Problems about CW complexes

September 6, 2023

In what follows X is a CW complex and $X^{(k)}$ denotes its k-skeleton.

1). Suppose trhat $A \subset X$ is a set that meets the interior of each cell of X in a finite set. Show that A is a closed subset of X and that the topology on X induces the discrete topology on A.

2). Show that any compact subset of X is contained in a finite union of open cells, and indeed in a finite sub-complex of X.

3). Show that the topology of X is the weak topology induced from the finite sub-complexes of X. That is to say $A \subset X$ is closed if and only if its intersection with each finite sub-complex of X is a closed subset of X. Show that X has the compactly generated topology.

4). Let $B = A \cup D^n$ the result of attaching an *n*-cell to *A*. Show that $\pi_i(B, A) = 0$ for i < n. [Hint: Use either simplicial approximation or Sard's theorem.] Fix $k \ge 1$. Suppose that *X* is a sub-complex of another CW complex *Y* where *Y* is obtained from *X* by attaching cells of dimension $\ge k + 2$. Show that $\pi_i(Y) = \pi_i(X)$ for every $i \le k$.

5).(Baby form of obsruction theory) Let Y be a path connected topological space with $\pi_i(Y) = 0$ for all $i \ge k$ and suppose given $f: X^{(k)} \to Y$. Show that there is an extension of f to $\hat{f}: X \to Y$ and that any two such are homotopic relative to $X^{(k)}$.

6) Show that any map between CW complexes $f: X \to Y$ is homotopic to one that sends the k-skeleton of X to the k-skeleton of Y for every $k \ge 0$.

7). The inclusion $A \subset X$ of a subspace is said to be *cofibration* if it satisfies the *homotopy extension property*. That is to say, if for any space Z given a map $f: X \to Z$ and a homotopy $H: A \times \to Z$ with $H|_{A \times \{0\}} = f$ then there is a homotopy $F: X \times I \to Z$ with $F|_{X \times \{0\}} = f$ and $F|_{A \times I} = H$. It is equivalent to say that $A \times I \cup X \times \{0\} \subset X \times I$ is a retract. Show that $S^{n-1} \subset D^n$ is a cofibration, as is $\coprod_{\alpha \in A} S^{n-1}_{\alpha} \subset \coprod_{\alpha \in A} D^n_{\alpha}$. Let X be a CW complex. Show that for any $k \geq 0$, the inclusion $X^{(k)} \subset X^{(k+1)}$ is a cofibration. Show $X^{(k)} \subset X^{(\ell)}$ is a cofibration for any $k < \ell$. Show that $X^{(k)} \subset X$ is a cofibration. Show that for any subcomplex $X' \subset X$, the inclusion is a cofibration.

8). Show that given any map $f: A \to B$ there is a space B', an inclusion $A \subset B'$ that is a cofibration, and a homotopy equivalence $F: B' \to B$ such that $F|_A = f$. (Hint: Use the mapping cylinder of f.)