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Abstract

We study the problem of testing composite hypotheses versus composite alter-
natives, using a convex duality approach. In contrast to classical results obtained
by Krafft & Witting [11], where sufficient optimality conditions are obtained via
Lagrange duality, we obtain necessary and sufficient optimality conditions via
Fenchel duality under some compactness assumptions. This approach also dif-
fers from the methodology developed in Cvitanić & Karatzas [6].
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potheses, randomized test, convex duality
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1 Introduction

The problem of Hypothesis Testing is well understood in the classical case of testing
a simple hypothesis versus a simple alternative. Suppose one wants to discriminate
between two probability measures P (the “null hypothesis”) and Q (the “alternative
hypothesis”). In the classical Neyman-Pearson formulation, one seeks a randomized
test ϕ : Ω → [0, 1] which is optimal, in that it minimizes the overall probability
E

Q(1−ϕ) of not rejecting P when this hypothesis is false, while keeping below a given
significance level α ∈ (0, 1) the overall probability E

P (ϕ) of rejecting the hypothesis
P when in fact it is true.

In this classical framework an optimal randomized test ϕ̃ always exists and can
be calculated explicitly in terms of a reference probability measure R, with respect to
which both measures are absolutely continuous (for instance, R = (P + Q)/2). It has
the randomized 0 -1 structure

ϕ̃ = 1{L>z} + δ · 1{L=z} (1)
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that involves the likelihood ratio L = (dQ/dR)/(dP/dR) of the densities of the null
and the alternative hypotheses, the quantile z = inf{z ≥ 0 : P (L > z) ≤ α} , and the
number δ ∈ [0, 1] which enforces the significance-level requirement without slackness,
that is, E

P (ϕ̃) = α .
The problem becomes considerably more involved when the hypotheses are com-

posite, that is, when one has to discriminate between two entire families of probability
measures; then likelihood ratios of mixed strategies have to be considered. This type
of problem also arises in the financial mathematics context of minimizing the expected
hedging loss in incomplete or constrained markets; see e.g. Cvitanić [5], Schied [16]
and Rudloff [15]. It was shown by Lehmann [12], Krafft & Witting [11], Baumann
[4], Huber & Strassen [10], Österreicher [14], Witting [18], Vajda [17] and Cvitanić &
Karatzas [6], that duality plays a crucial rôle in solving the testing problem. Most
of these papers deal with Lagrange duality; they prove that the typical 0 -1 structure
of (1) is sufficient for optimality, and that it is both necessary and sufficient if a dual
solution exists. An important question then is to decide when a dual solution will exist,
and to describe it when it does.

The most recent of these papers, Cvitanić & Karatzas [6], takes a different duality
approach. Methods from non-smooth convex analysis are employed, and the set of
densities in the null hypothesis is enlarged, in order to obtain the existence of a dual
solution – which plays again a crucial rôle.

In the present paper we shall use Fenchel duality. One advantage of this approach
is that, as soon as one can prove the validity of strong duality, the existence of a dual
solution follows. We shall show that strong duality holds under certain compactness
assumptions. This generalizes previous results, insofar as no need to enlarge the set of
densities arises, a dual solution is obtained, and thus necessary and sufficient conditions
for optimality ensue.

In Section 2 we introduce the problem of testing composite hypotheses. Section 3
gives an overview of the duality results, which are established and explained in detail in
Section 4. In Section 5 the imposed assumptions are discussed and possible extensions
are given. A comparison of the results and methods of this paper, with those in the
extant literature, can be found in the last sections, including Section 6.

2 Testing of Composite Hypotheses

Let (Ω,F) be a measurable space. A central problem in the theory of Hypothesis
Testing is to discriminate between a given family P of probability measures (composite
“null hypothesis”) and another given family Q of probability measures (composite
“alternative hypothesis”).

Suppose that there exists a reference probability measure R on (Ω,F), that is, a
probability measure with respect to which all probability measures P ∈ P and Q ∈ Q
are absolutely continuous. We shall use the notation ZΠ ≡ dΠ/dR for the Radon-
Nikodým derivative of a finite measure Π which is absolutely continuous with respect
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to the reference measure, and E
Π(Y ) :=

∫
Ω

Y dΠ =
∫
Ω

ZΠY dR for the integral with
respect to such Π of an F−measurable function Y : Ω → [0,∞). Finally, we shall
denote the sets of these Radon-Nikodým derivatives for the composite null hypothesis
and for the composite alternative hypothesis, respectively, by

ZP := {ZP |P ∈ P} and ZQ := {ZQ |Q ∈ Q} .

Both ZP and ZQ are subsets of the non-negative cone L
1
+ and of the unit ball in

the Banach space L
1 ≡ L

1(Ω,F , R). We shall assume that the mapping Ω × ZP ∋
(ω, Z) 7−→ Z(ω) ∈ [0,∞) is measurable with respect to the product σ−algebra F⊗B ,
where B is the σ−algebra of Borel subsets of ZP .

We shall denote by Φ the set of all randomized tests, i.e., of all Borel-measurable
functions ϕ : Ω → [0, 1] on (Ω,F). The interpretation is as follows: if the outcome
ω ∈ Ω is observed and the randomized test ϕ is used, then the null hypothesis P is
rejected with probability ϕ(ω). Thus, E

P [ϕ] =
∫
Ω

ϕ(ω)P (dω) is the overall probability
of type-I-error (of rejecting the null hypothesis, when in fact it is true) under a scenario
P ∈ P ; whereas E

Q[1 − ϕ] is the overall probability of type-II-error (of not rejecting
the null hypothesis, when in fact it is false) under the scenario Q ∈ Q .

We shall adopt the Neyman-Pearson point of view, whereby a type-I-error is viewed
as the more severe one and is not allowed to occur with probability that exceeds a
given acceptable significance level α ∈ (0, 1), no matter which scenario P ∈ P might
materialize. Among all randomized tests that observe this constraint

s(ϕ) := sup
P∈P

E
P [ϕ] ≤ α , (2)

we then try to minimize the highest probability supQ∈Q

(
1 − E

Q[ϕ]
)

of type-II-error
over all scenarios in the alternative hypothesis. We look in other words for a randomized
test ϕ̃ that maximizes the smallest power with respect to all alternative scenarios

π(ϕ) := inf
Q∈Q

E
Q[ϕ] ,

over all randomized tests ϕ whose ‘size’ s(ϕ), the quantity defined in (2), does not
exceed a given significance level α.

Equivalently, we look for a randomized test ϕ̃ ∈ Φ that attains the supremum

V := sup
ϕ∈Φα

π(ϕ) = sup
ϕ∈Φα

(
inf
Q∈Q

E
Q[ϕ]

)
(3)

of the power π(ϕ) , over all generalized tests in the class

Φα :=
{
ϕ ∈ Φ

∣∣∣ sup
P∈P

E
P [ϕ] ≤ α

}
. (4)

When such a randomized test ϕ̃ exists, it will be called (max-min) optimal.
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3 Duality

We shall denote by Λ+ the set of finite measures on the measurable space
(
ZP ,B

)
. We

shall then associate to the maximization problem of (3) the dual minimization problem

V ∗ := inf
Q∈Q

λ∈Λ+

D(Q, λ), (5)

where

D(Q, λ) := E
R
[(

ZQ −

∫

ZP

ZP dλ
)+ ]

+ α λ(ZP) . (6)

Here and in the sequel, we view
∫

ZP
ZP (ω) dλ as the integral with respect to the

measure λ of the continuous functional ZP ∋ Z 7−→ ℓ(Z; ω) := Z(ω) ∈ IR , for fixed
ω ∈ Ω ; see (19) below for an amplification of this point.

The idea behind the setting of (5), (6) is simple: we regard λ as a ‘Bayesian prior’
distribution on the set ZP of densities for the null hypothesis, and its total mass
λ(ZP) < ∞ as a variable whose rôle is to enforce the constraint in (2). More precisely:
for any given Q ∈ Q and any ϕ ∈ Φα , we have by Tonelli’s theorem the weak duality

E
Q[ϕ] = E

R[ϕZQ] = E
R
[
ϕ
(
ZQ −

∫

ZP

ZP dλ
)]

+ E
R
[
ϕ

∫

ZP

ZP dλ
]

(7)

≤ E
R
[(

ZQ −

∫

ZP

ZP dλ
)+ ]

+ α λ(ZP) = D(Q, λ),

for all λ ∈ Λ+. Now let us observe that equality holds in (7), if and only if we have
both

ϕ(ω) =

{
1 : ZQ(ω) >

∫
ZP

ZP (ω) dλ

0 : ZQ(ω) <
∫

ZP
ZP (ω) dλ

}
, for R − a.e. ω ∈ Ω (8)

and
E

R [ϕZP ] = α , for λ − a.e. ZP ∈ ZP . (9)

It follows from (7) that the inequality supϕ∈Φα
E

Q[ϕ] ≤ D(Q, λ) holds for all λ ∈ Λ+

and Q ∈ Q , so

V ≤ V := inf
Q∈Q

(
sup
ϕ∈Φα

E
Q[ϕ]

)
≤ V ∗ (10)

in the notation of (3), (5).

The challenge, then, it to turn this ‘weak’ duality into ‘strong’. That is, to show
that equalities V = V = V ∗ prevail in (10); that the infimum in (5) is attained by

some (Q̃, λ̃) ∈ Q × Λ+ ; that there exists a ϕ̃ ∈ Φα for which the triple (ϕ̃, Q̃, λ̃)
satisfies (8), (9); that for this triple equality prevails in (7); and that this same ϕ̃ is
optimal for the generalized hypothesis-testing problem, i.e., attains the supremum in
(3).
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4 Results

In order to carry out the program outlined in the previous section, we shall impose the
following assumptions. A discussion of their rôle can be found in Remark 5.1.

Assumption 4.1.

(i) ZQ is a weakly compact, convex subset of L
1.

(ii) ZP is a compact subset of L
1.

Our main result reads as follows.

Theorem 4.2 (Generalized Neyman-Pearson Lemma). Let P, Q be families of prob-
ability measures on (Ω,F) as in Sections 2 and 3, that satisfy Assumption 4.1. For a
given constant α ∈ (0, 1), recall the subclass Φα of randomized tests in (4).

There exists then a randomized test ϕ̃ ∈ Φα which is optimal for, that is, attains
the supremum in, (3). There exists also a solution to the dual problem of (5), to wit,

a pair (Q̃, λ̃) ∈ Q× Λ+ which attains the infimum there.
Furthermore, strong duality is satisfied, in the sense that

• the optimal test for (3) has the structure of (8), (9), namely

ϕ̃(ω) =





1 : Z

eQ(ω) >
∫

ZP
ZP (ω) dλ̃

0 : Z
eQ(ω) <

∫
ZP

ZP (ω) dλ̃




 , for R − a.e. ω ∈ Ω (11)

and
E

R[ϕ̃ZP ] = α , for λ̃ − a.e. ZP ∈ ZP ; whereas (12)

• (ϕ̃, Q̃) is a saddle point in Φα ×Q of the functional (ϕ, Q) 7→ E
Q[ϕ] :

E
eQ[ϕ] ≤ E

eQ[ϕ̃ ] ≤ E
Q[ϕ̃ ] , ∀ (ϕ, Q) ∈ Φα ×Q . (13)

We shall prove the theorem in several steps, using the following lemmata. The
convention of denoting by “max” (resp., “min”) a supremum (resp., infimum) which is
attained, will be used freely.

Lemma 4.3. The supremum in (3) is attained by some randomized test ϕ̃ ∈ Φα ; and

there exists a Q̃ ∈ Q such that the saddle-point property (13) holds. In particular, the
lower- and upper-values V and V of (3) and (10), respectively, are the same, i.e.,

max
ϕ∈Φα

(
min
Q∈Q

E
Q[ϕ]

)
= min

Q∈Q

(
max
ϕ∈Φα

E
Q[ϕ]

)
. (14)
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Proof. The set Φ of all randomized tests is a weakly* compact subset of the Banach
space L

∞ ≡ L
∞(Ω,F , R) , as it is a weakly* closed subset of the weakly* compact

unit ball in L
∞ (Alaoglu’s theorem, e.g. Dunford & Schwartz [7], Theorem V.4.2 and

Corollary V.4.3).
To see that Φ is weakly* closed, consider a net {ϕα}α∈D ⊆ Φ that converges

to ϕ with respect to the weak* topology in L
∞. This means that for all X ∈ L

1

we have E
R[ϕαX] → E

R[ϕX]. If there existed an event Ω1 ∈ F with R(Ω1) > 0 and

{ϕ > 1} ⊆ Ω1 , then we could choose X̂(ω) = 1Ω1(ω) ∈ L
1 and obtain E

R[ϕX̂] > R(Ω1).

But this contradicts E
R[ϕX̂] = limα E

R[ϕαX̂] ≤ R(Ω1), which follows from ϕα ≤ 1 for
all α ∈ D, since ϕα ∈ Φ. Hence, ϕ ≤ 1 holds R−a.e. It can be shown similarly that
ϕ ≥ 0 also holds R−a.e.

Thus Φ is indeed weakly* closed, hence weakly* compact. Since the mapping
ϕ 7→ supP∈P E

P [ϕ] is lower-semicontinuous in the weak* topology, the set Φα in (4)
is weakly* closed, hence weakly* compact. Because of the upper-semicontinuity of the
mapping ϕ 7→ π(ϕ) = infQ∈Q E

Q[ϕ] in the weak* topology, there exists a ϕ̃ ∈ Φα that
attains the supremum in (3).

The weak* compactness and convexity of Φα , and the weak compactness and con-
vexity of ZQ (Assumption 4.1(i)), enable us to apply the von Neumann min-max the-
orem (see e.g. Aubin [2], Theorem 7, Chapter 7.1, or Aubin [3], section 2.7, pages
39-45); the assertions follow.

Let us fix now an arbitrary Q ∈ Q , and consider as our primal problem the inner
maximization in the middle term of (10), namely:

p(Q) := sup
ϕ∈Φα

E
Q[ϕ] . (15)

This supremum is always attained, since Φα is weakly* compact. We want to show
that strong duality holds between (15) and its Fenchel dual problem which, we claim,
is of the form

d(Q) = inf
λ∈Λ+

D(Q, λ) = inf
λ∈Λ+

[ ∫

Ω

(
ZQ −

∫

ZP

ZP dλ
)+

dR + α λ(ZP)

]
. (16)

In this case, the typical 0 -1 structure of the randomized test ϕ̃Q ∈ Φα that attains
the supremum in (15), is necessary and sufficient for optimality.

Lemma 4.4. Strong duality holds for problems (15) and (16), that is,

∀ Q ∈ Q : d(Q) = p(Q) .

Moreover, for each Q ∈ Q , there exists an element λ̃Q of Λ+ which attains the infi-
mum in (16); whereas an optimal randomized test ϕ̃Q ∈ Φα that attains the supremum
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in (15) has the structure of (8) and (9), namely

ϕ̃Q(ω) =





1 : ZQ(ω) >
∫

ZP
ZP (ω) dλ̃Q

0 : ZQ(ω) <
∫

ZP
ZP (ω) dλ̃Q



 , for R − a.e. ω ∈ Ω (17)

and
E

R [ ϕ̃QZP ] = α , for λ̃Q − a.e. ZP ∈ ZP . (18)

Proof. Let L be the linear space of all continuous functionals ℓ : ZP → IR on the
compact subset ZP of L

1 (Assumption 4.1(ii)) with pointwise addition, multiplication
by real numbers, and pointwise partial order

ℓ1 ≤ ℓ2 ⇐⇒ ℓ2 − ℓ1 ∈ L+ :=
{
ℓ ∈ L | ℓ(ZP ) ≥ 0, ∀P ∈ P

}
.

We endow L with the supremum norm ‖ℓ‖L = supP∈P |ℓ(ZP )| , which ensures that L
is a Banach space (Dunford & Schwartz [7], Section IV.6).

Similarly, we let Λ be the space of finite signed measures λ = λ+−λ− on
(
ZP ,B

)
,

with λ± ∈ Λ+ . We regard this space as the norm-dual of L , with the bilinear form

〈ℓ, λ〉 =

∫

ZP

ℓ dλ for ℓ ∈ L , λ ∈ Λ ; (19)

see Aliprantis & Border [1], Corollary 14.15. (Intuitively speaking, the elements of
Λ are generalized Bayesian priors, that may assign negative mass to certain null hy-
potheses; they are countably additive, however.) We have also the clear identification
Λ+ ≡ {λ ∈ Λ | λ(B) ≥ 0, ∀B ∈ B} .

Let us define a linear operator A :
(
L
∞, ‖ · ‖L∞

)
→
(
L, ‖ · ‖L

)
by

L
∞ ∋ ϕ 7−→ (Aϕ)(ZP ) := −E

P [ϕ] = −E
R[ϕZP ] ∈ IR , (20)

for ZP ∈ ZP ; this operator is bounded, thus continuous. We introduce also the constant
functionals 1, 0 ∈ L by

∀ ZP ∈ ZP : 1(ZP ) = 1 ∈ IR , 0(ZP ) = 0 ∈ IR .

The constraint of (2) can be rewritten then as

α1 + Aϕ ≥ 0 ⇐⇒ Aϕ ∈ L+ − α1.

With this notation, for any given Q ∈ Q the primal problem (15) can be cast as

−p(−Q) = inf
ϕ∈L∞

(
E

Q[ϕ] + IΦ(ϕ) + IL+−α1(Aϕ)
)

(21)

= inf
ϕ∈L∞

(
f(ϕ) + g(Aϕ)

)
,

7



where −Q is interpreted as a finite, signed measure on (Ω,F) ; cf. the discussion
preceding (28). Here and for the remainder of this proof, we use the notation IC(ϕ) :=
0 for ϕ ∈ C , IC(ϕ) := ∞ for ϕ /∈ C , as well as

f(ϕ) := E
Q[ϕ] + IΦ(ϕ) , g(Aϕ) := IL+−α1(Aϕ) . (22)

• We claim that the Fenchel dual of the primal problem in (15) has the form (16). We
shall begin the proof of this claim by recalling (from Ekeland & Temam [8], Proposi-
tion III.1.1, Theorem III.4.1 and Remark III.4.2) that the Fenchel dual of the problem
(21) is given by

− d(−Q) = sup
λ∈Λ

(
− f ∗(A∗λ) − g∗(−λ)

)
, (23)

where A∗ : Λ → ba(Ω,F , R) the adjoint of the operator A in (20). Here and in
the sequel, ba(Ω,F , R) is the space of bounded, (finitely-)additive set-functions on
(Ω,F) which are absolutely continuous with respect to R (see, for instance, Yosida
[19], Chapter IV, section 9, Example 5).

The function g∗(·) is the conjugate of the function g(·), namely

g∗(λ) = sup
eℓ∈L

(
〈 ℓ̃ , λ〉 − IL+−α1(ℓ̃ )

)
= sup

eℓ∈L+−α1

〈ℓ̃, λ〉 = sup
ℓ∈L+

〈ℓ − α1, λ〉

= sup
ℓ∈L+

〈ℓ, λ〉 − α

∫

ZP

dλ = IL∗
+
(λ) − α λ(ZP) ,

where L∗
+ :=

{
λ ∈ Λ | 〈ℓ, λ〉 ≤ 0 , ∀ ℓ ∈ L+

}
is the negative dual cone of L+. The last

equality in the above string holds, because L+ is a cone containing the origin 0 ∈ L .

To determine the conjugate f ∗(·) of the function f(·) at A∗λ, namely

f ∗(A∗λ) = sup
ϕ∈L∞

{
〈A∗λ, ϕ〉 − E

Q[ϕ] − IΦ(ϕ)
}

,

we have to calculate 〈A∗λ, ϕ〉. By the definition of A∗, the equation 〈A∗λ, ϕ〉 = 〈λ, Aϕ〉
has to be satisfied for all ϕ ∈ L

∞, λ ∈ Λ (see [1], Chapter 6.8). Thus,

∀ ϕ ∈ L
∞, ∀ λ ∈ Λ : 〈A∗λ, ϕ〉 = −

∫

ZP

E
R[ϕZP ] dλ ,

and the conjugate of the function f(·) at A∗λ is evaluated as

f ∗(A∗λ) = sup
ϕ∈Φ

(
−

∫

ZP

E
R[ϕZP ]dλ − E

Q[ϕ]
)

.
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The dual problem (23) becomes therefore

−d(−Q) = sup
λ∈Λ

[
− sup

ϕ∈Φ

(
−

∫

ZP

E
R[ϕZP ]dλ − E

Q[ϕ]
)
− I−L∗

+
(λ) − α λ(ZP)

]

= sup
λ∈−L∗

+

[
− sup

ϕ∈Φ

(
−

∫

ZP

E
R[ϕZP ]dλ − E

Q[ϕ]
)
− α λ(ZP)

]
. (24)

It is not hard to show that −L∗
+ = Λ+ , so (24) can be re-cast in the form

− d(−Q) = sup
λ∈Λ+

[
− sup

ϕ∈Φ

(
−

∫

ZP

E
R[ZP ϕ] dλ − E

R[ZQ ϕ]

)
− α λ(ZP)

]
. (25)

• Now both (Ω,F , R) and (ZP ,B, λ) for λ ∈ Λ+ are positive, finite measure spaces.
Furthermore, for every ϕ ∈ Φ the mapping Ω × ZP ∋ (ω, ZP ) 7−→ f(ω, ZP ) :=
ZP (ω)ϕ(ω) ∈ IR is measurable with respect to the product σ−algebra F ⊗B , thanks
to the measurability assumption imposed in Section 2; whereas for every λ ∈ Λ+ and
ϕ ∈ Φ we have

∫

ZP

∫

Ω

|ZP ϕ| dRdλ ≤

(
sup
P∈P

‖ZP‖L1

)
λ(ZP ) = λ(ZP) < ∞ ,

since ‖ϕ‖L∞
≤ 1 . Thus, we can apply Tonelli’s Theorem (see [7], Corollary III.11.15)

and deduce that the order of integration can be interchanged, i.e., for all λ ∈ Λ+ and
all ϕ ∈ Φ we have

∫

ZP

∫

Ω

ZP ϕ dRdλ =

∫

Ω

∫

ZP

ZPϕ dλdR < ∞ .

In (25) only elements λ ∈ Λ+ and ϕ ∈ Φ are considered, so we can interchange the
order of integration and obtain

− d(−Q) = sup
λ∈Λ+

(
− sup

ϕ∈Φ
E

R
[
ϕ
(
− ZQ −

∫

ZP

ZP dλ
) ]

− αλ(ZP)
)

. (26)

Since ϕ ∈ Φ is a randomized test, it follows that the supremum over all ϕ ∈ Φ in (26)
is attained by some ϕλ,−Q ∈ Φ of a form similar to (8), namely

ϕλ,−Q(ω) =

{
1 : −ZQ(ω) >

∫
ZP

ZP (ω) dλ

0 : −ZQ(ω) <
∫

ZP
ZP (ω) dλ

}
, for R − a.e. ω ∈ Ω . (27)

9



Given any finite, signed measure Π = Π+ − Π− on (Ω,F) with Π± ≪ R , let us
denote ZΠ = ZΠ+ − ZΠ− and

Υλ,Π := ZΠ −

∫

ZP

ZPdλ ∈ L
1 , (28)

and let Υ+
λ,Π (respectively, Υ−

λ,Π ) be the positive (respectively, negative) part of the
random variable in (28). With this notation, and recalling (27), the value of the dual
problem (26) becomes

−d(−Q) = sup
λ∈Λ+

{
− E

R[Υ+
λ,−Q ] − αλ(ZP)

}
,

thus
d(Q) = inf

λ∈Λ+

{
E

R[Υ+
λ,Q ] + αλ(ZP)

}
. (29)

We deduce from this representation and (28) that the dual d(Q), of the primal problem
p(Q) of (15), is indeed as claimed in equation (16).

• Now strong duality holds if both f(·) and g(·) are convex; if g(·) is continuous at some
Aϕ0 with ϕ0 ∈ dom(f); and if p(Q) is finite (see Ekeland & Temam [8], Theorem III.4.1
and Remark III.4.2).

Indeed, the existence of a primal solution ensures the finiteness of p(Q). In (22)
the function f(·) is convex, since Φ is a convex set; and g(·) is convex, since the
set L+ − α1 is convex. The function g(·) is indeed continuous at some Aϕ0 with
ϕ0 ∈ dom(f), provided Aϕ0 ∈ int(L+ − α1). If we take ϕ0 ≡ 0, then ϕ0 ∈ dom(f)
since ϕ0 ∈ Φ , and we see that Aϕ0 = 0 ∈ int(L+ −α1) since int(L+) 6= ∅ in the norm
topology and α > 0. Hence, we have strong duality.

• The existence of a solution to the primal problem p(Q) (that is, of a generalized test
ϕ̃Q ∈ Φα that attains the supremum in (15)) follows from the weak* compactness of Φα.
With strong duality established, the existence of a solution to the dual problem, that is,
of an element λ̃Q ∈ Λ+ that attains the infimum in (16), follows (Ekeland & Temam [8],
loc. cit.); whereas the values of the primal (respectively, the dual) objective functions

at ϕ̃Q (respectively, λ̃Q) coincide. To indicate the dependence of these quantities on

the selected Q ∈ Q , we have used the notation ϕ̃Q and λ̃Q for the primal and dual
solutions, respectively.

These considerations lead to a necessary and sufficient condition for optimality.
Indeed, let us write the expression for E

Q[ϕ] that appears in the equation of (7), as

E
Q[ϕ] = E

R[ϕΥ+
λ,Q ] − E

R[ϕΥ−
λ,Q ] + E

R
[
ϕ

∫

ZP

ZPdλ
]

in the notation of (28), and subtract it from the dual objective function E
R[Υ+

λ,Q ] +
αλ(ZP) as in (29). Because of strong duality, this difference has to be zero when

evaluated at (ϕ, λ) = (ϕ̃Q, λ̃Q) , namely:

E
R
[
Υ+

eλQ,Q

(
1 − ϕ̃Q

)]
+ E

R
[
Υ−

eλQ,Q
ϕ̃Q

]
+

∫

ZP

(
α − E

R[ZP ϕ̃Q]
)
dλ̃Q = 0 .

10



Each of these three integrals is nonnegative, so their sum is zero if and only if ϕ̃Q ∈ Φα

satisfies the condition (18) of Lemma 4.4 and is of the form (17) or, equivalently, of
the form ϕ̃Q ≡ ϕ

eλQ,−Q
of (27).

Now, we are able to prove our main result.

Proof of Theorem 4.2. With Lemma 4.4 it follows that

min
Q∈Q

(
max
ϕ∈Φα

E
Q[ϕ]

)
= min

Q∈Q
p(Q) = min

Q∈Q
d(Q) = min

(Q,λ)∈Q×Λ+

D(Q, λ) = V ∗

in the notation of (5) and (15), (16). From Lemma 4.3 it follows that there exists an

element Q̃ of Q which attains the infimum in (10). For this Q̃ , Lemma 4.4 shows

the existence of an element λ̃
eQ

of Λ+ that attains the infimum in (16). Thus, there

exists a pair (Q̃, λ̃) that attains the infimum in (5), and Lemma 4.4 gives the required
structural result.

Corollary: It follows that the optimal randomized test has the form

ϕ̃(ω) = 1{
Z eQ

>
R

ZP
ZP d eλ

}(ω) + δ(ω) · 1{
Z eQ

=
R

ZP
ZP d eλ

}(ω) (30)

reminiscent of (1), where the random variable δ : Ω → [0, 1] is chosen so that (12) is
satisfied by ϕ̃ .

5 Extensions and Ramifications

Remark 5.1. The weak compactness of the set of alternative densities ZQ in Assump-
tion 4.1(i) seems to be crucial. Without it, we can still get

max
ϕ∈Φα

(
inf
Q∈Q

E
Q[ϕ]

)
= inf

Q∈Q

(
max
ϕ∈Φα

E
Q[ϕ]

)

by Fenchel duality (endowing L
∞ with the norm topology). There is no guarantee

anymore, however, that the infimum will be attained in Q. The infimum will be
attained at some element µ̂ of the set M ⊆ {µ ∈ ba(Ω,F)+ | µ(Ω) = 1} , which
contains Q ; but since a Hahn decomposition might not exist for this µ̂ , we do not
obtain in general the 0 -1 structure in (30) of the primal solution with respect to the
dual solution.

It seems reasonable to endow L
∞ with the weak* topology, and to apply Fenchel

duality. But then it is tricky to show that a suitable constraint qualification (e.g., that
ρ(ϕ) = supQ∈Q E

Q[ϕ] be weakly* continuous at some ϕ0 ∈ Φα) is satisfied, which is
needed to obtain strong duality.

Assuming ZQ to be weakly compact and convex, as we have done throughout the
present work, has enabled us to apply a min-max theorem and to ensure that the
infimum in the dual problem is attained within ZQ ⊆ L

1.
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• If we were to drop the compactness Assumption 4.1(ii) on the set of densities ZP ,
then the norm-dual of L would be ba(ZP ,B) instead of Λ (recall the definitions of
the spaces L and Λ from the start of the proof of Lemma 4.4). The elements of
the space ba(ZP ,B) are the ultimate generalized Bayesian priors; they are allowed
to assign negative weights to sets of possible scenarios, and to be just finitely (as
opposed to countably) additive. But in such a setting, Tonelli’s Theorem cannot be
applied anymore. It is possible to endow L with the Mackey topology, to ensure Λ
is the topological dual space of L ; but proving strong duality under this topology is
a challenge. Throughout this paper Assumption 4.1(ii) is imposed to ensure that the
norm-dual of the space L is Λ , and that a strong duality result can be obtained.

Remark 5.2. The results in this paper can be extended in several directions. For
instance, our proofs have not used the assumption that P and Q are families of
probability measures. The results still hold if we consider instead two arbitrary subsets
of L

1, namely G (in lieu of ZP) and H (in lieu of ZQ), that satisfy Assumption 4.1
as well as supG∈G ‖G‖L1 < ∞ .

Furthermore, instead of a constant α ∈ (0, 1), we may consider a positive continuous
functional α : G → IR+ . The corresponding optimization problem is then

sup
ϕ∈Φ

(
inf

H∈H
E[ϕH ]

)
, (31)

subject to
E

R[ϕG] ≤ α(G) , ∀ G ∈ G . (32)

The problem (31)-(32) is no longer of Hypothesis-Testing form in the classical sense,
but its structure is similar to that of testing composite hypotheses. Such so-called “gen-
eralized hypothesis-testing problems” arise also in the context of hedging contingent
claims in incomplete or constrained markets, for instance when one tries to minimize
the expected hedging-loss (see Cvitanić [5], Rudloff [15] or, in a related context, Schied
[16]).

This kind of generalized hypothesis testing problem was studied for the case of a
simple alternative (i.e., H being a singleton), and a positive, bounded and measurable
function α(·), by Witting [18], Section 2.5.1. For this case it was shown with Lagrange
duality that the generalized 0 -1 structure (30) of a test is sufficient for optimality.
Furthermore, it was shown in [18] that, for a finite set G , the conditions (17), (18)
are necessary and sufficient for optimality. The proof of Lemma 4.4 shows that a
generalization of these results is possible even when both the ‘hypothesis’ set G and
the ‘alternative hypothesis’ set H are infinite, provided they satisfy the above conditions
(Assumption 4.1 and supG∈G ‖G‖L1 < ∞ ), and α(·) is a given positive, continuous
function.

Related results are obtained in Lehmann [12], in Krafft & Witting [11] which is
apparently the first work to introduce ideas of Convex Duality in the the theory of Hy-
pothesis Testing, and in Baumann [4], Huber & Strassen [10], Österreicher [14], Vajda
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[17], pp. 361-362 and Schied [16]. Lehmann [12] works with a finite set ZQ , provides
existence results and shows that the composite testing problem can be reduced to one
with simple hypotheses (consisting of the optimal mixed strategy). Krafft & Witting
[11] and Witting [18] use Lagrange duality and show that, even without any compact-
ness assumptions on the sets ZP and ZQ , the generalized 0-1 structure (30) of ϕ̃
is sufficient for optimality, as well as necessary and sufficient if a dual solution exists
(e.g. when ZP and ZQ are finite). In this paper we showed that, under Assump-
tion 4.1, the generalized 0-1 structure of (30) is necessary and sufficient for optimality,
due to strong duality with respect to the Fenchel dual problem; then, the existence of
a dual solution follows from strong duality. Baumann [4] establishes the existence of
a max-min optimal test using duality results from linear programming and weak com-
pactness arguments. The problem is also studied for densities that are contents and
not necessarily measures. Huber & Strassen [10] dispense with the assumption that all
measures in ZP and ZQ be absolutely continuous with respect to a reference measure
R , at the expense of assuming that these two sets can be described in terms of “alter-
nating capacities” in the sense of Choquet. Finally, using totally different methods and
motivated by optimal investment problems in mathematical finance, Schied [16] studies
variational problems of Neyman-Pearson type for convex risk measures and for law-
invariant robust utility functionals, and obtains explicit solutions for quantile-based
coherent risk measures that satisfy the Huber-Strassen-Choquet alternating capacity
conditions.

6 Comparisons and Conclusion

The problem of testing a composite null hypothesis against a simple alternative hy-
pothesis has a long history; it has been considered in a variety of papers as discussed
above, and in several books (for instance, Ferguson [9], Witting [18], Lehmann [13]
and Vajda [17]). The problem of testing a composite hypothesis against a composite
alternative has also been studied; see, for instance, Cvitanić & Karatzas [6] and the
references therein, for one of the most recent works on this subject. We want to give
here a short overview regarding the similarities and differences between the results in
Cvitanić & Karatzas [6] and Theorem 4.2 of the present paper, both in terms of results
and of the methods used to obtain them.

Cvitanić & Karatzas [6] introduce the enlargement

W :=
{
W ∈ L

1
+ | E

R[ϕW ] ≤ α , ∀ϕ ∈ Φα

}
⊇ co

(
ZP

)
(33)

of the convex hull of the Radon-Nikodým densities of P. This ‘enlarged’ set W is
convex, bounded in L

1, and closed under R−a.e. convergence. Furthermore, it is
assumed in Cvitanić & Karatzas [6] that the set of densities of Q is convex and closed
under R−a.e. convergence. The starting point of Cvitanić & Karatzas [6] is the
observation

∀ Q ∈ Q , ∀ W ∈ W , ∀ z > 0 , ∀ ϕ ∈ Φα : E
Q[ϕ] ≤ E

R
[
(ZQ−zW )+

]
+αz . (34)
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The existence of a quadruple (Q̂, Ŵ , ẑ, ϕ̂) ∈ Q×W × (0,∞)×Φα which satisfies (34)
as equality is then shown, and the structure of

ϕ̂(ω) = 1{
bz cW<Z bQ

}(ω) + δ(ω) · 1{
bz cW=Z bQ

}(ω) (35)

for the optimal randomized test ϕ̂ is deduced. Here the triple (Q̂, Ŵ , ẑ ) is a solution
of the optimization problem

inf
z>0

(Q,W )∈Q×W

(
αz + E

R
[
(ZQ − zW )+

])
, (36)

and the random variable δ : Ω → [0, 1] is chosen so that E
Q[ϕ̃ ] = α is satisfied.

The methodology of the present paper obviates the need to introduce the enlargement
set W of (33). Thus, we provide a result about the structure of the solution ϕ̃ in
terms of the original families of probability measures P and Q ; we do need, however,
the set ZQ to be weakly compact.

• Let us study the relationship between Theorem 4.2 and the results of Cvitanić &
Karatzas [6]. With the help of Tonelli’s Theorem it is easy to show that we have

k

∫

ZP

ZP dλ ∈ W , ∀ λ ∈ Λ+ ,

where k = (λ(ZP))−1 if λ(ZP) > 0 and k = 0 if λ(ZP) = 0. The case λ(ZP) = 0 implies
λ(B) = 0 for all B ∈ B, and thus

∫
ZP

ZP dλ = 0. If we consider in (34) only elements W

of the form k
∫

ZP
ZP dλ ∈ W , then the inequality (34) coincides with the weak duality

between the primal and dual objective functions p(Q) and d(Q), and reduces to the
inequality in (7); whereas Problem (36) reduces to (5).

To summarize the methodology: Cvitanić & Karatzas [6] proved the existence of a
primal and a dual solution that satisfy (34) as an equality; in order to do this, strong
closure assumptions had to be imposed. In the methodology of the present paper, the
validity of strong duality, hence also the equality in (7), are shown directly via Fenchel
duality; then the existence of a dual solution follows.

Both methods lead to a result about the structure of an optimal test. But now
it is possible to show the impact of the original family P on the sets that define the
solution ϕ̂ in [6], as in (35):

ẑ Ŵ =

∫

ZP

ZP dλ̃ , (37)

where (Q̃, λ̃) is the optimal pair, that attains the infimum in (5). This means

ẑ = λ̃(ZP) and Ŵ = k

∫

ZP

ZP dλ̃ , (38)

where k =
(
λ̃(ZP)

)−1
if λ̃(ZP) > 0 , and k = 0 if λ̃(ZP) = 0 .
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Let us highlight the improvements made possible by the methodology of the present
paper. With Theorem 4.2 one can provide a result about the structure of the solution
ϕ̃ in terms of the original sets P and Q ; it is not necessary to embed ZP into the
larger set W of (33). But instead of assuming that ZQ = {ZQ |Q ∈ Q} is closed under
R−a.e. convergence, we need here to assume that this set is weakly compact in L

1.
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