Each question is worth 10 points. There are 5 questions, for a total of 50 points. You are encouraged to discuss the homework with other students but you must write your solutions individually, in your own words.

(1) The **gamma function** is defined as
\[
\Gamma(r) := \int_0^\infty e^{-u}u^{r-1} du.
\]
Using a change of variables \(u = st \), show that
\[
\mathcal{L}\{t^{r-1}\} = \frac{\Gamma(r)}{s^r}.
\]
Use integration by parts to show that the gamma function satisfies \(\Gamma(r+1) = r\Gamma(r) \). Finally, show that \(\Gamma(1) = 1 \) to conclude that \(\Gamma(r) = (r-1)! \) when \(r \) is a positive integer.

(2) Using problem 1, solve the IVP
\[
y'' - 3y' + 2y = t^2, \quad y(0) = 0, \quad y'(0) = 1.
\]
(Please feel free to use a computer to find the partial fraction decomposition, but make sure you know in principle how to do it by hand.)

(3) Find the inverse Laplace transforms of
\[
\frac{5e^{-6s} - 11e^{-7s}}{(s-1)(s-2)}, \quad \frac{2s + e^{-2s}}{s^2 - 1}.
\]

(4) Show that if \(\mathcal{L}\{f(t)\} = F(s) \), then
\[
\mathcal{L}\{-tf(t)\} = F'(s).
\]
Explain why this means \(\mathcal{L}\{(-t)^nf(t)\} = F^{(n)}(s) \). In other words, multiplying by \((-t)^n \) in the time domain is the same thing as taking \(n \) derivatives in the frequency domain.

(5) One way to compute the Laplace transform of \(f(t) \) is to expand it as a series, and take the Laplace transform term by term. Use problem 1 to do this for
\[
\sin t = \sum_{n=0}^{\infty} (-1)^n t^{2n+1} (2n+1)!
\]
to verify that (for \(s > 1 \))
\[
\mathcal{L}\{\sin t\} = \frac{1}{s^2 + 1}.
\]