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1 Compact Hausdorff Spaces

1.1 Basic Results

Here is basic result.

Theorem 1.1. Let f : X → Y be a continuous map between compact Haus-
dorff spaces. Then:

• If f is surjective, then it is a quotient map.

• If f is injective, then it is a homeomorphism onto its image.

• If f is bijective, then it is a homeomorphism.

Proof. First statement. Recall that a surjective map ϕ : A → B of topo-
logical spaces is a quotient map if a subset U ⊂ B is open if and only if
ϕ−1(U) is open in A. In our case taking U ⊂ Y to be open f−1(U) is open
since f is continuous. Conversely, if f−1(U) is open, the setting F equal
to the complement of U in Y , we see that f−1(F ) is the complement of
f−1(U) and hence is closed and thus compact since X is compact. It follows
that f(f−1(F )) = F is also compact and hence closed since Y is Hausdorff.
Thus, if f−1(U) is open so is U .

Second statement. The image f(X) is compact and thus a closed
subset of Y and hence is compact Hausdorff. Applying the first result we
see that f : X → f(X) is a quotient map. Since it is one-to-one, this means
it carries open sets to open sets and hence is a homeomorphism.

Third Statement This is immediate from the second statement.
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1.2 Compactly generated Topology

Definition 1.2. We say a Hausdorff space Z has a compactly generated
topology or is compactly generated when the open subsets of Z are exactly
those that intersect every compact subset of Z in an open subset of that
compact set. Equivalently, Z is compactly generated if a function f : Z → Y
is continuous if and only if for every continuous map of compact Hausdorff
space to Z, S → Z, the composite with f is continuous. In general a
Hausdorff space X there is the compactly generated topology on the set X,
denotedXcpt gen: namely, the open sets in the compactly generated topology
are those that meet every compact subset of X in an open subset. The open
subsets of X are open subsets in the compactly generated topology, implying
that the identity set function induces a continuous map Xcpt gen → X.

More generally, if we fix an uncountable limit cardinal κ we say that
Z has a κ-compactly generated topology if a subset of Z is open if and
only if its intersection with every compact subset of Z of cardinality less
than κ is open. Once again the identity set function induces a continuous
map Xκ−cpt gen → X. For example a a first countable space is compactly
generated if and only if it is κ-compactly generated for the first uncountable
cardinal.

1.3 Totally Disconnected Spaces

Definition 1.3. A topological space is totally disconnected if given any two
points x 6= y there is an open and closed subset F containing x but not y.

Equivalently, a space X is totally disconnected, if for all pairs x 6= y of
points in X there is a continuous function ϕ : X → {0, 1} with ϕ(x) = 0 and
ϕ(y) = 1. Totally disconnected spaces are Hausdorff.

Theorem 1.4. Let X be a topological space. Consider the following three
statements

1) X is a totally disconnected space.

2) X is a Hausdorff space with a sub-basis of open sets that are also
closed.

3) X is a Hausdorff space with a basis of open sets that are also closed.

Then Statements 2) and 3) are equivalent and are implied by Statement 1).
If X is compact, then either Statement 2) or 3) implies Statement 1).

In particular, for compact spaces the three statements are equivalent.
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Proof. Since a basis is obtained from a sub-basis by taking finite intersection,
the second statment implies the third. Since a basis is a sub-basis, the third
statement implies the second. Now let us suppose that Statement 2) holds.
Since X is Hausdorff, given points x 6= y of X, the subspace X \ {y} is an
open subset containing x but not y. Either Statement 2) or 3) then implies
that there is an open and closed subset of X \ {y}, establishing Statement
1) for X.

Finally, suppose that X is compact and satisfies Statement 1). Clearly,
X is Hausdorff. We must show that for any U open subset containing a
point x ∈ X that there is an open and closed subset of U containing x. For
each y ∈ X \ U there is an open and closed subset Vy containing y and not
containing x. Since X \ U is a closed subset of the compact space X, it is
compact, and hence there is a finite subset {yi}ni=1 of points in X \ U such
that V = ∪nI=1Vyi covers X \ U . Being a finite union of open and closed
subspaces of X, the subspace V is open and closed. By construction, it does
not contain x. Its complement X \ V is hence an open and closed subspace
of X containing x and contained in U .

1.4 Projective Limits of Sets

Some of the nicest examples of totally disconnected spaces come from pro-
jective limits of discrete sets.

Definition 1.5. Recall that a cofiltered category is a small category I with
the following properties:

• for any pair of objects x, y of I there is an object z and morphism
z → x and z → y,

• for any pair of objects x, y of I and any pair of morphisms f, g : x→ y
there is an object z and a morphism α : z → x with f◦α = g◦α : z → y.

The example we encounter most often is the category of the elements of
a partially set I with there being a morphism from x to y iff x ≤ y, and in
this case there is a unique such morphism. The extra condition that makes
it cofiltered is that for any x, y ∈ I there is z ∈ I with z ≤ x and z ≤ y.

Definition 1.6. A cofiltered projective system of sets consists of a cofiltered
category I and a covariant functor from I to the category of sets. In the case
when the cofiltered category is the category of points in a partially ordered
set I and morphism given by the ≤ relation, a cofiltered projective system
indexed by I is a set Si for each i ∈ I and for each pair i ≤ j a morphism
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Si → Sj that compose correctly, including that the map associated with
i ≤ i is the identity of Si. The system is said to be indexed by I.

.

Remark 1.7. There are analogous notions of cofiltered projective systems
of groups, abelian groups, rings, etc.

Given a cofiltered projective system of sets indexed by I,

{Si}i∈Obj(I), {fϕ : Si → Sj}i,j,ϕ∈HomI(i,j),

we form the limit
limISi.

It consists of the subspace of the product
∏
i∈I Si consisting of elements

{si}i∈I with the property that fϕ(si) = sj for every i, j and every ϕ ∈
HomI(i, j).

In the case when the Si are topological spaces the product
∏
i∈I Si is

given the product topology of the topologies on each Si. This means that a
system of sub-basic open sets of the product is all sets of the form π−1i (Uαi)
as i ranges over the objects of I and Uαi ranges over the open subsets of Si
with πi being the projection of the product onto its the ith-factor. Thus, the
basic open sets are finite intersections of these sets, and the general open
set is an arbitrary union of the basic open sets. In the case that all the Si
are Hausdorff spaces, the conditions {ϕi,j(si) = sj}i,j,Hom(Si,Sj) defining the
limit inside the product are closed conditions, meaning that the limit is a
closed subspace of the product.

1.5 Profinite Spaces

Definition 1.8. A profinite space. is a cofiltered limit of finite sets. It is
implicitly given topology induced from the product topology of the discrete
topologies on the factors.

Theorem 1.9. A space is homeomorphic to a profinite set if and only if is
a totally disconnected, compact Hausdorff space.

Proof. Let P =
∏
i∈I Si be an arbitrary product of finite sets indexed by a

set I. Since the finite sets with the discrete topology are compact Hausdorff
spaces, the product is also a compact Hausdorff space by Tychonov’s the-
orem (see below). Since the projections πi : P → Si are continuous we see
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that π−1i (si) is an open and closed subspace of P . By definition these are a
sub-basis for the product topology. It follows that P is totally disconnected.

Now let I be a cofiltered small category and let {Si, fi,j,ϕ} be a cofil-
tered system of finite sets indexed by I. Then limI{Si} ⊂

∏
i∈I Si, being a

subspace of a totally disconnected subspace, is totally disconnected. Since
the limit is a closed subspace of the product, which is compact, the limit is
compact.

Conversely, suppose that X is a totally disconnected compact Hausdorf
space. Consider the set P of partitions p of X into finitely many disjoint,
non-empty, closed and open subsets p = {U1

∐
. . .

∐
Uk(p)}. Let Xp be the

quotient space of X under the equivalence relation that x ∼p y iff x and y lie
in the same open and closed subset Ui in this decomposiion. Let πp : X → Xp

is the quotient map. The set of such partitions forms a partially ordered set
by setting p′ ≤ p if each of the open and closed subsets of p′ is contained
in one of the open and closed subsets of p. This makes P a cofiltered set
because given p1 and p2 we can form the non-empty intersections of all
partition members of p1 with all partition members of p2 to construct a
partition less than each of them.

There is a natural continuous map X →
∏
p∈P Xp given by the product

of the maps πp. Since X is totally disconnected, given a pair of distinct
points x, y of X there are disjoint open and closed subsets each containing
one of the points. Thus, for each pair x 6= y of points of X, there is a
partition p with πp(x) 6= πp(y). Hence, the map X →

∏
p∈P Xp is injective.

The maps πp are compatible with the inclusion maps between partitions.
Thus, image of the map is contained in limPXp. This defines a continuous
one-to-one map from X → limPXp. We claim that the map is onto. Suppose
that {Ui(p)}p∈P is a compatible system, meaning that Ui(p) is one of the
elements of the partition p and if p′ ≤ p then Uip′ ⊂ Uip . Since X is
compact and the Ui(p) are closed in X, they are compact. We must show
that ∩p∈PUi(p) is non-empty. But each finite intersection Ui(p1) ∩ · · · ∩Ui(pk)
is non-empty since there is p ≤ p1, . . . , pk and for any such p we have ∅ 6=
Ui(p) ⊂ ∩kj=1Ui(pj). Thus, we have a cofiltered system of non-empty compact
subsets under inclusion. The limit of such a system of compact sets is non-
empty (and compact). Any point of X in this limit maps to the point given
by the {Ui(p) in limPXp and hence the image of the map is exactly limPXp.

This proves that the map X →
∏
P Xp is a continuous bijectiom X →

limPXp. Since both spaces are compact Hausdorff spaces, this map is a
homeomorphism.
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2 Filters and Ultrafilters

2.1 Basic Definitions and Results

Definition 2.1. Let X be a set. A filter on X is a subset F of the power
set, 2X , with the following properties:

• If subsets A and B of X are contained in F then so is A∩B, and more
generally finite intersections of elements of F are elements of F .

• If A ∈ F and A ⊂ B, then B ∈ F .

• ∅ 6∈ F and X ∈ F .

A collection of subsets {Ai} of X satisfies finite intersection property
if every finite intersection of the Ai is non-empty. Thus, the subsets of
X belonging to a filter satisfy the finite intersection property. The second
condition in the definition is called the superset property. The subsets of X
belonging to F are called the elements of F . Filters are partially ordered
under inclusion F ′ ≤ F iff every element of F ′ is also an element of F . An
ultrafilter is a filter that is maximal with respect to this order, i.e., not less
than any other filter.

Remark 2.2. What I call a filter is sometimes called a proper filter meaning
that the empty set is not an element of the filter.

Claim 2.3. Let X be a set and let {Ai}i∈I be a family of subsets of X
satisfying the finite intersection property. Let F be the set of all subsets of
X that contain at least one finite intersection of the Ai. Then F is a filter.

Proof. Since the Ai has the finite intersection property, F does not have
the empty set as an element. It obviously satisfies the superset property.
Suppose V1 and V2 are elements of F . Say Ai1 ∩ · · ·Air ⊂ V1 and Air+1 ∩
· · · ∩ Air+s ⊂ V2. Then ∩r+sj=1Aij ⊂ V1 ∩ V2. Applying a direct induction we
see that F satisfies the finite intersection property.

Definition 2.4. A principal ultrafilter for X is one for which there is a point
x ∈ X such that the elements of the ultrafilter are all A ⊂ X with x ∈ A. It
is the principal ultrafilter generated by x. Associating to x ∈ X the principal
ultrafilter it defines an injection from X to the set of ultrafilters on X. It is
easy to see that a principal ultrafilter is in fact maximal in the partial order
so that the notation is consistent: A principal ultrafilter is an ultrafilter.
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2.2 Ultrafilters

A standard application of Zorn’s lemma shows:

Theorem 2.5. Every filter is a subfilter of an ultrafilter. In particular, any
collection of subsets of X that satisfies the finite intersection property are
all elements of some ultrafilter.

Proof. Given a totally ordered increasing family {Fα}α∈A of filters, the
union F = ∪α∈AFα is easily seen to be a filter that is an upper bound
for all the Fα. Thus, by Zorn’s lemma there is a maximal filter, and in
fact any given filter is a subfilter of an ultrafilter. The second part of the
theorem follows immediately from this and Claim 2.3.

Lemma 2.6. A filter F on X is an ultrafilter if and only if for every A ⊂ X
exactly one of A and its complement X \A is an element of F .

Proof. Fix an ultrafilter F . Let us first show

Claim 2.7. For A ⊂ X if A ∈ F and A = A1 ∪ · · · ∪ Ak, then at least one
of Ai is an element of F . If the Ai are disjoint then exactly one of then is
an element of F .

Proof. First we consider the case when k = 2. Suppose that A1, A2 6∈ F .
Then define M = {U ∈ 2X | A1 ∪ U ∈ F}. Since A1 6∈ F , it follows that
M has the finite intersection property. Obviously, since F has the superset
property, so does M. It follows that M is a filter. Clearly, since F has
the superset property, F ≤ M. But A2 ∈ M and is not in F . This
contradicts the maximality of F . Hence one of A1 and A2 is an element
of F . The general case of the first statement then follows immediately by
induction. The second follows from the first since no pair of disjoint sets are
simultaneously elements of an ultrafilter.

Returning to the proof of lemma, we suppose A ∈ 2X . Since X ∈ F ,
applying the claim immediately above, we see that exactly one of A and
A = X \A is an element of F .

Conversely, if F is a filter with the property that for every A ∈ 2X either
A or A is an element of F then F is maximal. For adding any other set not
already in F to it would give a set of subsets of X containing both a set and
its complement. Such a subset of 2X cannot be contained in a filter.

Maybe the best way to think about an ultrafilter F is as a measure on
the subsets of X that assigns only values 1 and 0. It takes value 1 on those
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sets that are elements of F and zero on those that are not. It is a finitely
additive measure.

2.3 Pushforwards of Ultrafilters and Limits of Ultrafilters

Lemma 2.8. Let f : X → Y be a set function and let F be an ultrafilter
on X. We define the pushforward f∗(F) to be the collection of subsets U
of Y with the property that f−1(U) is an element of F . Then f∗(F) is an
ultrafilter.

Proof. The finite additivity and superset property are clear for f∗F . It is
also clear that for each U ∈ 2Y either U or Y \ U is contained in f∗F , but
not both. Since Y ∈ f∗(F), it follows that ∅ 6∈ f∗(F).

Definition 2.9. Suppose that F is an ultrafilter for the set underlying a
topological space X. A point x ∈ X is said to be a limit point of F if every
open neighborhood of x is an element of F .

Proposition 2.10. Suppose that X is a space and F is an ultrafilter for the
set underlying X. If X is compact, then there is a limit point for F . If X
is Hausdorff, then there is at most one limit point for F . If X is a compact
Hausdorff space then F has exactly one limit point. Any limit point of an
ultrafilter on a topological space X is contained in the closure of any element
of the ultrafilter.

Proof. If F has no limit point, then for every x ∈ X there is an open
neighborhood Ux that is not a member of F . If X is compact, then the open
covering {Ux}x∈X has a finite sub-cover, Ux1 , . . . , Uxk . Since Ux1∪· · ·∪Uxk =
X and X ∈ F , it follows from Claim 2.7 that one of the Uxi is an element of
F . This is a contradiction and shows that there is at least one limit point
for F .

If X is Hausdorff and x 6= y are limits of F , then there are disjoint
neighborhoods of x and y in F contradicting the fact that F has finite
intersection property.

Putting the two statements together, establishes the result for compact
Hausdorff spaces.

Suppose that F is an ultrafilter on X with A an element of F . If x is
not in the closure of A, then there is an open neighborhood V of x disjoint
from A. Thus, V is not an element of of F , which implies that x is not the
limit point of F .
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2.4 The Stone Topology on the Space of Ultrafilters

Definition 2.11. Let X be a set and let U(X) be the set of ultrafilters on
X. For any subset A ⊂ X we define UA ⊂ U(X) to be the set of ultrafilters
having A as an element.

Lemma 2.12. With notation as above

1. U∅ = ∅.

2. UX = U(X).

3. UA1 ∩ · · · ∩ UAk
= UA1∩···∩Ak

.

4. UA1 ∪ · · · ∪ UAk
= UA1∪···∪Ak

..

5. Using overline to denote complement, we have UA = UA.

Proof. Items 1 and 2 are immediate. For the third, UA1 ∩ UA2 consists of
all ultrafilters that have both A1 and A2 as elements. If A1 ∩ A2 = ∅, then
UA1∩UA2 = ∅. Otherwise, using Claim 2.7 we see that A1∩A2 is an element
of any F ∈ UA1 ∩ UA2 , and hence UA1 ∩ UA2 ⊂ UA1 ∩ UA2 . The opposite
inclusion is clear from the superset property of ultrafilters. Induction allows
us to pass from the case k = 2 for this statement to the case of general finite
k. The proof of Item 4 is analogous. The last item is clear since A

∐
A = X

every ultrafilter on X either has A or A as an element but not both.

Definition 2.13. We define a topology on U(X), the Stone Topology, by
defining the sub-basic open sets to be indexed by subsets of X. The sub-
basic open set associated to A ⊂ X, denoted UA is the set of all ultrafilters
on X that have A as an element. Then the basic open sets are subsets of
ultrafilters than have as elements all members of a given finite family subsets
of X. We define βX to be the set U(X) with the Stone Topology.

It follows immediately from Proposition 2.12 that the collection of sub-
sets {UA}A⊂X of U(X) are closed under finite intersections. Since they are
defined to be a sub-basis for the Stone Topology, they are in fact a basis. A
subset of βX is open if and only if it is a union of sets of the form UA for
A ⊂ X.

Corollary 2.14. The basic open sets of βX are also closed. Also, βX is
Hausdorff. Thus, βX is completely disconnected.
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Proof. By Property 5 in Proposition 2.12 the basic open sets of βX are also
closed. If F and G are distinct ultrafilters, then there is a subset A ⊂ X
that is contained in F but not in G. Hence, F ∈ UA and G ∈ UA. This
proves that βX is Hausdorff. It follows from Theorem 1.4 that βX is totally
disconnected.

Definition 2.15. Given a set X, for x ∈ X we set u(x) ∈ βX equal to the
principal ultrafilter generated by x. Recall that its elements are the subsets
of X that contain x. This defines a function u : X → βX.

Theorem 2.16. Let X be a set. Then the space of ultrafilters on X, βX,
is a compact, totally disconnected Hausdorff space and u : X → βX is a
continuous one-to-one map from X with the discrete topology to βX. Its
image u(X) is dense in βX and the subspace topology on u(X) is the discrete
topology so that u is a homeomorphism onto its image.

Proof. From the definition of u : X → βX, it is clear that u is one-to-one.
It is continuous since X is given the discrete topology. The open subset
U{x} contains the principal ultrafilter generated by x but no other principal
ultrafilter. Thus, u : X → u(X) is a homeomorphism. Since every basic set
UA contains u(a) for every a ∈ A, the image u(X) meets every open set and
hence u(X) is dense in βX.

To see that βX is compact we must show that any open covering {Ui}i∈I
with index set I has a finite sub-covering. Since each open set is a union
of basic sets, we can arrange (possibly by changing the index set I) that
for each of the open sets {Ui}i∈I are of the form Ui = U(Ai) for a subset
Ai ∈ X.

We assume that this cover has no finite sub-cover. This means that for
every finite subset F ⊂ I

V (F ) = ∩i∈FUi = ∩i∈FU(Ai) 6= ∅.

By the same reasoning, as F ranges over the finite subsets of I, we obtain a
collection of closed (and open) subsets V (F ) of U(X) with the finite inter-
section property. Thus, applying Proposition 2.12 gives us that for any finite
subset F of I, setting AF = ∩i∈FAi, the {AF }{F} is a collection of sets in
X with the finite intersection property. By Claim 2.3 this collection defines
a filter on X consisting of all subsets of X that contain one of the finite
intersections of the AF . This filter is contained in an ultrafilter u0, which
then also has as elements all the subsets Ai of X. Hence, for each i ∈ I,
since Ai is an element of u0 we have u0 6∈ Ui = U(Ai). Thus, u0 6∈ ∪i∈IUi.
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This contradicts the fact that the {Ui}i∈I are a covering of U(X), proving
that the assumption that there is no finite sub-cover of the original cover is
false and establishing the compactness of βX.

Corollary 2.17. For any set X, the space βX is profinite.

Proof. This is immediate from Theorems 2.16 and 1.9.

2.5 Extending maps of X to a compact set to all of βX

Theorem 2.18. Let X be a set with the discrete topology and i : X → βX
as above. Then if Y is a compact Hausdorff space and f : X → Y is a set
function (which is a continuous map with the given topologies) then there is
exactly one continuous map ϕ : βX → Y satisfying ϕ ◦ i = f .

Proof. Since i(X) is dense in βX there is at most one continuous extension
of f to all of βX. The definition of ϕ is more or less obvious: for each
ullrafilter F on X the push forward f∗(F) is an ultrafilter on Y . Siince Y
is compact Hausdorff, f∗(F) has a unique limit point. We define the image
under ϕ of the point F ∈ βX to be the limit of f∗(F). It is clear that if the
principal ulterfilter generated by x ∈ X, then f∗(F) is principal ultrafilter
on Y generated by f(x). Of course the limit of this ultrafilter is f(x). This
shows that ϕ ◦ i = f .

It remains only to show that ϕ is continuous. Let ϕ(F) = y ∈ Y . Let
V ⊂ Y be an open neighborhood of y. To show the continuity of ϕ, we
construct a basic open set of βX, UA for an appropriate A ⊂ X containing
F and whose image under ϕ is contained in V . Since Y is compact Hausdorff,
the frontier of V , which is defined as the closure of V minus V , is a compact
set disjoint from y. Thus, there is an open subset W of Y containing the
frontier of V but disjoint from an open neighborhood V ′ ⊂ V of y. The
closure of V ′ is contained in V . Let A = f−1(V ′). Clearly, F ∈ UA. The
open set UA is as required as is shown by the next claim.

Claim 2.19. ϕ(UA) ⊂ V .

Proof. Let G ∈ UA, meaning that G is an ultrafilter having A as an element.
Since A is an element of G, the set f−1(f(A)) contains A and is also an ele-
ment of G. Thus, f(A) is an element of f∗(G) and hence by Proposition 2.10,
the limit of f∗(G) is contained in the closure of f(A). Since f(A) ⊂ V ′, the
closure of f(A) is contained in the closure of V ′ which is contained in V .
This shows that ϕ(G), which is the limit of f∗(G), is contained in V

This completes the proof of the continuity of ϕ.
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Remark 2.20. A very similar argument shows that a function f : Y → Z
between compact Hausdorff spaces is continuous if and only if it preserves
limits of ultrafilters. That is to say f∗(lim(F)) = lim(f∗(F)) for every
ultrafilter in Y .

Corollary 2.21. Every compact Hausdorff space is the quotient of a totally
disconnected space.

Proof. Let C be a compact Hausdorff space and C ′ the same set with the
discrete topology. Then the map C ′ → C given by the identity map is
continuous and extends to a continuous map βC” → C which obviously is
surjective. Since βC ′ and C are compact Hausdorff spaces this map is a
quotient map.

2.6 Tychonov’s Theorem

An application of the theory of ultrafilters is Tychonov’s Theorem.

Theorem 2.22. (Tychonov’s Theorem) Let {Xi}i∈I be a family of compact
spaces indexed by a set I. Then

∏
i∈I Xi with the product topology is compact.

Remark 2.23. For a product of two compact spaces (or indeed any finite
collection of compact spaces) one can give a direct argument. The proof in
the case of infinite products in more indirect.

Proof. Let P =
∏
i∈I Xi. Fix an open covering {Uj}j∈J . We must show

that this covering has a finite sub-covering. Suppose that there is no finite
subcovering. Then the complementary closed sets Fj = P \Uj have the finite
intersection property. By Claim 2.3 there is an ultrafilter F containing all
finite intersections of the Fj . For each i ∈ I let πi : P → Xi be the projection
and let (πi)∗(F) be the pushforwrad ultrafilter. Since Xi is compact, this
ultrafilter has a limit xi.

We claim p = {xi}i∈I ∈ P is not in ∪j∈JUj , which is a contradiction since
by assumption these open sets cover P . If the point p were in this union, then
there would be a basic open set of P containing p and contained in one of
the Ui. Any basic open set containing p is of the form

∏r
k=1Wik ×

∏
i∈I′ Xi,

where Wik ⊂ Xik is an open subset containing xik and I ′ = I \ {i1, . . . , ik}.
But for each 1 ≤ n ≤ r, the set Win is an open neighborhood of xin which
is a limit point of (πin)∗(F). It follows that

Zin = π−1in (Win) = Win ×
∏

i∈I\{in}

Xi
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is an element of F . By the finite intersection property,

r∏
k=1

Wik ×
∏
i∈I′

Xi = ∩1≤n≤kZin

is also an element of F . Thus, it meets every element of F , and in particular,
it meets each Fi. Thus, this open subset is not contained in any of the Ui.

2.7 The Stone-Cech Compactification of a Space.

For any topological space X the Stone-Cech compactification is defined to
be a compact space βX together with a continuous map i : X → βX that
satisfies this universal mapping property. That is to say given any compact
space Y and a continuous map f : X → Y there is a unique (continous)
map ϕf : βX → Y with ϕf ◦ i = f . Since it satisfies the universal mapping
problem, if βX exists then it is unique up to unique homeomorphism.

One constructs it rather tautologically. Consider all maps fY : X → Y
from X to a compact space Y and form the map X →

∏
fY
Y given by

the product of the fY . Of course, it is not piossible to do this since we are
dealing with classes rather than sets of spaces and maps. But, it suffices to
consider only maps X → Y with dense image. Then any compact space Y
that contains a continuous dense image of X is up to homeomorphism given
by a topology on some subset of the power set of the power set of X, and
the space given by topologies on subsets of this fixed set for a set. Using
all such compact Y and maps fY : X → Y with dense image gives us a set
of possibilites and with these restrictions we form

∏
fY
fY : X →

∏
fY
Y .

By Tychonov’s theorem the range is compact and hence the closure of the
image of X under this map is a compact subset βX equipped with a map
X → βX. For any compact set Z and a map with dense image f : X → Z,
we find fY in our collection such that up to a homeomorphism h : Z → Y ,
f = h−1 ◦ fY . Thus, the projection onto this factor restricts to βX to give
an extension of f : X → Y , which followed by h−1 is the required extension
of f : X → Z to a map on βX → Z. In case f : X → Z does not have dense
image one replaces Z by the compact subspace Z0 ⊂ Z that is the closure
of the image f(X) and argues as before.

In case of a regular Hausdorff space X, one in which a closed set and a
disjoint point can be separated by a continuous function to the unit interval
I one can use the product over all continuous functions X → I of I and
make the same type of argument.

For discrete X we can do much better.
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Theorem 2.24. For a discrete space X the inclusion map u : X → βX is
the Stone-Cech compactification.

Proof. We have seen that for any compact space Y any map f : X → Y (au-
tomatically continuous since X has the discrete topology) there is a unique
continuous extension of f over βX. This is the defining property of the
Stone-Cech compactification.

3 Extremally Disconnected Spaces

Definition 3.1. A space X is extremely disconnected if it is a compact
Hausdorff space and if every surjection C → X from a compact Hausdorff
space C splits, i.e., has a section.

Lemma 3.2. Let X be an extremally disconnected Hausdorff space, then X
is totally disconnected.

Proof. Let x 6= y be two points of X. Since X is Hausdorff there are
disjoint open sets U, V with x ∈ U and y ∈ V . Let A = X \ V and
B = X \U . These are compact subsets that cover X. Since X is extremely
disconnected, there is a continuous section s : X → A

∐
B for the natural

projection A
∐
B → X. The image of x lies in A and the image of y lies in

B, so that s−1(A) is an open and closed subset of X containing x but not
y.

Corollary 3.3. Suppose that f : Y → Z is a surjection between compact
Hausdorff spaces and let X be an extremely disconnected space. Then any
continuous α : X → Z lifts to Y ; i.e., there is a continuous map β : X → Y
with α = f ◦ β.

Proof. We form the fibered product X ×Z Y . Since Y → Z is surjective,
the projection X ×Z Y → X is also surjective. Since X is extremely dis-
connected, there is a section X → X ×Z Y . The composition of this section
followed by the projection to Y is the required lift.

Proposition 3.4. For any discrete set X the Stone-Cech compactification
βX of X is extremally disconnected.

Proof. Let A be a compact Hausdorff space and ρ : A → βX a continuous
surjection. Since subspace X ⊂ βX is discrete, there is a a section i : X → A
for ρ over X. By the universal property of βX the map i : X → A extends
to a continuous map î : βX → A. The composition ρ ◦ î : βX → βX is the
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identity on X and since X is dense in βX, it follows that î : βX → C is a
section.

Corollary 3.5. Every compact Hausdorff space is the quotient of an ex-
tremely disconnected space. If the set underlying the compact space has
cardinality less than κ then one can choose the extremely disconnected set
to have cardianlity less than κ.

Proof. Let C be a compact Hausdorff space of cardinality less than κ. Let C ′

be C with the discrete topology. Then βC ′ has cardinality at most 22
card(C)

.
Since κ is a limit cardinal, this cardinality is also less than κ. Then the
identity map C ′ → C is continuous and extends to a map βC ′ → C that is
surjective.

Remark 3.6. Every extremally disconnected space is a retract of the Stone-
Cech compactification of some discrete set.
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