Each question is worth 10 points. There are 5 questions, for a total of 50 points. You are encouraged to discuss the homework with other students but you must write your solutions individually, in your own words.

(1) Prove that if \(y(x) = u(x) + iv(x) \) is a solution to the equation
\[
y'' + p(x)y' + q(x)y = 0
\]
then so are \(u(x) \) and \(v(x) \).

(2) Find a fundamental set \(y_1, y_2 \) of real-valued solutions for the equation
\[
y'' - 2y' + 2y = 0.
\]
Check, using the Wronskian, that \(y_1, y_2 \) indeed form a fundamental set of solutions.

(3) Use the method of undetermined coefficients to solve the IVP
\[
y'' + 3y' + 2y = 7 \sin x + \cos x, \quad y(0) = 0, \quad y'(0) = 1.
\]
Explain your ansatz.

(4) Let \(\alpha, \beta \) be real constants. The following equation is known as the Cauchy–Euler equation:
\[
x^2y'' + \alpha xy' + \beta y = 0.
\]
Show that the change of variables
\[
t = \ln x
\]
transforms it into a constant-coefficient equation. Use this to find the general (real-valued) solution to the Cauchy–Euler equation when \(\alpha = \beta = 1 \).

(5) Find the general solution to
\[
y''' - 2y'' - y' + 2y = 0.
\]