
Condensed Abelian Groups

September 26, 2023

The easiest way to see all the structure of condensed abelian groups, it
is best to use a different model for condensed sets and groups. The other
model is built using the category of extremely disconnected sets, so we begin
of study of condensed abelian groups by introducing the alternate category
and establishing its equivalence with the category of condensed sets (and
groups).

1 Equivalent categories to condensed sets

1.1 Compact Hausdorff Spaces and Profκ

Theorem 1.1. Fix κ a strong limit cardinal and consider the following two
categories of sheaves:

• Sheaves on the Grothendieck site on the category of compact Hausdorff
spaces whose underlying sets have cardinality less than κ and whose
coverings are finite disjoint unions of maps {Ci → C}i with a common
co-domain whose images cover the common co-domain.

• Sheaves on the Grothendieck site induced on subcategory Profκ.

The restriction map from the first category to the second is an equivalence
of categories.

Proof. This follows easily from the fact that ever compact Hausdorff space
cardinality less than κ is the quotient of a profinite set of cardinality less
than κ. For example, let F be a sheaf on compact Hausdorff spaces, X
be a compact Hausdorff space, and let S be a profinite set mapping onto
X. Then then F(X) is the equalizer of the two maps F(S)→ F(S ×X S),
showing that F(X) is determined by sheaves on profinite sets and morphisms
between them.
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1.2 Sheaves on Profκ and the category of Functors preserv-
ing (co)-products on the category of κ-Extremely Dis-
connected sets

Definition 1.2. A condensed set X is a projective if for any surjective map
of condensed sets Y → X there is a section.

Lemma 1.3. X is projective if and only if for every surjective map A→ B
of condensed sets Hom(X,A)→ Hom(X,B) is a surjective map of sets.

Proof. Given any morphsim X → A, the projection of the fibered product
X ×B A→ X is a surjection and hence has a section σ. The composition of
σ followed by the projection of the fibered product to A gives the required
morphism X → A.

Lemma 1.4. The qc projective elements of the category of κ-condensed sets
are the κ-extrremely disconnected sets.

Proof. Being qc X is a quotient of a representable condensed set S → X.
Being projective, X has a section back to S. Thus, X is a retract of S.
According to the lemma last time about qc sub-objects of a condensed set,
this means that X is representable by a closed subset of S′ ⊂ S. But being
projective means that for any disconnected set T of cardinality less than κ
with a surjective map to S, there is a section S”→ T . That is to say S′ is
an extremely disconnected set.

1.3 The Equivalence of Categories

We now study the category of contravariant functors F from the category
of extremely disconnected sets of cardinality less than κ to the category of
sets, with the property that it sends finite co-products to finite products.

F(
∐
i

Ei) =
∏
i

F(Ei).

We denote this category by EDPκ

Theorem 1.5. The restriction map Sh(Profκ)→ EDPκ is an equivalence
of categories.

The proof of this result takes up the rest of this subsection.
Certainly the restriction map from sheaves on Propκ to contravariant

functions from the category of extremely disconnected spaces of cardinality
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less than κ to sets gives a functor that sends finite co-products to finite
products. In what follows extremely disconnected sets are denoted E with
subscripts and superscripts and general profinite sets are denoted S. All
such sets are implicitly required to have cardinality less than κ. We fix F an
object of EDPκ, i.e., a contravariant function from extremely disconnected
sets to sets sending finite co-products to finite products. Our goal is to
extend (up to isomorphism) F to a functor on Profκ and show that the
extension is a sheaf.

Claim 1.6. Let E and E′ be extremely disconnected sets and π : E′ → E a
surjection. Then π∗ : F(E)→ F(E′) is an injection.

Proof. There is a section τ : E → E′, meaning that π ◦ τ = IdE . Thus,
τ∗π∗ : F(E)→ F(E) is the identity and hence π∗ is injective.

Claim 1.7. Let E and E′ be extremely disconnected sets and π : E′ → E a
surjection. Let E′′ be an extremely disconnected set and let f : E′′ → E′×EE′
be a surjection. Then the diagram

F(E) F(E′) F(E′′)π∗
(p1◦f)∗

(p2◦f)∗

expresses F(E) as the equalizer of (p1 ◦ f)∗ and (p2 ◦ f)∗.

Proof. (of claim) Since E is extremely disconnected there is a map τ : E →
E′ with π ◦ τ = IdE . Certainly, any element in the image of π∗ is contained
in the equalizer of (p1 ◦ f)∗ amd (p2 ◦ f)∗. Define σ : E′ → E′ ×E E′ by
σ(x) = (x, τ(π(x))). According to Corollary 3.3 of the lecture notes on the
first lecture, there is a lift σ̂ : E′ → E′′ of σ. Then (p1 ◦ f) ◦ σ̂ = IdE′ and
(p2 ◦ f) ◦ σ̂ = τ ◦ π. For x ∈ F(E′) if (p1 ◦ f)∗(x) = (p2 ◦ f)∗(x), then
x = π∗τ∗(x) and hence x ∈ Im(π∗). Since we have already established that
π∗ is an injection, this completes the proof that π∗ is an injection with image
the equalizer of the two given maps.

Since extremely disconnected sets do not have a fiber product there
is no Grothendieck site on this category analogous to the site on Prof .
Nevertheless, the objects in EDPκ do satisfy a version of the sheaf condition
as the following corollary points out.

Corollary 1.8. Suppose we have a covering {Ei → E}i (in Profκ) with E
and the Ei extremely disconnected and suppose that f : E′ →

∐
i,i′ Ei×E Ei′
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with E′ extremely disconnected and f a surjection. Then the diagram

F(E)
∏
iF(Ei) F(E′′)π∗

(p1◦f)∗

(p2◦f)∗

expresses F(E) as the equalizer of (p1 ◦ f)∗ and (p2 ◦ f)∗ in
∏
iF(Ei).

Proof. By the defining axiom F(
∐
iEI) =

∏
iF(Ei) and similarly for

F((
∐
i

Ei)×E (
∐
i′

Ei′)).

From this the corollary follows immediately from the previous claim applied
to the surjectiom

∐
iEi → E.

Now we begin the definition of the extension of F (up to isomorphism) to
a sheaf on the Grothendieck cite Profκ. For any profinite set S of cardinality
less than κ we construct a diagram

S E E ×S E E′π p1

p2

f

where E and E′ are extremely disconnected sets of cardinality less than
κ, π : E → S and f : E′ → E ×S E are both surjective. We then define
G(E,E′,π,f)(S) to be the equalizer of (p1 ◦ f)∗ and (p2 ◦ f)∗ in F(E)

.

Claim 1.9. G(E,E′,π,f)(S) ⊂ F(E) is independent of the choice of E′ and
the surjection f : E′ → E ×S E.

.

Proof. Given two diagrams as above for S with extremely disconnected sets
(E,E′) and (E,E′1) there is a diagram for S with sets (E,E′2) where E′2
surjects onto E′1 ×E E′2. It follows easily from the injectivity of F(E′1) →
F(E′2) and of F(E′)→ F(E′2) that the two equalizers agree.

Given this, we simplify the notation and denote G(E,π)(S) ⊂ F(E) the
equalizer for any surjection f : E′ → E ×S E.

Claim 1.10. Suppose that we have a diagram E1
ρ−→ E

π−→ S where both
maps are surjections. Denote by π1 : E1 → S the composition π ◦ ρ. Then
the injection ρ∗ : F(E)→ F(E1) identifies G(E,π) with G(E1,π1)(S).
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Proof. We have a commutative diagram

S E1 E1 ×S E1 E′1

S E E ×S E E′,

=

π

ρ

p1

p2

ρρ×ρ
f1

π1 p1

p2

f

with all the vertical arrows being surjections. Using the lifting property for
E′1, we extend the commutative diagram by adding a map ρ1 : E′1 → E′.
Using the fibered product constuction and using the fact that ρ × ρ is a
surjection, we can assume wlog that ρ1 is surjective. This produces the
following commutative diagram:

G(E,π)(S) F(E) F(E′)

G(E1,π1)(S) F(E1) F(E′1),

π∗
(p1◦f)∗

(p2◦f)∗
ρ∗ ρ∗1

(π1)∗
(p1◦f1)∗

(p2◦f)∗

where the vertical arrows are injections. Since the diagram commutes, it
follows that there is an induced injective map

α : G(E,π)(S)→ G(E′1,π1)(S).

It remains to show that α is onto. Let h : E2 → E1 ×E E1 be a surjec-
tive map from an extremely disconnected set, and denote by q1 and q2 the
projections of E1 ×E E1 → E1. We must show that any element in F(E1)
that is in the equalizer of (p1 ◦ f1)∗ and (p2 ◦ f1)∗ is also in the equalizer of
(q1 ◦h)∗ and (q2 ◦h)∗. If this is true then it comes from an element of F(E)
and by the injectivity of ρ∗1 this element is in the equalizer of (p1 ◦ f)∗ and
(p2 ◦ f)∗ meaning that it is an element of G(E,π)(S).

But the natural map µ : E1 ×E E1 ⊂ E1 ×S E1 satisfies pi ◦ µ = qi for
i = 1, 2. Using the lifting property we can define a map ĥ : E2 → E′1 making
the following diagram commute:

E1

E1 ×E E1 E1 ×S E1

E2 E′1.

µ

q1

q2 p1

p2

h

ĥ

f1
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The result follows immediately.

Next we surjections π : E → S and π1 : E1 → S where neither dominates
the other. In this case choose a surjection E2 → E ×S E1. Let π2 : E2 → S
be ther resulting map. This allows us to construct an isomorphism G(E,π)(S)
and G(E1,π1)(S) by showing that each is identified with G(E2,π2)(S), and hence
they are identified with each other.

A similar argument with fibered products shows that this identification
is independent of the choice of E2 and dominant map E2 → E ×S E1.

Corollary 1.11. For surjections π : E → S and π1 : E1 → S the resulting
sets G(E,π)(S) and G(E1,π1) are canonically identified.

We call the result G(S).
Notice that G extends F in the sense that for every extremely discon-

nected set E we have G(E) = F(E). [To see that take the resolution E 7→ E.]
Because of this we rename this function now calling it F(S) for every profi-
nite set S. It remains to prove two things: (i) F is a functor on Profκ and
(ii) it satisfies the two sheaf axioms.

Our next task is to show that F is a functor. This follows easily from an
argument completely analogous to the one given in the proof of Claim 1.10.
That is to say: given a map ϕ : S → S′ we construct the diagram (though the
vertical maps are not necessarily surjective in this case). Applying F yields
a commutaive diagram (though the downward arrows are not necessarily
injections):

F(S) F(E) F(E′)

F(S′) F(E1) F(E′1)

π∗
(f◦p1)∗

(f◦p∗2
ρ∗ ρ∗1

π∗1
p∗1

p∗2

It follows immediately that there is an induced map ϕ∗ : F(S) → F(S′).
Analogous to the arguments above one shows that using different diagrams of
extremely discontinuous sets leads to the ‘same’ function between these sets.
This establishes that we have a functor on the category Profκ extending
the given functor on extremely discontinuous sets.

Lastly, we must show that F is a sheaf. The first axiom says that S′ → S
is a surjection, then F(S) ⊂ F(S′) and is the equalizer of p∗1 and p∗2 mapping
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F(S′)→ F(S′ ×S S′). We have a commutative diagram:

S S′ S′ ×S S′

E E

E ×S E E ×S′ E,

π p1

p2

π◦ρ

=

ρ

r1 r2

inc

q1 q2

where the pi, qi, ri are induced by the projection of the fibered product onto
its ith-factor. Notice that inc∗ri = qi for i = i, 2. Also, the map pi ◦ (ρ ×
ρ) : E ×S E → S is ρ ◦ ri. Thus, if a ∈ F(S′) is in the equalizer of p∗1 and
p∗2, then ρ∗a is in the equalizer of r∗1 and r∗2. Hence ρ∗a = (π ◦ ρ)∗(b) for
some b ∈ F(S). The fact that (π ◦ ρ)∗b = ρ∗a means that π∗b = a. This
completes the proof that F(S) is the equalizer of p∗1 and p∗2.

The second sheaf axiom says that F(
∐
i Si) =

∏
iF(Si). For each Si we

choose a diagram

Si Ei Ei ×Si Ei E′iπi pi,1

pi,2

fi

computing F(Si) as the equalizer of (pi,1 ◦ fi)∗ and (pi,2 ◦ fi)∗. A diagram
computing F(S) can then be taken to be the disjoint union of the diagrams
for the Si,. Since F(

∐
iEi) =

∏
iF(Ei) it follows easily that F(S) is identi-

fied with
∏
iF(Si). This completes the proof that up to isomorphism every

F ∈ EDPκ extends to a κ-condensed set and only one up to isomorphism.
We turn now to the morphism sets. Suppose that we have a natural

transformation F : F → G of elements of EDPκ and extensions of F and G,
denoted F̂ and Ĝ, to κ-condernsed abelian groups. We show that F : F → G
in EDPκ extends uniquely to a κ-condensed set morphism F̂ : F̂ → Ĝ.

Given F : F → G in EDPκ and given a κ-condensed set S choose a
diagram

S E E ×S E E′π p1

p2

f

where E and E′ are κ-extremely disconnected sets and π and f are surjective.
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Then we have a commutative diagram: .

F̂(S) F(E) F(E′)

Ĝ(S) G(E) F(E′),

π∗
(p1◦f)∗

(p2◦f)∗

(π)∗ (p1◦f)∗

(p2◦f)∗

It follows that there is a unique F̂ (S) : F̂(S)→ Ĝ(S) making the diagram
commute. Arguments analogous to those given in the construction of F̂
show that this map is independent of the choice of diagram above S. It
now follows easily that the restriction on morphism sets from the category
of κ-condensed sets to the category EDPκ is a bijection.

This completes the proof of the proposition.

Corollary 1.12. There is an analogous equivalence of categories between
of contravariant functions on EDPκ ti the category of abelian groups that
sends finite corpoducts to direct sum (=direct product) and the category of
κ=condensed abelian groups.

Proof. The proof goes over sets to abelian groups mutatis mutandis.

2 Categorical Properties

2.1 Exactness and Grothendieck Axioms

The equivalence of the categories Sh(Profκ) and EDPκ extends immedi-
ately to an equivalence of condensed abelian groups of cardinality less than
κ, denoted Abκ and contravariant functors from the category of extremely
disconnected sets of cardinality less than κ to abelian groups sending finite
co-products to finite products, denoted EDAbκ. This latter description
allows us to establish the following result.

Theorem 2.1. EDAbκ is an abelian category and satisfies Grothendieck’s
Axioms AB3, AB4, AB5, ABG, and AB3∗.

Proof. For objects F and G of EDAbκ, the set Hom(F ,G) is a system of
homomorphisms F(E)→ G(E) compatible with pullbacks as E ranges over
extremely disconnected sets of cardinality lessd than κ. These systems are
clearly closed under addition of homomorphisms and replacing each homo-
morphism by its negative. Hence they from an abelian group. Composition
is obviously a bilinear map. This shows that EDAbκ is an additive category.
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Every F : F → G has a kernel whose value on E is Ker(F (E)) : F(E)→
G(E)). Since by naturality, any map F : F(

∐
iEi) → G(

∐
iEi) is of the

form
∏
i Fi, it follows in this case that Ker(F ) =

∏
i Ker(Fi). This implies

that Ker(F ) is an element of EDAbκ. A similar argument works for Im(F )
and for the identification of co-domain of F with the image of F , as well as
the identification of Im(F ) with the kernel of the map from the co-domain
of F to its cokernel. If the kernel of F is non-trivial then the inclusion of
the kernel of F into its domain shows that F is not a monomorphism. A
similar argument works to show and epimorphism has trivial cokernel. This
establishes that EDAbκ is an abelian category. One consequence of all this
is worth pointing out:

Proposition 2.2. For any κ-extremely disconnected set E, the map M →
M(E) is an exact functor from Abκ to the category of abelian groups. Fur-
thermore this functor commutes with all limits and colimits.

The Grothendieck axioms AB3, AB4, AB5 say that for every indexed
family co-products exist in the category, the co-product of a family of
monomorphisms is a monomorphism, and that arbitrary filtered colimits
preserve exact sequences. Since all these hold for the category of abelian
groups and preserve finite co-products (= finite products) and filtered col-
imits commute with of finite products, it is clear that these conditions hold
for EDAbκ. Since products commute with finite products, Axiom AB3∗

(the existence of products) also holds

3 Compact Projective Generators for ABκ

Definition 3.1. Let T be a condensed set. The presheaf Z[T ]pre associates
to a profinite set S the free abelian group generated by T (S). The sheafifi-
cation of this functor of this functor to an element of Sh(Profκ) is denoted
Z[T ]..

Lemma 3.2. T 7→ Z[T ] is a left adjoint to the forgetful function from
ABκ → Profκ. In particular for any condensed abelian group M we have
Hom(Z[T ],M) = Hom(T,M).

Proof. Given a morphism of condensed sets T → M , for each profinite set
S of cardinality less than κ, we have a set function T (S) → M(S). By
additivity this gives a map Z[T (S)] → M(S). These determine an induced
map of presheaves of abelian groups Z[T ]pre →M . By the universal property
of the sheafification map this is equivalent to a morphism Z[T ]→M in the
category ABκ.
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The reverse identification comes by pulling back a map Z[T ] → M via
the natural map of presheaves T → Z[T ]pre → Z[T ] to a morphism T →M .
It is clear that these are inverse bijections.

When T = S, a representable condensed set, we replace S in the notation
for a free condensed abelian group and call the free group simpl Z[S].

Corollary 3.3. For any κ-condensed set S, we have Hom(Z[S],M) is nat-
urally isomoprhic to M(S) = Hom(S,M). That is to say, Z[S] is the free
κ-condensed abelian group generated by S.

From now on E is always an extremely disconnected space of cardinality
less than κ.

Proposition 3.4. Let E be fixed. Then Z[E] is a projective element in
ABκ.

Proof. Let F : A → B be a surjective morphism in ABκ. A morphism
ϕ : Z[E] → B is identified with an element of B(E). The map A → B is
surjective and evaluating at E is an exact functor, thus F (E) : A(E)→ B(E)
is also surjective., By the adjoint property we see that ϕ lifts to a morphism
Z[E]→ A.

Corollary 3.5. The collection Z[E] as E ranges over the extremely dis-
connected sets of cardinality less than κ is a set of projective generators for
ABκ. Furthermore, for each E the functor M → Hom(Z[E],M) commutes
with all kernels and colimits. (The latter is the categorical definition of
compactness.)

Proof. We have just seen that the Z[E] are projective. We must show that
given any M ∈ ABκ there is a co-product of the Z[Ei] mapping onto M .
By a simple application of Zorn’s lemma, there is a maximal sub-condensed
group M ′ ⊂ M which is the image of such a co-product. If M ′ 6= M then
the quotient M/M ′ 6= 0 and hence there is an E such that (M/M ′)(E) 6= 0.
[IProof: f M is an object of ABκ and if for every κ-extremely disconnected
set of cardinality less than κ, M(E) = 0, then M = 0. The reason is that
by Theorem 1.5 M is determined by its values on extremely disconnected
sets of cardinality less than κ.]

Thus, there is a non-trivial map E →M/M ′. By the projectivity of Z[E]
this map lifts to a map E →M since E is extremely disconnected. Adding
this to the already existing map from a co-product onto M ′ ⊂ M gives us
a coproduct with an image larger than M ′, contracting the maximality of
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M ′. Hence M ′ = M . This proves that every element in ABκ is the image
of a co-product of Z[Ei] which is a projective element.

For each E, the fact that the functor M 7→ Hom(Z[E],M) commutes
with colimits and kernels follows immediately from the fact that Z[E] is
projective and that the functor M 7→ M(E) commutes with colimits and
kernels.

3.1 Three functorial properties of ABκ

Symmetric Monodial structure. Given M,N objects of ABκ, the func-
tor S 7→M(S)⊗N(S) sheafifies to give a κ-condensed abelian group M⊗N
representing all bilinear morphisms from M ×N → ·. This is a symmetric
monoidal structure on ABκ. Furthermore, the functor T → Z[T ] from κ-
condensed sets to κ-condensed abelian groups Z[T1 × T2] ∼= Z[T1]⊗ Z[T2] is
symmetric monoidal.

Internal Hom. For κ-condensed abelian groupsM,N the group Hom(M,N)
has a natural enrichment to a κ-condensed abelian group, denoted Hom(M,N).
There is the usual adjunction

Hom(M,Hom(N,P )) = Hom(M ⊗N,P ).

Derived Tensor Product. Since ABκ has enough projectives so does the
derived category. This allows us to form the derived tendor product ⊗L.

4 Description of Z[S]

Fix S ∈ Profκ. We shall give a description of Z[S].

Definition 4.1. Write S as a limit of finite sets, S = limi Si. Let Z[Si]≤n
be subset of elements of norm at most n in the natural `1 norm on this free
abelian group with basis Z[Si]. Explicitly, for

∑
j nisj . with the ni ∈ Z

and the sj distinct elements of Si the norm is
∑

i |ni|. Given a set function

ψ : Sj → Si between finite sets, the induced homomorphism ψ̃ : Z[Sj ] →
Z[Si] between abelian groups preserves these `1-norms. So for each n ≥ 0
there is an induced map ψ̃n : Z[Sj ]≤n → Z[Si]≤n. The profinite sets Z[Si]≤n
represent κ-condensed sets that we denote Z[Si]≤n.

Theorem 4.2. For any S = limi Si, with the Si being finite sets, there is a
functorial isomorphism of κ-condensed abelian groups

Z[S]
∼=−→ ∪n

(
lim
i
Z[Si]≤n

)
⊂ lim

i
Z[Si].
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In particular, Z[S] is a countable union of profinite sets.

Before beginning the proof of the theorem, let us make a coule of pre-
liminary remarks. Implicit in the statement of the theorem is that the
right-hand side of the isomorphism is a κ-condensed abelian group not just
a κ-condensed set. This group structure is given as follows: The addition in
limi Z[Si] gives a map of κ-collapsed condensed sets

lim
i
Z[Si]≤n× lim

i
Z[Si[si]≤m → lim

i
Z[Si]≤n+m.

inducing an abelian group structure on the colimit of κ-profinite sets ∪nlimi Z[Si]≤n.
This yields a κ-condensed group

∪nlim
i
Z[Si]≤n

that is the countable union of representable κ-condensed sets.
Now we turn to the proof of the theorem.

Proof. Consider the map of abelian groups Z[S] → limi Z[Si]. It is an
injection of groups. The reason is that given a non-zero finite sum α =∑

j nj [sj ] ∈ Z[S] with the sj disticnt elements of S, there is an Si in which
the images of the sj are distinct, so that under the projection of the sj
are disticnt. Hence, under the projection Z[S] → Z[Si] the element α goes
non-trivially.

Claim 4.3. The map Z[S]→ limi Z[Si] is an injection.

Proof. To prove this it suffices to prove that for each profinite set T and
element α ∈ Z[S(T )] that maps to zero in limi Z[Si](T ), there is a covering
{Tj → T}j such that the restriction α|Tj = 0 ∈ Z[S(Tj)]]. We shall prove
this by induction on the number of terms in the expression α =

∑
i nifi,

where ni ∈ Z and fi : T → S.
If there is only one term, i.e., if α = nf , then it is clear that if the image

of α in any Z[Si(T )] is zero if and only if n = 0.
Suppose for some k ≥ 2, for all expressions α =

∑r
i=1 nifi for r < k,

elements that map to zero in limi Z[Si](T ) there is a covering {Tj → T}j
such that α|Tj = 0 for all j. Let α =

∑k
i=1 nifi map to zero in limi Z[Si].

For each 1 ≤ j < j′ ≤ n, let Tjj′ be the set of t ∈ T where fj(t) = fj′(t).
Clearly the restriction of α to any Tjj′ can be written as an expression with
at most k − 1 terms. Thus, by the inductive hypothesis, for each Tjj′ there
is a covering {Trjj′ → Tjj′}r with α|Trjj′ = 0 for all rjj′. It remains only to
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prove that {Tjj′ → T}1≤j<j′≤k → T is a covering. Since the Tjj′ are closed
subsets of T , we need only show ∪jj′Tjj′ = T . But if there is t ∈ T not
it ∪jj′Tjj′ , then the functions sj = fj(t) are distinct. There is a projection
S → Si such that the sj are all distinct, and hence the image of α in Z[Si[T ]]
is non-trivial since its value at t ∈ T is a non-trivial element of Z[Si]. This
completes the inductive proof.

Since element of Z[S(T )] can be written as
∑

i nifi for some ni ∈ Z and
fi ∈ S(T ). Such an expression maps to an element of Z[S(T )]≤N where
N =

∑
i |ni|. Hence, the image of Z[S]pre under the map to limi Z[Si] is

contained in
∪n lim

i
Z[Si]≤n.

It follows by the universal property of sheafification that the map Z[S] →
limi Z[Si] factors through a map

Z[S]→ ∪n lim
i
Z[Si]≤n ⊂ lim

i
Z[Si],

with the first map being an injection.
We need to show that the inclusion

Z[S]→ ∪n lim
i
Z[Si]≤n

is onto.
Let (S × {−1, 0, 1})n denote the product of n-copies of S × {−1, 0, 1}.

Clearly this is limi ((Si × {−1, 0, 1})n). For each i, the map (Si×{−1, 0, 1})n →
Z[Si]≤n that sends the element {s1, . . . , sn, a1, . . . , an}, where the sj ∈ Si and
aj ∈ {−1, 0, 1}, to

∑n
j=1 aj [sj ] is a surjection. Hence,

lim
i

((Si × {−1, 0, 1})n)→ lim
i

(Si)≤n

is surjective.
We have a commutative diagram of sheaves:

(S × {−1, 0, 1})n −−−−→ limi (Si × {−1, 0, 1})ny y
Z[S] −−−−→ ∪n

(
limi Z[Si]≤n

)
.

The vertical morphism on the right maps to limi Z[Si]≤n and is induced by
a surjection of profinite sets. Hence, it is a surjective morphism of sheaves
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onto limi Z[Si]≤n. It follows that the image of the bottom map of sheaves
contains limi Z[Si]≤n. Since this is true for all n, the bottom map of sheaves
is onto.

This completes the proof of the theorem.

Let’s analyze this a little more closely, considering Z[∗]. The presheaf as-
sociates to S ∈ Profκ the group Z and to a function S → S′ the identity ho-
momorphism. There is a map of this presheaf to the sheaf S 7→ Cont(S,Z),
which is a condensed abelian group. The map sends Z = Z[∗](S) isomor-
phically onto to the constant functions on S. Since this is an embedding, it
follows that the sheaf Z[∗] is a subsheaf of S 7→ Cont(S,Z). On the other
hand, given a continuous function f : S → Z it has only finitely many im-
ages, so that we have a finite decomposition S =

∐
n Sn where Sn is the

pre-image of n and n ranges over the finite set in the image of the map.
This gives us a covering {Sn → S}n and f pulls back to a function constant
on each Sn, meaning that it is an element in

∏
n Z[∗](Sn) whose image in

Cont(S,Z) is f . This proves that the sheaf Z[∗] is the sheaf of continuous
functions Cont(S,Z). The same type of argument shows that if Si is a finite
set then Z[Si] is the sheaf that assigns to the profinite set S the group of
continuous functions from S to Z[Si]. The condensed set represented by the
finite subset Z[Si]≤n assigns to a profinite set S the continuous functions
S → Z[Si]≤n. This is a subsheaf of Z[Si].
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