mathcal{O} \rightarrow \mathcal{E}]$

Proof strategy, step 1: formulate the wall-crossing problem

Toda has a continuous family $\left(\tau_{\xi}\right)_{\xi}$ of weak stability conditions, on the underlying abelian category $\left\langle\mathcal{O}_{\bar{X}}, \operatorname{Coh}(\bar{X})[-1]\right\rangle$, such that:

$[\mathcal{O} \rightarrow \mathcal{E}]$

$$
\tau^{-} \quad \tau_{0}
$$

Proof strategy, step 1: formulate the wall-crossing problem

Toda has a continuous family $\left(\tau_{\xi}\right)_{\xi}$ of weak stability conditions, on the underlying abelian category $\left\langle\mathcal{O}_{\bar{X}}, \operatorname{Coh}(\bar{X})[-1]\right\rangle$, such that:

Proof strategy, step 1: formulate the wall-crossing problem

Toda has a continuous family $\left(\tau_{\xi}\right)_{\xi}$ of weak stability conditions, on the underlying abelian category $\left\langle\mathcal{O}_{\bar{X}}, \operatorname{Coh}(\bar{X})[-1]\right\rangle$, such that:

$$
\mathfrak{N}_{(\lambda, \mu, \nu), n}^{\mathrm{sst}}\left(\tau^{+}\right)
$$

$$
\left[0 \rightarrow \mathcal{I}_{C} \rightarrow \mathcal{O} \rightarrow \mathcal{E} \rightarrow \mathcal{Q} \rightarrow 0\right]
$$

Proof strategy, step 1: formulate the wall-crossing problem

Toda has a continuous family $\left(\tau_{\xi}\right)_{\xi}$ of weak stability conditions, on the underlying abelian category $\left\langle\mathcal{O}_{\bar{X}}, \operatorname{Coh}(\bar{X})[-1]\right\rangle$, such that:

$$
\mathfrak{N}_{(\lambda, \mu, \nu), n}^{\mathrm{sst}}\left(\tau^{+}\right)
$$

$$
\left[0 \rightarrow \mathcal{I}_{C} \rightarrow \mathcal{O} \rightarrow \mathcal{E} \rightarrow \mathcal{Q} \rightarrow 0\right]
$$

Proof strategy, step 1: formulate the wall-crossing problem

Proposition

There is a symmetric obstruction theory on $\mathfrak{N}_{(\lambda, \mu, \nu), n}$, given by $\operatorname{Ext}_{\bar{X}}(I, I(-D))$, such that

$$
\begin{aligned}
& \mathrm{V}_{\lambda, \mu, \nu}^{\mathrm{DT}, K}=\sum_{n} Q^{N} \chi\left(\mathfrak{N}_{(\lambda, \mu, \nu), n}^{\mathrm{sst}}\left(\tau^{-}\right), \widehat{\mathcal{O}}^{\mathrm{vir}}\right) \\
& \mathrm{V}_{\lambda, \mu, \nu}^{\mathrm{PT}, K}=\sum_{n} Q^{N} \chi\left(\mathfrak{N}_{(\lambda, \mu, \nu), n}^{\mathrm{sst}}\left(\tau^{+}\right), \widehat{\mathcal{O}}^{\mathrm{vir}}\right) .
\end{aligned}
$$

Proof strategy, step 1: formulate the wall-crossing problem

Proposition

There is a symmetric obstruction theory on $\mathfrak{N}_{(\lambda, \mu, \nu), n}$, given by Ext $\bar{x}(I, I(-D))$, such that

$$
\begin{aligned}
& \mathrm{V}_{\lambda, \mu, \nu}^{\mathrm{DT}, K}=\sum_{n} Q^{N} \chi\left(\mathfrak{N}_{(\lambda, \mu, \nu), n}^{\mathrm{sst}}\left(\tau^{-}\right), \widehat{\mathcal{O}}^{\mathrm{vir}}\right) \\
& \mathrm{V}_{\lambda, \mu, \nu}^{\mathrm{PT}, K}=\sum_{n} Q^{N} \chi\left(\mathfrak{N}_{(\lambda, \mu, \nu), n}^{\mathrm{sst}}\left(\tau^{+}\right), \widehat{\mathcal{O}}^{\mathrm{vir}}\right) .
\end{aligned}
$$

Nekrasov-Okounkov symmetrization $\widehat{\mathcal{O}}^{\text {vir }}:=\mathcal{K}_{\text {vir }}^{1 / 2} \otimes \mathcal{O}^{\text {vir }}$.

Proof strategy, step 2: add framing data

Problem: master space arguments (later) require stable objects to split into ≤ 2 strictly-semistable pieces at a wall.

Proof strategy, step 2: add framing data

Problem: master space arguments (later) require stable objects to split into ≤ 2 strictly-semistable pieces at a wall.

Solution: construct auxiliary moduli stacks

Proof strategy, step 2: add framing data

Problem: master space arguments (later) require stable objects to split into ≤ 2 strictly-semistable pieces at a wall.

Solution: construct auxiliary moduli stacks

Proof strategy, step 2: add framing data

Problem: master space arguments (later) require stable objects to split into ≤ 2 strictly-semistable pieces at a wall.

Solution: construct auxiliary moduli stacks

GL(N)/B-fibrations

Proof strategy, step 2: add framing data

$$
\mathfrak{N}_{(\lambda, \mu, \nu), n, \boldsymbol{d}}^{Q(N)} \text { parameterizes quiver-framed objects }(I, \boldsymbol{V}, \boldsymbol{\rho})
$$

Proof strategy, step 2: add framing data

$$
\begin{aligned}
& \mathfrak{N}_{(\lambda, \mu, \nu), n, \boldsymbol{d}}^{Q(N)} \text { parameterizes quiver-framed objects }(I, \boldsymbol{V}, \boldsymbol{\rho}) \\
& V_{1} \xrightarrow{\rho_{1}} V^{V_{2}} \xrightarrow{\rho_{2}} \cdots \xrightarrow{\rho_{N-1}}{ }^{V_{N}} \xrightarrow{\rho_{N}} V_{N+1}=F_{k, p}(I)
\end{aligned}
$$

Proof strategy, step 2: add framing data

$$
\begin{aligned}
& \mathfrak{N}_{(\lambda, \mu, \nu), n, \boldsymbol{d}}^{Q(N)} \text { parameterizes quiver-framed objects }(I, \boldsymbol{V}, \boldsymbol{\rho}) \\
& V_{1} \xrightarrow{\rho_{1}} V_{2} \xrightarrow{\rho_{2}} \cdots \xrightarrow{\rho_{N-1}} V^{V_{N}} \xrightarrow{\rho_{N}} V_{N+1}=F_{k, p}(I)
\end{aligned}
$$

for $\operatorname{dim} \boldsymbol{V}=\boldsymbol{d}$ and the framing functor

$$
F_{k}\left(\left[L \otimes \mathcal{O}_{x} \rightarrow \mathcal{E}\right]\right):=H^{0}(\mathcal{E}(k)) \oplus L
$$

Proof strategy, step 2: add framing data

$$
\begin{aligned}
& \mathfrak{N}_{(\lambda, \mu, \nu), n, \boldsymbol{d}}^{Q(N)} \text { parameterizes quiver-framed objects }(I, \boldsymbol{V}, \boldsymbol{\rho}) \\
& V_{1} \xrightarrow{\rho_{1}} V_{2} \xrightarrow{\rho_{2}} \cdots \xrightarrow{\rho_{N-1}} V^{V_{N}} \xrightarrow{\rho_{N}} V_{N+1}=F_{k, p}(I)
\end{aligned}
$$

for $\operatorname{dim} \boldsymbol{V}=\boldsymbol{d}$ and the framing functor

$$
F_{k, p}\left(\left[L \otimes \mathcal{O}_{X} \rightarrow \mathcal{E}\right]\right):=H^{0}(\mathcal{E}(k)) \oplus L^{\oplus p}
$$

Proof strategy, step 2: add framing data

$\mathfrak{N}_{(\lambda, \mu, \nu), n, \boldsymbol{d}}^{Q(N)}$ parameterizes quiver-framed objects $(I, \boldsymbol{V}, \boldsymbol{\rho})$
$V_{1} \xrightarrow{\rho_{1}} V^{V_{2}} \xrightarrow{\rho_{2}} \cdots \xrightarrow{\rho_{N-1}} \stackrel{V_{N}}{ }{ }^{\rho_{N}}{ }^{V_{N+1}=F_{k, p}(I)}$
for $\operatorname{dim} \boldsymbol{V}=\boldsymbol{d}$ and the framing functor

$$
F_{k, p}\left(\left[L \otimes \mathcal{O}_{X} \rightarrow \mathcal{E}\right]\right):=H^{0}(\mathcal{E}(k)) \oplus L^{\oplus p}
$$

with parameters

Proof strategy, step 2: add framing data

$\mathfrak{N}_{(\lambda, \mu, \nu), n, \boldsymbol{d}}^{Q(N)}$ parameterizes quiver-framed objects $(I, \boldsymbol{V}, \boldsymbol{\rho})$
$V_{1} \xrightarrow{\rho_{1}} V^{V_{2}} \xrightarrow{\rho_{2}} \cdots \xrightarrow{\rho_{N-1}} \stackrel{V_{N}}{ }{ }^{\rho_{N}}{ }^{V_{N+1}=F_{k, p}(I)}$
for $\operatorname{dim} \boldsymbol{V}=\boldsymbol{d}$ and the framing functor

$$
F_{k, p}\left(\left[L \otimes \mathcal{O}_{x} \rightarrow \mathcal{E}\right]\right):=H^{0}(\mathcal{E}(k)) \oplus L^{\oplus p}
$$

with parameters
$k \gg 0$ such that $H^{>0}(\mathcal{E}(k))=0$ for all \mathcal{E},

Proof strategy, step 2: add framing data

$\mathfrak{N}_{(\lambda, \mu, \nu), n, \boldsymbol{d}}^{Q(N)}$ parameterizes quiver-framed objects (I, $\left.\boldsymbol{V}, \boldsymbol{\rho}\right)$

$$
\boldsymbol{\square} \xrightarrow{V_{1}} \xrightarrow{\rho_{1}} \xrightarrow{V_{2}} \cdots \xrightarrow{\rho_{2}} \xrightarrow{\rho_{N-1}}{ }^{V_{N}} \rho_{N} \quad V_{N+1}=F_{k, p}(I)
$$

for $\operatorname{dim} \boldsymbol{V}=\boldsymbol{d}$ and the framing functor

$$
F_{k, p}\left(\left[L \otimes \mathcal{O}_{X} \rightarrow \mathcal{E}\right]\right):=H^{0}(\mathcal{E}(k)) \oplus L^{\oplus p}
$$

with parameters
$k \gg 0$ such that $H^{>0}(\mathcal{E}(k))=0$ for all \mathcal{E},
$N=f_{k, p}(I):=\operatorname{dim} F_{k, p}(I)$,

Proof strategy, step 2: add framing data

$\mathfrak{N}_{(\lambda, \mu, \nu), n, \boldsymbol{d}}^{Q(N)}$ parameterizes quiver-framed objects (I, $\left.\boldsymbol{V}, \boldsymbol{\rho}\right)$

$$
\xrightarrow{V_{1}} \xrightarrow{\rho_{1}}{ }^{V_{2}} \xrightarrow{\rho_{2}} \cdots \xrightarrow{\rho_{N-1}}{ }^{V_{N}} \xrightarrow{\rho_{N}}{ }^{V_{N+1}=F_{k, p}(I)}
$$

for $\operatorname{dim} \boldsymbol{V}=\boldsymbol{d}$ and the framing functor

$$
F_{k, p}\left(\left[L \otimes \mathcal{O}_{X} \rightarrow \mathcal{E}\right]\right):=H^{0}(\mathcal{E}(k)) \oplus L^{\oplus p}
$$

with parameters
$k \gg 0$ such that $H^{>0}(\mathcal{E}(k))=0$ for all \mathcal{E},
$N=f_{k, p}(I):=\operatorname{dim} F_{k, p}(I)$,
$\boldsymbol{d}=(1,2,3, \ldots, N-1, N)$.

Proof strategy, step 3: master space

(Mochizuki, Thaddeus, Nakajima-Yoshioka, Kiem-Li, Joyce, etc.) Typical geometric argument for simple wall-crossings $Z_{\alpha}^{-} \rightsquigarrow Z_{\alpha}^{+}$:

Proof strategy, step 3: master space

(Mochizuki, Thaddeus, Nakajima-Yoshioka, Kiem-Li, Joyce, etc.) Typical geometric argument for simple wall-crossings $Z_{\alpha}^{-} \rightsquigarrow Z_{\alpha}^{+}$: construct a master space \mathbb{M}

Proof strategy, step 3: master space

(Mochizuki, Thaddeus, Nakajima-Yoshioka, Kiem-Li, Joyce, etc.) Typical geometric argument for simple wall-crossings $Z_{\alpha}^{-} \rightsquigarrow Z_{\alpha}^{+}$: construct a master space \mathbb{M}

with a \mathbb{C}_{u}^{\times}-action whose fixed loci are:

Proof strategy, step 3: master space

(Mochizuki, Thaddeus, Nakajima-Yoshioka, Kiem-Li, Joyce, etc.) Typical geometric argument for simple wall-crossings $Z_{\alpha}^{-} \rightsquigarrow Z_{\alpha}^{+}$: construct a master space \mathbb{M}

with a \mathbb{C}_{u}^{\times}-action whose fixed loci are: divisors Z_{α}^{-}

Proof strategy, step 3: master space

(Mochizuki, Thaddeus, Nakajima-Yoshioka, Kiem-Li, Joyce, etc.) Typical geometric argument for simple wall-crossings $Z_{\alpha}^{-} \rightsquigarrow Z_{\alpha}^{+}$: construct a master space \mathbb{M}

with a \mathbb{C}_{u}^{\times}-action whose fixed loci are: divisors Z_{α}^{-}and Z_{α}^{+};

Proof strategy, step 3: master space

(Mochizuki, Thaddeus, Nakajima-Yoshioka, Kiem-Li, Joyce, etc.) Typical geometric argument for simple wall-crossings $Z_{\alpha}^{-} \rightsquigarrow Z_{\alpha}^{+}$: construct a master space \mathbb{M}

with a \mathbb{C}_{u}^{\times}-action whose fixed loci are: divisors Z_{α}^{-}and Z_{α}^{+};
components $Z_{\alpha_{1}, \alpha_{2}}^{0} \cong Z_{\alpha_{1}}^{-} \times Z_{\alpha_{2}}^{-}$, for strictly semistable splittings $\alpha_{1}+\alpha_{2}=\alpha$.

Proof strategy, step 3: master space

$$
\chi\left(\mathbb{M}, \mathcal{O}^{\text {vir }}\right)=\sum_{F \subset \mathbb{M}^{\mathrm{C}}} \chi\left(F, \frac{\mathcal{O}_{F}^{\text {vir }}}{\wedge_{-1}^{\cdot}\left(\mathcal{N}^{\text {vir }}\right)^{\vee}}\right)
$$

Proof strategy, step 3: master space

$$
\chi\left(\mathbb{M}, \widehat{\mathcal{O}}^{\mathrm{vir}}\right)=\sum_{F \subset \mathbb{M}^{C^{x}}} \chi\left(F, \frac{\widehat{\mathcal{O}}_{F}^{\mathrm{vir}}}{\wedge_{-1}\left(\mathcal{N}^{\mathrm{vir}}\right)^{\mathrm{V}} \otimes \operatorname{det}\left(\mathcal{N}^{\mathrm{vir}}\right)^{1 / 2}}\right)
$$

Proof strategy, step 3: master space
$\chi\left(\mathbb{M}, \widehat{\mathcal{O}^{\text {vir }}}\right)=\sum_{F \subset \mathbb{M}^{\mathrm{C}}} \chi\left(F, \frac{\widehat{\mathcal{O}}_{F}^{\text {vir }}}{\hat{\wedge}_{-1}^{\bullet}\left(\mathcal{N}^{\text {vir }}\right)^{\vee}}\right)$

Proof strategy, step 3: master space

$$
\begin{array}{r}
\chi\left(\mathbb{M}, \widehat{\mathcal{O}}^{\text {vir }}\right)=\sum_{F \subset \mathbb{M}^{\mathrm{C}}} \chi\left(F, \frac{\widehat{\mathcal{O}}_{F}^{\text {vir }}}{\hat{\mathrm{A}}_{-1}\left(\mathcal{N}_{\text {vir }}{ }^{\mathrm{v}}\right.}\right) \\
\mathbb{n}\left[\frac{1}{1-u^{a} t^{\omega}}\right]
\end{array}
$$

where $\mathbb{k}:=\mathbb{Z}\left[x^{ \pm}, y^{ \pm}, z^{ \pm},(x y z)^{ \pm 1 / 2}, u^{ \pm 1 / 2}\right]$.

Proof strategy, step 3: master space

$$
\begin{array}{cc}
\chi\left(\mathbb{M}, \widehat{\mathcal{O}}^{\text {vir }}\right)= & \sum_{F \subset \mathbb{M}^{C^{\times}}} \chi\left(F, \frac{\widehat{\mathcal{O}}_{F}^{\text {vir }}}{\hat{\wedge}_{-1}^{\bullet}(\mathcal{N}}{ }^{\mathrm{vir})^{\vee}}\right) \\
\mathbb{\pi}\left[\frac{1}{1-t^{\omega}}\right] & \mathbb{k}\left[\frac{1}{1-u^{a} t^{\omega}}\right]
\end{array}
$$

(from properness of $\mathbb{M}^{\top}+$ a bit more)
where $\mathbb{k}:=\mathbb{Z}\left[x^{ \pm}, y^{ \pm}, z^{ \pm},(x y z)^{ \pm 1 / 2}, u^{ \pm 1 / 2}\right]$.

Proof strategy, step 3: master space

$$
\begin{array}{cc}
\chi\left(\mathbb{M}, \widehat{\mathcal{O}}^{\text {vir }}\right)= & \sum_{F \subset \mathbb{M}^{\mathrm{C}}} \chi\left(F, \frac{\widehat{\mathcal{O}}_{F}^{\text {vir }}}{\widehat{\wedge}_{-1}\left(\mathcal{N}^{\text {vir }}\right)^{\mathrm{V}}}\right) \\
\pi & \pi \\
\mathbb{k}\left[\frac{1}{1-t^{\omega}}\right] & \mathbb{k}\left[\frac{1}{1-u^{a} t^{\omega}}\right]
\end{array}
$$

(from properness of $\mathbb{M}^{\top}+$ a bit more)
where $\mathbb{k}:=\mathbb{Z}\left[x^{ \pm}, y^{ \pm}, z^{ \pm},(x y z)^{ \pm 1 / 2}, u^{ \pm 1 / 2}\right]$. Apply K-theoretic residue map:

$$
0=\sum_{F \subset \mathbb{M}^{C}} \operatorname{Res}_{u}^{K} \chi\left(F, \frac{\widehat{\mathcal{O}}_{F}^{\text {vir }}}{\hat{\wedge}_{-1}^{\bullet}\left(\mathcal{N}^{\text {vir }}\right)^{\vee}}\right) .
$$

where $\operatorname{Res}_{u}^{K}(f):=\left(\operatorname{res}_{u=0}+\operatorname{res}_{u=\infty}\right)\left(f u^{-1} d u\right)$.

Proof strategy, step 3: master space

$$
0=\sum_{F \subset \mathbb{M}^{C}} \operatorname{Res}_{u}^{K} \chi\left(F, \frac{\widehat{\mathcal{O}}_{F}^{\text {vir }}}{\widehat{\wedge}_{-1}^{\bullet}\left(\mathcal{N}^{\text {vir }}\right)^{v}}\right) .
$$

The goal: put an obstruction theory on \mathbb{M} such that these residues are understandable and explicit.

Interlude: symmetric obstruction theories

A symmetric (perfect) obstruction theory $\mathbb{E} \in D_{Q C o h}$ satisfies

$$
\mathbb{E} \simeq \kappa \otimes \mathbb{E}^{\vee}[1]
$$

for some weight κ of T .

Interlude: symmetric obstruction theories

A symmetric (perfect) obstruction theory $\mathbb{E} \in D_{Q C o h}$ satisfies

$$
\mathbb{E} \simeq \kappa \otimes \mathbb{E}^{\vee}[1]
$$

for some weight κ of T. E.g. in equivariant K-theory on \bar{X} :

$$
\chi(I, I(-D)) \simeq-\chi\left(I(-D), I \otimes \mathcal{K}_{\bar{X}}\right)^{\vee}
$$

Interlude: symmetric obstruction theories

A symmetric (perfect) obstruction theory $\mathbb{E} \in D_{\mathrm{QCoh}}$ satisfies

$$
\mathbb{E} \simeq \kappa \otimes \mathbb{E}^{\vee}[1]
$$

for some weight κ of T. E.g. in equivariant K-theory on \bar{X} :

$$
\begin{aligned}
\chi(I, I(-D)) & \simeq-\chi\left(I(-D), I \otimes \mathcal{K}_{\bar{\chi}}\right)^{\vee} \\
& =-\kappa \otimes \chi(I, I(-D))^{\vee} .
\end{aligned}
$$

for $\kappa:=x y z$.

Interlude: symmetric obstruction theories

A symmetric (perfect) obstruction theory $\mathbb{E} \in D_{\mathrm{QCoh}}$ satisfies

$$
\mathbb{E} \simeq \kappa \otimes \mathbb{E}^{\vee}[1]
$$

for some weight κ of T. E.g. in equivariant K-theory on \bar{X} :

$$
\begin{aligned}
\chi(I, I(-D)) & \simeq-\chi\left(I(-D), I \otimes \mathcal{K}_{\bar{X}}\right)^{\vee} \\
& =-\kappa \otimes \chi(I, I(-D))^{\vee}
\end{aligned}
$$

for $\kappa:=x y z$.
(Restriction to any semistable $=$ stable locus is automatically perfect!)

Interlude: symmetric obstruction theories

Key observation: if $\mathcal{N}^{\text {vir }}=\mathcal{F}-\kappa^{-1} \otimes \mathcal{F}^{\vee}$ is symmetric, then

$$
\frac{1}{\hat{\wedge}_{-1}^{\bullet}\left(\mathcal{N}^{\text {vir }}\right)^{\vee}}=\prod_{w \in \mathcal{F}}-\frac{(\kappa w)^{1 / 2}-(\kappa w)^{-1 / 2}}{w^{1 / 2}-w^{-1 / 2}}
$$

Interlude: symmetric obstruction theories

Key observation: if $\mathcal{N}^{\text {vir }}=\mathcal{F}-\kappa^{-1} \otimes \mathcal{F}^{\vee}$ is symmetric, then

$$
\frac{1}{\hat{\wedge}_{-1}\left(\mathcal{N}^{\mathrm{vir}}\right)^{\vee}}=\prod_{w \in \mathcal{F}}-\frac{(\kappa w)^{1 / 2}-(\kappa w)^{-1 / 2}}{w^{1 / 2}-w^{-1 / 2}}
$$

Let $\mathcal{F}=\mathcal{F}_{>0}+\mathcal{F}_{<0}$ be the decomposition into positive and negative \mathbb{C}_{u}^{\times}-weight.

Interlude: symmetric obstruction theories

Key observation: if $\mathcal{N}^{\text {vir }}=\mathcal{F}-\kappa^{-1} \otimes \mathcal{F}^{\vee}$ is symmetric, then

$$
\frac{1}{\hat{\wedge}_{-1}^{\bullet}\left(\mathcal{N}^{\mathrm{vir}}\right)^{\vee}}=\prod_{w \in \mathcal{F}}-\frac{(\kappa w)^{1 / 2}-(\kappa w)^{-1 / 2}}{w^{1 / 2}-w^{-1 / 2}}
$$

Let $\mathcal{F}=\mathcal{F}_{>0}+\mathcal{F}_{<0}$ be the decomposition into positive and negative \mathbb{C}_{u}^{\times}-weight. Then

$$
\operatorname{Res}_{u}^{K} \frac{1}{\widehat{\Lambda}_{-1}^{\bullet}\left(\mathcal{N}^{\mathrm{vir}}\right)^{\vee}}=(-1)^{\text {ind }}\left(\kappa^{\text {ind } / 2}-\kappa^{-\mathrm{ind} / 2}\right)
$$

where ind $:=\operatorname{rank} \mathcal{F}_{>0}-\operatorname{rank} \mathcal{F}_{<0}$ is a kind of Morse-Bott index of each \mathbb{C}^{\times}-fixed component.

Interlude: symmetric obstruction theories

Our situation: smooth morphisms of Artin stacks

$$
\mathbb{M} \quad " \rightarrow \overline{N_{(\lambda, \mu, \nu), n, \boldsymbol{d}}} \quad \rightarrow \quad \mathfrak{N}_{(\lambda, \mu, \nu), n}^{Q(N)}
$$

Interlude: symmetric obstruction theories

Our situation: smooth morphisms of Artin stacks

$$
\mathbb{M} \quad " \rightarrow \overline{N_{(\lambda, \mu, \nu), n, \boldsymbol{d}}} \quad \rightarrow \quad \mathfrak{N}_{(\lambda, \mu, \nu), n}^{Q(N)}
$$

has a symmetric obstruction theory

Interlude: symmetric obstruction theories

Our situation: smooth morphisms of Artin stacks

$$
\mathbb{M} \quad " \rightarrow \quad \mathfrak{N}_{(\lambda, \mu, \nu), n, \boldsymbol{d}}^{Q(N)} \quad \rightarrow \quad \mathfrak{N}_{(\lambda, \mu, \nu), n}
$$

has a symmetric obstruction theory

Interlude: symmetric obstruction theories

Our situation: smooth morphisms of Artin stacks

$$
\mathbb{M} \quad " \rightarrow \overline{N_{(\lambda, \mu, \nu), n, \boldsymbol{d}}} \quad \rightarrow \quad \mathfrak{N}_{(\lambda, \mu, \nu), n}^{Q(N)}
$$

want
want
has a symmetric
obstruction theory

Interlude: symmetric obstruction theories

Our situation: smooth morphisms of Artin stacks

$$
\mathbb{M} \quad " \rightarrow \overline{N_{(\lambda, \mu, \nu), n, \boldsymbol{d}}^{Q(N)}} \quad \rightarrow \quad \mathfrak{N}_{(\lambda, \mu, \nu), n}
$$

has a symmetric obstruction theory

Technical heart of our work: symmetrized pullback of symmetric obstruction theories.

Interlude: symmetric obstruction theories

Let $f: \mathfrak{X} \rightarrow \mathfrak{Y}$ be a smooth morphism of Artin stacks, and $\phi: \mathbb{E}_{\mathfrak{Y}} \rightarrow \mathbb{L}_{\mathfrak{Y}}$ be a symmetric obstruction theory.

Interlude: symmetric obstruction theories

Let $f: \mathfrak{X} \rightarrow \mathfrak{Y}$ be a smooth morphism of Artin stacks, and $\phi: \mathbb{E}_{\mathfrak{Y}} \rightarrow \mathbb{L}_{\mathfrak{Y}}$ be a symmetric obstruction theory. Naive attempt:

$$
\underset{\mathbb{L}_{f}[-1] \longrightarrow f^{*} \mathbb{L}_{\mathfrak{Y}} \longrightarrow \mathbb{L}_{\mathfrak{X}} \xrightarrow{+1}{\mathbb{E}_{\mathfrak{Y}}}^{+1}}{ }
$$

Interlude: symmetric obstruction theories

Let $f: \mathfrak{X} \rightarrow \mathfrak{Y}$ be a smooth morphism of Artin stacks, and $\phi: \mathbb{E}_{\mathfrak{Y}} \rightarrow \mathbb{L}_{\mathfrak{Y}}$ be a symmetric obstruction theory. Naive attempt:

$$
\begin{aligned}
& \mathbb{L}_{f}[-1] \xrightarrow{\delta} f^{*} \mathbb{E}_{\mathfrak{Y}} \\
& \| \quad \downarrow^{*} \phi \\
& \mathbb{L}_{f}[-1] \longrightarrow f^{*} \mathbb{L}_{\mathfrak{Y}} \longrightarrow \mathbb{L}_{\mathfrak{X}} \xrightarrow{+1}
\end{aligned}
$$

Interlude: symmetric obstruction theories

Let $f: \mathfrak{X} \rightarrow \mathfrak{Y}$ be a smooth morphism of Artin stacks, and $\phi: \mathbb{E}_{\mathfrak{Y}} \rightarrow \mathbb{L}_{\mathfrak{Y}}$ be a symmetric obstruction theory. Naive attempt:

$$
\begin{aligned}
& \mathbb{L}_{f}[-1] \xrightarrow{\delta} f^{*} \mathbb{E}_{\mathfrak{Y}} \longrightarrow \operatorname{cone}(\delta) \xrightarrow{+1} \xrightarrow{\left.\right|^{*} \phi} \\
& \mathbb{L}_{f}[-1] \longrightarrow f^{*} \mathbb{L}_{\mathfrak{Y}} \longrightarrow \mathbb{L}_{\mathfrak{X}} \longrightarrow+1
\end{aligned}
$$

(a non-symmetric obstruction theory for \mathfrak{X})

Interlude: symmetric obstruction theories

Let $f: \mathfrak{X} \rightarrow \mathfrak{Y}$ be a smooth morphism of Artin stacks, and $\phi: \mathbb{E}_{\mathfrak{Y}} \rightarrow \mathbb{L}_{\mathfrak{Y}}$ be a symmetric obstruction theory. Naive attempt:

$$
\mathbb{L}_{f}[-1] \xrightarrow{\delta} f^{*} \mathbb{E}_{\mathfrak{Y}} \longrightarrow \text { cone }(\delta) \xrightarrow{+1}
$$

Interlude: symmetric obstruction theories

Let $f: \mathfrak{X} \rightarrow \mathfrak{Y}$ be a smooth morphism of Artin stacks, and $\phi: \mathbb{E}_{\mathfrak{Y}} \rightarrow \mathbb{L}_{\mathfrak{Y}}$ be a symmetric obstruction theory. Naive attempt:

$$
\begin{aligned}
& \mathbb{L}_{f}[-1] \xrightarrow{\delta} f^{*} \mathbb{E}_{\mathfrak{Y}} \longrightarrow \operatorname{cone}(\delta) \xrightarrow{+1} \\
& \downarrow^{\delta^{\vee}[1]} \\
& \kappa \otimes \mathbb{L}_{f}^{\vee}[2]
\end{aligned}
$$

Interlude: symmetric obstruction theories

Let $f: \mathfrak{X} \rightarrow \mathfrak{Y}$ be a smooth morphism of Artin stacks, and $\phi: \mathbb{E}_{\mathfrak{Y}} \rightarrow \mathbb{L}_{\mathfrak{Y}}$ be a symmetric obstruction theory. Naive attempt:

$$
\begin{aligned}
& \mathbb{L}_{f}[-1] \xrightarrow{\delta} f^{*} \mathbb{E}_{\mathfrak{Y}]} \longrightarrow \text { cone }(\delta) \xrightarrow{+1} \\
& \left.\quad\right|^{\delta^{\vee}[1]} \\
& \\
& \\
& 0
\end{aligned}
$$

Interlude: symmetric obstruction theories

Let $f: \mathfrak{X} \rightarrow \mathfrak{Y}$ be a smooth morphism of Artin stacks, and $\phi: \mathbb{E}_{\mathfrak{Y}} \rightarrow \mathbb{L}_{\mathfrak{Y}}$ be a symmetric obstruction theory. Naive attempt:

$$
\begin{aligned}
& \mathbb{L}_{f}[-1] \xrightarrow{\delta} f^{*} \mathbb{E}_{\mathfrak{Y}} \longrightarrow \operatorname{cone}(\delta) \xrightarrow{+1} \\
& \downarrow \quad \delta^{\vee}[1] \quad \downarrow \zeta \\
& 0 \longrightarrow \kappa \otimes \mathbb{L}_{f}^{\vee}[2] \Longrightarrow \kappa \otimes \mathbb{L}_{f}^{\vee}[2] \xrightarrow{+1}
\end{aligned}
$$

Interlude: symmetric obstruction theories

Let $f: \mathfrak{X} \rightarrow \mathfrak{Y}$ be a smooth morphism of Artin stacks, and $\phi: \mathbb{E}_{\mathfrak{Y}} \rightarrow \mathbb{L}_{\mathfrak{Y}}$ be a symmetric obstruction theory. Naive attempt:

$$
\begin{aligned}
& \begin{array}{ccc}
\mathbb{L}_{f}[-1] & \operatorname{cone}(\delta)^{\vee}[1] & \mathbb{E}_{\mathfrak{X}} \\
\| & \downarrow
\end{array} \\
& \mathbb{L}_{f}[-1] \xrightarrow{\delta} f^{*} \mathbb{E}_{\mathfrak{Y}} \longrightarrow \text { cone }(\delta) \xrightarrow{+1} \\
& \downarrow \downarrow \delta^{\vee}[1] \quad \downarrow \xi \\
& 0 \longrightarrow \kappa \otimes \mathbb{L}_{f}^{\vee}[2] \Longrightarrow \mathbb{L}_{f}^{\vee}[2] \xrightarrow{+1} \\
& \downarrow+1 \quad \downarrow+1 \quad \downarrow+1
\end{aligned}
$$

Interlude: symmetric obstruction theories

Let $f: \mathfrak{X} \rightarrow \mathfrak{Y}$ be a smooth morphism of Artin stacks, and $\phi: \mathbb{E}_{\mathfrak{Y}} \rightarrow \mathbb{L}_{\mathfrak{Y}}$ be a symmetric obstruction theory. Naive attempt:

$$
\begin{aligned}
& \mathbb{L}_{f}[-1] \xrightarrow{\zeta} \operatorname{cone}(\delta)^{\vee}[1] \longrightarrow \mathbb{E}_{\mathfrak{X}} \xrightarrow{+1} \\
& \| \downarrow \\
& \mathbb{L}_{f}[-1] \xrightarrow{\delta} f^{*} \mathbb{E}_{\mathfrak{Y}} \longrightarrow \text { cone }(\delta) \xrightarrow{+1} \\
& \downarrow \quad \downarrow^{\vee}[1] \quad \downarrow \\
& 0 \longrightarrow \kappa \otimes \mathbb{L}_{f}^{\vee}[2] \Longrightarrow \mathbb{L}_{f}^{\vee}[2] \xrightarrow{+1} \\
& \downarrow+1 \quad \downarrow+1 \quad \downarrow+1
\end{aligned}
$$

Interlude: symmetric obstruction theories

Let $f: \mathfrak{X} \rightarrow \mathfrak{Y}$ be a smooth morphism of Artin stacks, and $\phi: \mathbb{E}_{\mathfrak{Y}} \rightarrow \mathbb{L}_{\mathfrak{Y}}$ be a symmetric obstruction theory. Naive attempt:

$$
\begin{aligned}
& \mathbb{L}_{f}[-1] \xrightarrow{\zeta} \operatorname{cone}(\delta)^{\vee}[1] \longrightarrow \mathbb{E}_{\mathfrak{X}} \xrightarrow{+1} \\
& \| \downarrow \downarrow \\
& \mathbb{L}_{f}[-1] \xrightarrow{\delta} f^{*} \mathbb{E}_{\mathfrak{Y}} \longrightarrow \operatorname{cone}(\delta) \xrightarrow{+1} \\
& \downarrow \quad \downarrow^{\vee}[1] \quad \downarrow \\
& 0 \longrightarrow \kappa \otimes \mathbb{L}_{f}^{\vee}[2] \Longrightarrow \mathbb{L}_{f}^{\vee}[2] \xrightarrow{+1} \\
& \downarrow+1 \\
& \downarrow+1 \\
& \downarrow+1
\end{aligned}
$$

the desired (symmetric?) obstruction theory for \mathfrak{X}

Interlude: symmetric obstruction theories

$$
\begin{aligned}
& \mathbb{L}_{f}[-1] \xrightarrow{\zeta} \operatorname{cone}(\delta)^{\vee}[1] \longrightarrow \mathbb{E}_{\mathfrak{X}} \xrightarrow{+1} \\
& \mathbb{L}_{f}[-1] \longrightarrow f^{*} \mathbb{E}_{\mathfrak{Y}} \longrightarrow \operatorname{cone}(\delta) \xrightarrow{+1} \\
& \downarrow \quad \delta^{\vee}[1] \quad \mid \xi \\
& 0 \longrightarrow \kappa \otimes \mathbb{L}_{f}^{\vee}[2]=\kappa \otimes \mathbb{L}_{f}^{\vee}[2] \xrightarrow{+1} \\
& \downarrow+1 \quad \downarrow+1 \quad \downarrow+1
\end{aligned}
$$

Required:

Interlude: symmetric obstruction theories

$$
\begin{aligned}
& \mathbb{L}_{f}[-1] \xrightarrow{\zeta} \operatorname{cone}(\delta)^{\vee}[1] \longrightarrow \mathbb{E}_{\mathfrak{X}} \xrightarrow{+1} \\
& \mathbb{L}_{f}[-1] \xrightarrow{\delta} f^{*} \mathbb{E}_{\mathfrak{Y}]} \longrightarrow \operatorname{cone}(\delta) \xrightarrow{+1} \\
& \downarrow \quad \delta^{\vee}[1] \quad \mid \xi \\
& 0 \longrightarrow \kappa \otimes \mathbb{L}_{f}^{\vee}[2]=\kappa \otimes \mathbb{L}_{f}^{\vee}[2] \xrightarrow{+1} \\
& \downarrow+1 \quad \downarrow+1 \quad \downarrow+1
\end{aligned}
$$

Required: the lift δ must exist;

Interlude: symmetric obstruction theories

$$
\begin{aligned}
& \mathbb{L}_{f}[-1] \xrightarrow{\zeta} \operatorname{cone}(\delta)^{\vee}[1] \longrightarrow \mathbb{E}_{\mathfrak{X}} \xrightarrow{+1} \\
& \mathbb{L}_{f}[-1] \longrightarrow f^{*} \mathbb{E}_{\mathfrak{Y}} \longrightarrow \text { cone }(\delta) \xrightarrow{+1} \\
& \downarrow \quad \delta^{\vee}[1] \quad \mid \xi \\
& 0 \longrightarrow \kappa \otimes \mathbb{L}_{f}^{\vee}[2]=\kappa \otimes \mathbb{L}_{f}^{\vee}[2] \xrightarrow{+1} \\
& \downarrow+1 \quad \downarrow+1 \quad \downarrow+1
\end{aligned}
$$

Required: the lift δ must exist; $\delta^{\vee}[1] \circ \delta=0$;

Interlude: symmetric obstruction theories

$$
\begin{aligned}
& \mathbb{L}_{f}[-1] \xrightarrow{\zeta} \operatorname{cone}(\delta)^{\vee}[1] \longrightarrow \mathbb{E}_{\mathfrak{X}} \xrightarrow{+1} \\
& \mathbb{L}_{f}[-1] \longrightarrow f^{*} \mathbb{E}_{\mathfrak{Y}} \longrightarrow \text { cone }(\delta) \xrightarrow{+1} \\
& \downarrow \quad \delta^{\vee}[1] \quad \mid \xi \\
& 0 \longrightarrow \kappa \otimes \mathbb{L}_{f}^{\vee}[2]=\kappa \otimes \mathbb{L}_{f}^{\vee}[2] \xrightarrow{+1} \\
& \downarrow+1 \quad \downarrow+1 \quad \downarrow+1
\end{aligned}
$$

Required: the lift δ must exist; $\delta^{\vee}[1] \circ \delta=0 ; \xi=\zeta^{\vee}[1]$.

Interlude: symmetric obstruction theories

$\mathbb{L}_{f}[-1] \xrightarrow{\zeta} \operatorname{cone}(\delta)^{\vee}[1] \longrightarrow \mathbb{E}_{\mathfrak{X}} \xrightarrow{+1}$

$$
\begin{array}{cc}
\downarrow \\
\downarrow^{2} & \downarrow^{+1} \\
\hline
\end{array}
$$

Required: the lift δ must exist; $\delta^{\vee}[1] \circ \delta=0 ; \xi=\zeta^{\vee}[1]$.
None of these hold in general, but they do hold on any affine chart for degree reasons.

Interlude: symmetric obstruction theories

Better attempt: do the naive thing, but using Kiem-Savvas' étale-local notion of almost-perfect obstruction theory (APOT) assuming \mathfrak{X} is DM. This is:

Interlude: symmetric obstruction theories

Better attempt: do the naive thing, but using Kiem-Savvas' étale-local notion of almost-perfect obstruction theory (APOT) assuming \mathfrak{X} is DM. This is:
an étale atlas $\left\{U_{i} \rightarrow \mathfrak{X}\right\}_{i}$

Interlude: symmetric obstruction theories

Better attempt: do the naive thing, but using Kiem-Savvas' étale-local notion of almost-perfect obstruction theory (APOT) assuming \mathfrak{X} is DM. This is:
an étale atlas $\left\{U_{i} \rightarrow \mathfrak{X}\right\}_{i}$ (can assume U_{i} affine and T-equivariant, by [Alper-Hall-Rydh '20]);

Interlude: symmetric obstruction theories

Better attempt: do the naive thing, but using Kiem-Savvas' étale-local notion of almost-perfect obstruction theory (APOT) assuming \mathfrak{X} is DM. This is:
an étale atlas $\left\{U_{i} \rightarrow \mathfrak{X}\right\}_{i}$ (can assume U_{i} affine and T-equivariant, by [Alper-Hall-Rydh '20]);
perfect obstruction theories $\phi_{i}: \mathbb{E}_{i} \rightarrow \mathbb{L}_{U_{i}}$;

Interlude: symmetric obstruction theories

Better attempt: do the naive thing, but using Kiem-Savvas' étale-local notion of almost-perfect obstruction theory (APOT) assuming \mathfrak{X} is DM. This is:
an étale atlas $\left\{U_{i} \rightarrow \mathfrak{X}\right\}_{i}$ (can assume U_{i} affine and T-equivariant, by [Alper-Hall-Rydh '20]);
perfect obstruction theories $\phi_{i}: \mathbb{E}_{i} \rightarrow \mathbb{L}_{U_{i}}$;
descent data for a global obstruction sheaf $\mathcal{O} b_{\phi}$ such that $\mathcal{O} b_{\phi} \mid u_{i} \simeq h^{1}\left(\mathbb{E}_{i}^{\vee}\right)$.

Interlude: symmetric obstruction theories

Better attempt: do the naive thing, but using Kiem-Savvas' étale-local notion of almost-perfect obstruction theory (APOT) assuming \mathfrak{X} is DM. This is:
an étale atlas $\left\{U_{i} \rightarrow \mathfrak{X}\right\}_{i}$ (can assume U_{i} affine and T-equivariant, by [Alper-Hall-Rydh '20]);
perfect obstruction theories $\phi_{i}: \mathbb{E}_{i} \rightarrow \mathbb{L}_{U_{i}}$;
descent data for a global obstruction sheaf $\mathcal{O} b_{\phi}$ such that $\mathcal{O} b_{\phi} \mid U_{i} \simeq h^{1}\left(\mathbb{E}_{i}^{\vee}\right)$.

Theorem (Kiem-Savvas '20, '21)
APOTs induce virtual structure sheaves $\mathcal{O}_{\mathfrak{X}}^{\text {vir }}$. They satisfy equivariant localization assuming $\mathcal{N}^{\text {vir }}$ also exists globally.

Interlude: symmetric obstruction theories

Let $f: \mathfrak{X} \rightarrow \mathfrak{Y}$ be a smooth morphism of Artin stacks, and $\phi: \mathbb{E}_{\mathfrak{Y}} \rightarrow \mathbb{L}_{\mathfrak{Y}}$ be a symmetric obstruction theory. Assume \mathfrak{X} is DM. (E.g. semistable $=$ stable locus)

Interlude: symmetric obstruction theories

Let $f: \mathfrak{X} \rightarrow \mathfrak{Y}$ be a smooth morphism of Artin stacks, and $\phi: \mathbb{E}_{\mathfrak{Y}} \rightarrow \mathbb{L}_{\mathfrak{Y}}$ be a symmetric obstruction theory. Assume \mathfrak{X} is DM. (E.g. semistable $=$ stable locus)
Theorem (Kuhn-L.-Thimm)
Symmetrized pullback along $f: \mathfrak{X} \rightarrow \mathfrak{Y}$ produces a symmetric APOT on \mathfrak{X}. The resulting $\mathcal{O}_{\mathfrak{X}}^{\text {vir }}$ satisfies equivariant localization

Interlude: symmetric obstruction theories

Let $f: \mathfrak{X} \rightarrow \mathfrak{Y}$ be a smooth morphism of Artin stacks, and $\phi: \mathbb{E}_{\mathfrak{Y}} \rightarrow \mathbb{L}_{\mathfrak{Y}}$ be a symmetric obstruction theory. Assume \mathfrak{X} is DM. (E.g. semistable $=$ stable locus)
Theorem (Kuhn-L.-Thimm)
Symmetrized pullback along $f: \mathfrak{X} \rightarrow \mathfrak{Y}$ produces a symmetric APOT on \mathfrak{X}. The resulting $\mathcal{O}_{\mathfrak{X}}^{\text {vir }}$ satisfies equivariant localization (with no extra assumptions!).

Proof strategy, step 4: put it all together

Resulting simple wall-crossing formula:

$$
\begin{aligned}
0= & \chi\left(Z_{\alpha}^{-}, \widehat{\mathcal{O}}_{Z_{\alpha}^{-}}^{\mathrm{vir}}\right)\left(\kappa^{-\frac{1}{2}}-\kappa^{\frac{1}{2}}\right)+\chi\left(Z_{\alpha}^{+}, \widehat{\mathcal{O}}_{Z_{\alpha}^{+}}^{\mathrm{vir}}\right)\left(\kappa^{\frac{1}{2}}-\kappa^{-\frac{1}{2}}\right) \\
& +\sum_{\substack{\alpha_{1}+\alpha_{2}=\alpha \\
\text { s.t. } \ldots}} \chi\left(Z_{\alpha_{1}}^{-}, \widehat{\mathcal{O}}_{Z_{\alpha_{1}}}^{\mathrm{vir}}\right) \chi\left(Z_{\alpha_{2}}^{-}, \widehat{\mathcal{O}}_{Z_{\alpha_{2}}^{-}}^{\operatorname{vir}}\right) \\
& \cdot(-1)^{\operatorname{ind}\left(\alpha_{1}, \alpha_{2}\right)}\left(\kappa^{\frac{\operatorname{ind}\left(\alpha_{1}, \alpha_{2}\right)}{2}}-\kappa^{-\frac{\operatorname{ind}\left(\alpha_{1}, \alpha_{2}\right)}{2}}\right) .
\end{aligned}
$$

Proof strategy, step 4: put it all together

Resulting simple wall-crossing formula:

$$
\begin{aligned}
0= & \chi\left(Z_{\alpha}^{-}, \widehat{\mathcal{O}}_{Z_{\alpha}^{-}}^{\text {vir }}\right)-\chi\left(Z_{\alpha}^{+}, \widehat{\mathcal{O}}_{Z_{\alpha}^{+}}^{\text {vir }}\right) \\
& +\sum_{\substack{\alpha_{1}+\alpha_{2}=\alpha \\
\text { s.t. }}} \chi\left(Z_{\alpha_{1}}^{-}, \widehat{\mathcal{O}}_{Z_{\alpha_{1}}^{-}}^{\text {vir }}\right) \chi\left(Z_{\alpha_{2}}^{-}, \widehat{\mathcal{O}}_{Z_{\alpha_{2}}^{-}}^{\text {vir }}\right) \cdot\left[\operatorname{ind}\left(\alpha_{1}, \alpha_{2}\right)\right]_{\kappa}
\end{aligned}
$$

Proof strategy, step 4: put it all together

Resulting simple wall-crossing formula:

$$
\begin{aligned}
0= & \chi\left(Z_{\alpha}^{-}, \widehat{\mathcal{O}}_{Z_{\alpha}^{-}}^{\text {vir }}\right)-\chi\left(Z_{\alpha}^{+}, \widehat{\mathcal{O}}_{Z_{\alpha}^{+}}^{\text {vir }}\right) \\
& +\sum_{\substack{\alpha_{1}+\alpha_{2}=\alpha \\
\text { s.t. } \ldots}} \chi\left(Z_{\alpha_{1}}^{-}, \widehat{\mathcal{O}}_{Z_{\alpha_{1}}^{-}}^{\text {vir }}\right) \chi\left(Z_{\alpha_{2}}^{-}, \widehat{\mathcal{O}}_{Z_{\alpha_{2}}^{-}}^{\text {vir }}\right) \cdot\left[\operatorname{ind}\left(\alpha_{1}, \alpha_{2}\right)\right]_{\kappa}
\end{aligned}
$$

where $[N]_{\kappa}$ are (symmetric) quantum integers

$$
[N]_{\kappa}:=(-1)^{N-1} \frac{\kappa^{N / 2}-\kappa^{-N / 2}}{\kappa^{1 / 2}-\kappa^{-1 / 2}}
$$

Proof strategy, step 4: put it all together

Resulting simple wall-crossing formula:

$$
\begin{aligned}
0= & \chi\left(Z_{\alpha}^{-}, \widehat{\mathcal{O}}_{Z_{\alpha}^{-}}^{\text {vir }}\right)-\chi\left(Z_{\alpha}^{+}, \widehat{\mathcal{O}}_{Z_{\alpha}^{+}}^{\text {vir }}\right) \\
& +\sum_{\substack{\alpha_{1}+\alpha_{2}=\alpha \\
\text { s.t. } \ldots}} \chi\left(Z_{\alpha_{1}}^{-}, \widehat{\mathcal{O}}_{Z_{\alpha_{1}}^{-}}^{\text {vir }}\right) \chi\left(Z_{\alpha_{2}}^{-}, \widehat{\mathcal{O}}_{Z_{\alpha_{2}}^{-}}^{\text {vir }}\right) \cdot\left[\operatorname{ind}\left(\alpha_{1}, \alpha_{2}\right)\right]_{\kappa}
\end{aligned}
$$

where $[N]_{\kappa}$ are (symmetric) quantum integers

$$
\begin{aligned}
{[N]_{\kappa} } & :=(-1)^{N-1} \frac{\kappa^{N / 2}-\kappa^{-N / 2}}{\kappa^{1 / 2}-\kappa^{-1 / 2}} \\
& =\chi\left(\mathbb{P}^{N-1}, \hat{\Lambda}_{-1}^{\bullet}\left(\kappa^{-1} \otimes \mathcal{T}_{\mathbb{P}^{N-1}}\right)\right)
\end{aligned}
$$

Proof strategy, step 4: put it all together

Resulting simple wall-crossing formula:

$$
\begin{aligned}
0= & \chi\left(Z_{\alpha}^{-}, \widehat{\mathcal{O}}_{Z_{\alpha}^{-}}^{\text {vir }}\right)-\chi\left(Z_{\alpha}^{+}, \widehat{\mathcal{O}}_{Z_{\alpha}^{+}}^{\text {vir }}\right) \\
& +\sum_{\substack{\alpha_{1}+\alpha_{2}=\alpha \\
\text { s.t. } \ldots}} \chi\left(Z_{\alpha_{1}}^{-}, \widehat{\mathcal{O}}_{Z_{\alpha_{1}}^{-}}^{\text {vir }}\right) \chi\left(Z_{\alpha_{2}}^{-}, \widehat{\mathcal{O}}_{Z_{\alpha_{2}}^{-}}^{\text {vir }}\right) \cdot\left[\operatorname{ind}\left(\alpha_{1}, \alpha_{2}\right)\right]_{\kappa}
\end{aligned}
$$

where $[N]_{\kappa}$ are (symmetric) quantum integers

$$
\begin{aligned}
{[N]_{\kappa} } & :=(-1)^{N-1} \frac{\kappa^{N / 2}-\kappa^{-N / 2}}{\kappa^{1 / 2}-\kappa^{-1 / 2}} \\
& =\chi\left(\mathbb{P}^{N-1}, \hat{\wedge}_{-1}^{\bullet}\left(\kappa^{-1} \otimes \mathcal{T}_{\mathbb{P}^{N-1}}\right)\right)
\end{aligned}
$$

Can quantize many formulas in Joyce-Song this way.

Proof strategy, step 4: put it all together

Concretely, in our DT/PT setup:

Proof strategy, step 4: put it all together

Concretely, in our DT/PT setup: classes have the form $\alpha=\left(\left(1,-\beta_{C},-n\right), \boldsymbol{d}\right)$;

Proof strategy, step 4: put it all together

Concretely, in our DT/PT setup: classes have the form $\alpha=\left(\left(1,-\beta_{C},-n\right), \boldsymbol{d}\right)$;
strictly semistable splittings have the form
$\left(\left(1,-\beta_{C},-n\right), \boldsymbol{d}\right)=\left(\left(1,-\beta_{C},-n+m\right), \boldsymbol{e}\right)+((0,0,-m), \boldsymbol{f})$
with some condition like $\boldsymbol{e}>\boldsymbol{f}$ (lexicographic order);

Proof strategy, step 4: put it all together

Concretely, in our DT/PT setup: classes have the form $\alpha=\left(\left(1,-\beta_{C},-n\right), \boldsymbol{d}\right)$;
strictly semistable splittings have the form
$\left(\left(1,-\beta_{C},-n\right), \boldsymbol{d}\right)=\left(\left(1,-\beta_{C},-n+m\right), \boldsymbol{e}\right)+((0,0,-m), \boldsymbol{f})$
with some condition like $\boldsymbol{e}>\boldsymbol{f}$ (lexicographic order);
$\boldsymbol{d}, \boldsymbol{e}, \boldsymbol{f}$ are always full flags;

Proof strategy, step 4: put it all together

Concretely, in our DT/PT setup: classes have the form $\alpha=\left(\left(1,-\beta_{C},-n\right), \boldsymbol{d}\right)$; strictly semistable splittings have the form $\left(\left(1,-\beta_{C},-n\right), \boldsymbol{d}\right)=\left(\left(1,-\beta_{C},-n+m\right), \boldsymbol{e}\right)+((0,0,-m), \boldsymbol{f})$ with some condition like $\boldsymbol{e}>\boldsymbol{f}$ (lexicographic order); $\boldsymbol{d}, \boldsymbol{e}, \boldsymbol{f}$ are always full flags; invariants for $((0,0,-m), \boldsymbol{f})$ have trivial wall-crossing.

Proof strategy, step 4: put it all together

Concretely, in our DT/PT setup: classes have the form $\alpha=\left(\left(1,-\beta_{C},-n\right), \boldsymbol{d}\right)$; strictly semistable splittings have the form

$$
\left(\left(1,-\beta_{C},-n\right), \boldsymbol{d}\right)=\left(\left(1,-\beta_{C},-n+m\right), \boldsymbol{e}\right)+((0,0,-m), \boldsymbol{f})
$$

with some condition like $\boldsymbol{e}>\boldsymbol{f}$ (lexicographic order);
$\boldsymbol{d}, \boldsymbol{e}, \boldsymbol{f}$ are always full flags;
invariants for $((0,0,-m), \boldsymbol{f})$ have trivial wall-crossing.
Can iterate the simple wall-crossing formula.

Proof strategy, step 4: put it all together

Iterated splittings of a full flag $\boldsymbol{d}=(1,2, \ldots, N)$ into smaller full flags are equivalent to word rearrangements:

Proof strategy, step 4: put it all together

Iterated splittings of a full flag $\boldsymbol{d}=(1,2, \ldots, N)$ into smaller full flags are equivalent to word rearrangements:

Proof strategy, step 4: put it all together

Iterated splittings of a full flag $\boldsymbol{d}=(1,2, \ldots, N)$ into smaller full flags are equivalent to word rearrangements:

Proof strategy, step 4: put it all together

Iterated splittings of a full flag $\boldsymbol{d}=(1,2, \ldots, N)$ into smaller full flags are equivalent to word rearrangements:

Proof strategy, step 4: put it all together

Iterated splittings of a full flag $\boldsymbol{d}=(1,2, \ldots, N)$ into smaller full flags are equivalent to word rearrangements:

Proof strategy, step 4: put it all together

Iterated splittings of a full flag $\boldsymbol{d}=(1,2, \ldots, N)$ into smaller full flags are equivalent to word rearrangements:

Proof strategy, step 4: put it all together

Iterated splittings of a full flag $\boldsymbol{d}=(1,2, \ldots, N)$ into smaller full flags are equivalent to word rearrangements:

Proof strategy, step 4: put it all together

Iterated splittings of a full flag $\boldsymbol{d}=(1,2, \ldots, N)$ into smaller full flags are equivalent to word rearrangements:

Proof strategy, step 4: put it all together

Iterated splittings of a full flag $\boldsymbol{d}=(1,2, \ldots, N)$ into smaller full flags are equivalent to word rearrangements:

Proof strategy, step 4: put it all together

Iterated splittings of a full flag $\boldsymbol{d}=(1,2, \ldots, N)$ into smaller full flags are equivalent to word rearrangements:

Proof strategy, step 4: put it all together

Iterated splittings of a full flag $\boldsymbol{d}=(1,2, \ldots, N)$ into smaller full flags are equivalent to word rearrangements:

Proof strategy, step 4: put it all together

Iterated splittings of a full flag $\boldsymbol{d}=(1,2, \ldots, N)$ into smaller full flags are equivalent to word rearrangements:

$R\left(m_{1}, \ldots, m_{k}\right):=\left\{\right.$ rearrangements of $\left.1^{m_{1}} 2^{m_{2}} \cdots k^{m_{k}}\right\}$.

Proof strategy, step 4: put it all together

Iterated simple wall-crossings produce complicated combinatorics.

Proof strategy, step 4: put it all together

Iterated simple wall-crossings produce complicated combinatorics. Becomes DT/PT via a (new?) κ-identity on word rearrangements.

Proof strategy, step 4: put it all together

Iterated simple wall-crossings produce complicated combinatorics.
Becomes DT/PT via a (new?) κ-identity on word rearrangements.
Proposition (Kuhn-L.-Thimm)
For $k \geq 0$ and $m_{1}, \ldots, m_{k}, m_{k+1} \geq 1$,
$\frac{1}{k!} \sum_{\substack{\sigma \in S_{k}}} \sum_{\substack{w \in R\left(m_{1}, \ldots, m_{k+1}\right) \\ \sigma_{\sigma(1)}(w)>\cdots>\sigma_{\sigma(k)}(w)}} \prod_{i=1}^{k}\left[m_{\sigma(i)}-\sum_{j=i+1}^{k+1} c\left(\boldsymbol{e}_{\sigma(i)}, \boldsymbol{e}_{\sigma(j)}\right)\right]_{\kappa}=\frac{\left[m_{1}+\cdots+m_{k+1}\right]_{\kappa}!}{\left[m_{k+1}\right]_{\kappa}!\prod_{i=1}^{k-1}\left[m_{i}-1\right]_{\kappa}!}$
where $o_{i}(w)$ is the index of the first occurrence of i in w, and $c\left(\boldsymbol{e}_{i}, \boldsymbol{e}_{j}\right) \approx$ the number of inversions in w for i and j.

Proof strategy, step 4: put it all together

Iterated simple wall-crossings produce complicated combinatorics.
Becomes DT/PT via a (new?) κ-identity on word rearrangements.
Proposition (Kuhn-L.-Thimm)
For $k \geq 0$ and $m_{1}, \ldots, m_{k}, m_{k+1} \geq 1$,
$\frac{1}{k!} \sum_{\substack{\sigma \in S_{k}}} \sum_{\substack{w \in R\left(m_{1}, \ldots, m_{k+1}\right) \\ \sigma_{\sigma(1)}(w)>\cdots>\boldsymbol{o}_{\sigma(k)}(w)}} \prod_{i=1}^{k}\left[m_{\sigma(i)}-\sum_{j=i+1}^{k+1} c\left(\boldsymbol{e}_{\sigma(i)}, \boldsymbol{e}_{\sigma(j)}\right)\right]_{\kappa}=\frac{\left[m_{1}+\cdots+m_{k+1}\right]_{\kappa}!}{\left[m_{k+1}\right]_{\kappa}!\prod_{i=1}^{k-1}\left[m_{i}-1\right]_{\kappa}!}$
where $o_{i}(w)$ is the index of the first occurrence of i in w, and $c\left(\boldsymbol{e}_{i}, \boldsymbol{e}_{j}\right) \approx$ the number of inversions in w for i and j.
Alternatively, can sidestep this by a trick using the freedom to choose $p \geq 1$ in the framing functor $F_{k, p}=\cdots \oplus L^{\oplus p}$.

Proof strategy, step 4: put it all together

We give two different implementations of the master space and wall-crossing.

Proof strategy, step 4: put it all together

We give two different implementations of the master space and wall-crossing.

Mochizuki-style (cf. [Nakajima-Yoshioka], [Kuhn-Tanaka]):

Proof strategy, step 4: put it all together

We give two different implementations of the master space and wall-crossing.

Mochizuki-style (cf. [Nakajima-Yoshioka], [Kuhn-Tanaka]):
ad-hoc auxiliary stability $\widetilde{\tau}$ and master space;

Proof strategy, step 4: put it all together

We give two different implementations of the master space and wall-crossing.

Mochizuki-style (cf. [Nakajima-Yoshioka], [Kuhn-Tanaka]):
ad-hoc auxiliary stability $\widetilde{\tau}$ and master space; direct wall-crossing from τ^{-}to τ^{+};

Proof strategy, step 4: put it all together

We give two different implementations of the master space and wall-crossing.

Mochizuki-style (cf. [Nakajima-Yoshioka], [Kuhn-Tanaka]):
ad-hoc auxiliary stability $\widetilde{\tau}$ and master space;
direct wall-crossing from τ^{-}to τ^{+};
Joyce-style ("universal wall-crossing"):

Proof strategy, step 4: put it all together

We give two different implementations of the master space and wall-crossing.

Mochizuki-style (cf. [Nakajima-Yoshioka], [Kuhn-Tanaka]):
ad-hoc auxiliary stability $\widetilde{\tau}$ and master space; direct wall-crossing from τ^{-}to τ^{+};
Joyce-style ("universal wall-crossing"):
"universal" auxiliary stability $\widetilde{\tau}$ and master space which works for many other abelian categories;

Proof strategy, step 4: put it all together

We give two different implementations of the master space and wall-crossing.

Mochizuki-style (cf. [Nakajima-Yoshioka], [Kuhn-Tanaka]):
ad-hoc auxiliary stability $\widetilde{\tau}$ and master space; direct wall-crossing from τ^{-}to τ^{+};
Joyce-style ("universal wall-crossing"):
"universal" auxiliary stability $\widetilde{\tau}$ and master space which works for many other abelian categories; indirect wall-crossing from τ^{-}to τ^{0}, and then τ^{0} to τ^{+}.

Proof strategy, step 4: put it all together

We give two different implementations of the master space and wall-crossing.

Mochizuki-style (cf. [Nakajima-Yoshioka], [Kuhn-Tanaka]):
ad-hoc auxiliary stability $\widetilde{\tau}$ and master space;
direct wall-crossing from τ^{-}to τ^{+};
Joyce-style ("universal wall-crossing"):
"universal" auxiliary stability $\widetilde{\tau}$ and master space which works for many other abelian categories; indirect wall-crossing from τ^{-}to τ^{0}, and then τ^{0} to τ^{+}.
However, $\widetilde{\tau}^{0}$-stable loci on auxiliary stacks are interesting in their own right, e.g. they include $\operatorname{Quot}\left(\mathcal{O}_{\mathbb{C}^{3}}^{\oplus 2}\right)$;

Possible future applications of our ideas

Possible future applications of our ideas

Conjecture (Cao-Kool-Monavari '19)

$$
\mathrm{V}_{\pi^{1}, \pi^{2}, \pi^{3}, \pi^{4}}^{\mathrm{DT}}=\mathrm{V}_{\pi^{1}, \pi^{2}, \pi^{3}, \pi^{4}}^{\mathrm{PT}} \mathrm{~V}_{\overline{\mathrm{D}, \emptyset, \emptyset, \emptyset} \mathrm{DT}, \mathrm{~K}} .
$$

Possible future applications of our ideas

Conjecture (Cao-Kool-Monavari '19)

$$
\mathrm{V}_{\pi^{1}, \pi^{2}, \pi^{3}, \pi^{4}}^{\mathrm{DT}, K}=\mathrm{V}_{\pi^{1}, \pi^{2}, \pi^{3}, \pi^{4}}^{\mathrm{PT}, K} \mathrm{~V}_{\emptyset \emptyset, \emptyset, \emptyset, \emptyset}^{\mathrm{DT}, K} .
$$

Conjecture (L. '19)
For an appropriate notion of the Bryan-Steinberg vertex of a singularity $\left[\mathbb{C}^{3} / G\right]$ satisfying the hard Lefschetz condition,

$$
\mathrm{V}_{\lambda}^{\mathrm{PT}, K}(G)=\mathrm{V}_{\lambda}^{\mathrm{BS}, K}(G) \mathrm{V}_{\emptyset}^{\mathrm{PT}, K}(G) .
$$

Possible future applications of our ideas

Conjecture (Cao-Kool-Monavari '19)

$$
\mathrm{V}_{\pi^{1}, \pi^{2}, \pi^{3}, \pi^{4}}^{\mathrm{DT}, K}=\mathrm{V}_{\pi^{1}, \pi^{2}, \pi^{3}, \pi^{4}}^{\mathrm{PT}, K} \mathrm{~V}_{\emptyset, \emptyset, \emptyset, \emptyset}^{\mathrm{DT}, K} .
$$

Conjecture (L. '19)
For an appropriate notion of the Bryan-Steinberg vertex of a singularity $\left[\mathbb{C}^{3} / G\right]$ satisfying the hard Lefschetz condition,

$$
\mathrm{V}_{\lambda}^{\mathrm{PT}, K}(G)=\mathrm{V}_{\lambda}^{\mathrm{BS}, K}(G) \mathrm{V}_{\emptyset}^{\mathrm{PT}, K}(G) .
$$

Finally, we may try to obtain formulas for DT/PT descendent transformations.

Thank you!

