1. What is the plaintext message that corresponds to the following ciphertext

 1212 0902 0539 1208 1234 1103 1374

 using modular exponentiation with \(p = 2591 \) and \(e = 13 \)?

2. Using the modular exponentiation with the prime \(p = 8999 \) and enciphering key \(e = 5 \), encipher the following message

 \[LI\ FE\ IS\ ME\ AN\ IN\ GL\ ES\ S.\]

 (Please use the same Letter-Number correspondence given in the lecture (i.e. \(A = 11, \ldots, Z = 36 \)), and you may use a computer.)

3. Find the primes \(p \) and \(q \) satisfying \(n = pq = 4386607 \) and \(\phi(n) = 4382136 \).

4. If the ciphertext message produced by the RSA cipher with the public key \((n, e) = (2881, 5)\) is

 \[0504\ 1874\ 0347\ 0515\ 2088\ 2356\ 0736\ 0468,\]

 what is the plaintext message?

5. Using the RSA cipher with the public key \((n, e) = (10088821, 5)\), encipher the following message

 \[LET\ USG\ OTO\ LAL\ ALA\ ND.\]

 (Please use the same Letter-Number correspondence given in the lecture (i.e. \(A = 11, \ldots, Z = 36 \)), and you may use a computer.)