MORE ON SOLID ANALYTIC RINGS: DISCRETE HUBER PAIRS

1. Quasi-coherent sheaves on \mathbb{P}^{1}

We continue with further examples of solid rings that appear in algebraic and rigid geometry. To motivate their definition we will use the geometry of the projective space \mathbb{P}^{1}.
1.1. Algebraic interpretation of ∞. Classically, \mathbb{P}^{1} can be constructed from two copies of the affine line \mathbb{A}^{1}, namely Spec $\mathbb{Z}[T]$ and Spec $\mathbb{Z}\left[T^{-1}\right]$, glued along \mathbb{G}_{m}, namely Spec $\mathbb{Z}\left[T^{ \pm 1}\right]$. Quasi-coherent sheaves on \mathbb{P}^{1} are obtained by descent from quasi-coherent sheaves on Spec $\mathbb{Z}[T]$ and Spec $\mathbb{Z}\left[T^{-1}\right]$ that agree on \mathbb{G}_{m}. On the other hand, a quasi-coherent sheaf \mathscr{F} on \mathbb{P}^{1} has an excision sequence

$$
\begin{equation*}
\left.0 \rightarrow \mathscr{F}\left[T^{-1}\right] \rightarrow \mathscr{F} \rightarrow \mathscr{F}\right|_{\text {Spec } \mathbb{Z}[T]} \rightarrow H_{\infty}^{1} \mathscr{F} \rightarrow 0 \tag{1.1}
\end{equation*}
$$

where $\mathscr{F}\left[T^{-1}\right]$ is the T^{-1}-torsion of \mathscr{F}, and $H_{\infty}^{1} \mathscr{F}$ is a higher cohomology group of sections of \mathscr{F} supported at ∞. Geometrically, the sequence above arises from writing

$$
\left|\mathbb{P}^{1}\right|=|\operatorname{Spec} \mathbb{Z}[T]| \bigsqcup\left|\operatorname{Spf} \mathbb{Z}\left[\left[T^{-1}\right]\right]\right|=\left|\mathbb{A}^{1}\right| \bigsqcup|\infty|,
$$

where we understand the formal spectrum $\operatorname{Spf} \mathbb{Z}\left[\left[T^{-1}\right]\right]$ as the ind-scheme ${\underset{\longrightarrow}{\lim }}_{n} \operatorname{Spec} \mathbb{Z}\left[T^{-1}\right] /\left(T^{-n}\right)$. The (derived) categories of modules on $\operatorname{Spf} \mathbb{Z}\left[\left[T^{-1}\right]\right]$ can be then realised as both the category of (derived) T^{-1}-adically complete modules or the category of T^{-1}-torsion modules on $\left.\mathbb{P}^{1}\right]^{1}$

Thus, the sequence $(\sqrt{1.1})$ is a consequence of the following localization sequence of ∞-derived categories

$$
\mathscr{D}\left(\operatorname{Spf} \mathbb{Z}\left[\left[T^{-1}\right]\right]\right) \cong \mathscr{D}\left(\mathbb{P}^{1}\right)^{T^{-1}} \text { - torsion } \subset \mathscr{D}\left(\mathbb{P}^{1}\right) \xrightarrow{\otimes_{\mathbb{Z}}^{L}[T]} \mathscr{D}(\operatorname{Spec} \mathbb{Z}[T])
$$

Geometrically, the previous sequence describes a quasi-coherent sheaf on \mathbb{P}^{1} as an extension of a sheaf on the affine space $\operatorname{Spec} \mathbb{Z}[T]$, and a sheaf supported at (the formal completion of) $\infty \in \mathbb{P}^{1}$.
1.2. Solid interpretation of ∞. Let us now consider the previous objects living in condensed mathematics. Let $\mathscr{D}(\mathbb{Z} \mathbf{\square})$ be the derived category of solid abelian groups. For any discrete ring A we can consider the induced analytic ring

$$
(A, \mathbb{Z}) \llbracket:=\left(A, \operatorname{Mod}_{A}(\mathscr{D}(\mathbb{Z} \mathbf{\square}))\right),
$$

and write $\mathscr{D}((A, \mathbb{Z}) \mathbf{\square})$ for its derived category of complete modules. By definition, a condensed A-module is in $\mathscr{D}((A, \mathbb{Z}) \llbracket)$ if and only if its underlying condensed \mathbb{Z}-module structure is solid.

We can formally construct the category $\mathscr{D}\left(\mathbb{P}^{1}, \mathbb{Z} \mathbf{\square}\right)$ of solid quasi-coherent sheaves of \mathbb{P}^{1} by gluing the categories of modules $\mathscr{D}((\mathbb{Z}[T], \mathbb{Z}) \mathbf{\square})$ and $\mathscr{D}\left(\left(\mathbb{Z}\left[T^{-1}\right], \mathbb{Z}\right) \mathbf{\square}\right)$ along $\mathscr{D}\left(\left(\mathbb{Z}\left[T^{ \pm 1}\right], \mathbb{Z}\right) \mathbf{\square}\right)$.

Then, $\mathbb{Z}\left[\left[T^{-1}\right]\right]$ is now promoted from a discrete ring with some completeness property to a ring with an honest topology/condensed ring structure. Therefore, instead of taking T^{-1}-complete solid modules of \mathbb{P}^{1} (i.e. the formal scheme $\operatorname{Spf} \mathbb{Z}\left[\left[T^{-1}\right]\right]$), we can consider the induced analytic ring

$$
\mathbb{Z}\left[\left[T^{-1}\right]\right] \mathbf{\square}=\left(\mathbb{Z}\left[\left[T^{-1}\right]\right], \operatorname{Mod}_{\mathbb{Z}\left[\left[T^{-1}\right]\right]}(\mathscr{D}(\mathbb{Z} \mathbf{\square}))\right)
$$

and write $\mathscr{D}\left(\mathbb{Z}\left[\left[T^{-1}\right]\right] \llbracket\right)$ for its category of derived complete modules. In a previous lecture we saw that the free solid $\mathbb{Z}\left[\left[T^{-1}\right]\right]$-module generated by a profinite set $S=\lim _{\varlimsup_{i}} S_{i}$ was given by

$$
\mathbb{Z}\left[\left[T^{-1}\right]\right] \llbracket[S]={\underset{\succcurlyeq}{i}}_{\lim _{i}}^{\mathbb{Z}}\left[\left[T^{-1}\right]\right]\left[S_{i}\right],
$$

which in turn is isomorphic to $\prod_{I} \mathbb{Z}\left[\left[T^{-1}\right]\right]$ for some index set I; these are compact projective generators of $\mathscr{D}\left(\mathbb{Z}\left[\left[T^{-1}\right]\right]\right.$ ■ .

By definition, $\mathbb{Z}\left[\left[T^{-1}\right]\right]$ ■ has the induced analytic structure from $\mathbb{Z} \llbracket$, namely, a condensed $\mathbb{Z}\left[\left[T^{-1}\right]\right] \llbracket^{-}$ module is complete if and only if its underlying condensed abelian group is \mathbb{Z}-complete. Then, any solid

[^0]T^{-1}-complete module over $\mathbb{Z}\left[T^{-1}\right]$ is a module over $\mathbb{Z}\left[\left[T^{-1}\right]\right]$: this follows from stability under limits of complete modules on analytic rings. However, the category $\mathscr{D}\left(\mathbb{Z}\left[\left[T^{-1}\right]\right] \llbracket\right)$ is larger! For instance, the algebra $\mathbb{Z}\left(\left(T^{-1}\right)\right)=\mathbb{Z}\left[\left[T^{-1}\right]\right][T]$ is a solid $\mathbb{Z}\left[\left[T^{-1}\right]\right]$-module which is not T^{-1}-adically complete.

We could then declare $\mathscr{D}\left(\mathbb{Z}\left[\left[T^{-1}\right]\right]\right.$) to be the category of sheaves of \mathbb{P}^{1} supported at ∞, and take $\mathbb{A}^{1}=\mathbb{P}^{1} \backslash\{\infty\}$ to be its complement. Concretely, we ask ourselves whether we have a localization sequence of categories

$$
\begin{equation*}
\mathscr{D}\left(\mathbb{Z}\left[\left[T^{-1}\right]\right] \mathbf{\square}\right) \rightarrow \mathscr{D}\left(\mathbb{P}^{1}\right) \rightarrow \mathscr{D}\left(\mathbb{A}_{\square}^{1}\right) \tag{1.2}
\end{equation*}
$$

so that $\mathbb{Z}[T]:=\left(\mathbb{Z}[T], \mathscr{D}\left(\mathbb{A}_{\mathbf{1}}^{1}\right)\right)$ defines a new analytic ring structure on the polynomial algebra $\mathbb{Z}[T]$. Furthermore, since $\mathscr{D}\left(\mathbb{P}^{1}\right)^{T^{-1}-\wedge} \subset \mathscr{D}\left(\mathbb{Z}\left[\left[T^{-1}\right]\right] \square\right)$, the fiber sequences 1.1) and 1.2 would imply that

$$
\mathscr{D}(\mathbb{Z}[T] \mathbf{\square}):=\mathscr{D}\left(\mathbb{A}_{\mathbf{@}}^{1}\right) \subset \mathscr{D}((\mathbb{Z}[T], \mathbb{Z}) \mathbf{\square}) .
$$

Therefore, by localizing (1.2) to $\mathbb{A}^{1}=\operatorname{Spec} \mathbb{Z}[T]$ we should have a fiber sequence as follows:

$$
\mathscr{D}\left(\left(\mathbb{Z}\left(\left(T^{-1}\right)\right), \mathbb{Z}\right) \mathbf{\square}\right) \rightarrow \mathscr{D}((\mathbb{Z}[T], \mathbb{Z}) \mathbf{\square}) \rightarrow \mathscr{D}(\mathbb{Z}[T] \mathbf{\square}) .
$$

The realization of this idea lies in the following theorem:
Theorem 1.1 (Sch19, Theorem 8.1]). Consider the functor on condensed $\mathbb{Z}[T]$-modules mapping a profinite set $S=\lim _{\varliminf_{i}} S_{i}$ to

$$
\mathbb{Z}[T] \llbracket[S]=\underset{i}{\lim _{i}} \mathbb{Z}[T]\left[S_{i}\right] .
$$

Then $\mathbb{Z}[T]$ is an analytic ring over \mathbb{Z} with underlying ring $\mathbb{Z}[T]$. Moreover, we have a localization sequence

$$
\mathscr{D}\left(\left(\mathbb{Z}\left(\left(T^{-1}\right)\right), \mathbb{Z}\right) \mathbf{\square}\right) \rightarrow \mathscr{D}((\mathbb{Z}[T], \mathbb{Z}) \mathbf{\square}) \rightarrow \mathscr{D}(\mathbb{Z}[T] \mathbf{\square})
$$

More precisely, let $\iota:(\mathbb{Z}[T], \mathbb{Z}) \llbracket\left(\mathbb{Z}\left(\left(T^{-1}\right)\right), \mathbb{Z}\right) \llbracket$ and $j:(\mathbb{Z}[T], \mathbb{Z}) \square \mathbb{Z}[T]$ be the natural morphisms of analytic rings. The following holds:
(1) The $(\mathbb{Z}[T], \mathbb{Z})$-algebra $\mathbb{Z}\left(\left(T^{-1}\right)\right)$ is compact and idempotent. We let $\iota_{*}: \mathscr{D}\left(\left(\mathbb{Z}\left(\left(T^{-1}\right)\right), \mathbb{Z}\right) \mathbf{\square}\right) \rightarrow$ $\mathscr{D}((\mathbb{Z}[T], \mathbb{Z}) \llbracket)$ denote the forgetful functor, and let ι^{*} and $\iota^{!}$be its left and right adjoint respectively, namely

$$
i^{*} M=\mathbb{Z}\left(\left(T^{-1}\right)\right) \otimes_{\mathbb{Z}[T], \mathbb{Z})}^{L} \mathbf{a}^{M}
$$

and

$$
\iota^{!} M=R \underline{\operatorname{Hom}}_{\mathbb{Z}[T]}\left(\mathbb{Z}\left(\left(T^{-1}\right)\right), M\right) .
$$

(2) The base change functor $j^{*}: \mathbb{Z}[T] \llbracket \otimes_{\mathbb{Z}[T], \mathbb{Z})}^{L}-: \mathscr{D}((\mathbb{Z}[T], \mathbb{Z}) \mathbf{\square}) \rightarrow \mathscr{D}(\mathbb{Z}[T] \llbracket)$ has a fully faithful right adjoint j_{*} (the forgetful functor) such that

$$
j_{*} j^{*} M=R \underline{\operatorname{Hom}}_{\mathbb{Z}[T]}\left(\operatorname{fib}\left[\mathbb{Z}[T] \rightarrow \mathbb{Z}\left(\left(T^{-1}\right)\right)\right], M\right)
$$

In particular, we have a natural equivalence of categories

$$
\mathscr{D}(\mathbb{Z}[T] \mathbf{\square})=\mathscr{D}((\mathbb{Z}[T], \mathbb{Z}) \mathbf{\square}) / \mathscr{D}\left(\left(\left(\mathbb{Z}\left(\left(T^{-1}\right)\right), \mathbb{Z}\right) \mathbf{\square}\right)\right)
$$

(3) The base change functor j^{*} has a fully faithful left adjoint j! given by

$$
j!j^{*} M=\left(\operatorname{fib}\left[\mathbb{Z}[T] \rightarrow \mathbb{Z}\left(\left(T^{-1}\right)\right)\right]\right) \otimes_{(\mathbb{Z}[T], \mathbb{Z})}^{L} M
$$

Furthermore, we have excision fibrations for $M \in \mathscr{D}((\mathbb{Z}[T], \mathbb{Z})$

$$
j!j^{*} M \rightarrow M \rightarrow \iota_{*} \iota^{*} M
$$

and

$$
\iota_{*} \iota^{!} M \rightarrow M \rightarrow j_{*} j^{*} M .
$$

Proof. Most of the proposition will follow from the properties of $\mathbb{Z}\left(\left(T^{-1}\right)\right)$ (i.e. compact and idempotent) thanks to the localization sequence that one obtains at the level of categories, see [CS22, Construction 5.2]. Let us explain the main steps in the proof:

Step 1. First let us show that $\mathbb{Z}\left(\left(T^{-1}\right)\right)$ is a compact $(\mathbb{Z}[T], \mathbb{Z})$-algebra. This follows from the resolution

$$
\begin{equation*}
0 \rightarrow \mathbb{Z}[[X]] \otimes_{\mathbb{Z}} \mathbb{Z}[T] \xrightarrow{X T-1} \mathbb{Z}[[X]] \otimes_{\mathbb{Z}} \mathbb{Z}[T] \rightarrow \mathbb{Z}\left(\left(T^{-1}\right)\right) \rightarrow 0 \tag{1.3}
\end{equation*}
$$

and the fact that $\left(\prod_{I} \mathbb{Z}\right) \otimes_{\mathbb{Z}} A$ is a family of compact projective generators for $\mathscr{D}((A, \mathbb{Z}) \mathbf{\square})$ and any discrete ring A.

Step 2. The $(\mathbb{Z}[T], \mathbb{Z}) \llbracket$-algebra $\mathbb{Z}\left(\left(T^{-1}\right)\right)$ is idempotent. This follows from the exact sequence (1.3), namely, one gets that

$$
\begin{aligned}
\mathbb{Z}\left(\left(T^{-1}\right)\right) \otimes_{(\mathbb{Z}[T], \mathbb{Z})}^{L} \mathbb{Z}\left(\left(T^{-1}\right)\right) & =\operatorname{cofib}\left(\mathbb{Z}[[X]] \otimes_{\mathbb{Z}} \mathbb{Z}\left(\left(T^{-1}\right)\right) \xrightarrow{X T-1} \mathbb{Z}[[X]] \otimes_{\mathbb{Z}} \mathbb{Z}\left(\left(T^{-1}\right)\right)\right) \\
& =\operatorname{cofib}\left(\mathbb{Z}\left[\left[X, T^{-1}\right]\right][T] \xrightarrow{X-T^{-1}} \mathbb{Z}\left[\left[X, T^{-1}\right]\right][T]\right) \\
& =\mathbb{Z}\left(\left(T^{-1}\right)\right) .
\end{aligned}
$$

Formally we deduce that $\iota_{*}: \mathscr{D}\left(\left(\mathbb{Z}\left(\left(T^{-1}\right)\right), \mathbb{Z}\right) \mathbf{\square}\right) \subset \mathscr{D}((\mathbb{Z}[T], \mathbb{Z}) \mathbf{\square})$ is a full subcategory stable under limits and colimits, with inclusion having left and right adjoint

$$
\iota^{*} M=\mathbb{Z}\left(\left(T^{-1}\right)\right) \otimes_{(\mathbb{Z}[T], \mathbb{Z})}^{L} M \text { and } \iota^{!} M=R \underline{\operatorname{Hom}}_{\mathbb{Z}[T]}\left(\mathbb{Z}\left(\left(T^{-1}\right)\right), M\right)
$$

In particular, $\mathscr{D}\left(\left(\mathbb{Z}\left(\left(T^{-1}\right)\right), \mathbb{Z}\right) \mathbf{\square}\right)$ defines an analytic ring structure on $\mathbb{Z}[T]$!.
Step 3. Construction of $\mathscr{D}(\mathbb{Z}[T] \mathbf{\square})$. By step $2, \mathscr{D}\left(\left(\mathbb{Z}\left(\left(T^{-1}\right)\right), \mathbb{Z}\right) \mathbf{\square}\right)$ is a thick tensor-ideal of $\mathscr{D}((\mathbb{Z}[T], \mathbb{Z}) \mathbf{\square})$ stable under all limits and colimits. We can then define the quotient category

$$
\mathscr{C}:=\mathscr{D}((\mathbb{Z}[T], \mathbb{Z}) \mathbf{\square}) / \mathscr{D}\left(\left(\mathbb{Z}\left(\left(T^{-1}\right)\right), \mathbb{Z}\right) \mathbf{\square}\right) .
$$

We have a localization functor $j^{*}: \mathscr{D}\left((\mathbb{Z}[T], \mathbb{Z}) \llbracket \mathscr{C}\right.$, and j^{*} has fully faithful left and right adjoints satisfying

$$
j!j^{*} M=\operatorname{fib}\left(\mathbb{Z}[T] \rightarrow \mathbb{Z}\left(\left(T^{-1}\right)\right)\right) \otimes_{(\mathbb{Z}[T], \mathbb{Z})} M \text { and } j_{*} j^{*} M=R \underline{\operatorname{Hom}}_{\mathbb{Z}[T]}\left(\operatorname{fib}\left(\mathbb{Z}[T] \rightarrow \mathbb{Z}\left(\left(T^{-1}\right)\right)\right), M\right)
$$

for $M \in \mathscr{D}((\mathbb{Z}[T], \mathbb{Z}) \llbracket)$. Moreover, we have excision fiber sequences

$$
j!j^{*} M \rightarrow M \rightarrow \iota_{*} \iota^{*} M
$$

and

$$
\iota_{*} \iota^{!} M \rightarrow M \rightarrow j_{*} j^{*} M .
$$

See [CS22, Lecture V] for more details. Our next task is to show that the fully faithful functor $j_{*}: \mathscr{C} \rightarrow$ $\mathscr{D}((\mathbb{Z}[T], \mathbb{Z}) \mathbf{\square})$ defines the analytic ring $\mathbb{Z}[T]$.

Step 4. We need to prove that $j_{*} \mathscr{C} \subset \mathscr{D}((\mathbb{Z}[T], \mathbb{Z}) \llbracket)$ is stable under limits, colimits and mapping spaces from profinite sets (i.e. tensored over $\mathscr{D}(\operatorname{CondAb}))$. Stability under limits follows formally since j_{*} is a right adjoint. To see stability under colimits, note that

$$
j_{*} j^{*} M=R \underline{\operatorname{Hom}}_{\mathbb{Z}[T]}\left(\operatorname{fib}\left(\mathbb{Z}[T] \rightarrow \mathbb{Z}\left(\left(T^{-1}\right)\right)\right), M\right),
$$

and that $\operatorname{fib}\left(\mathbb{Z}[T] \rightarrow \mathbb{Z}\left(\left(T^{-1}\right)\right)\right)$ is a compact $(\mathbb{Z}[T], \mathbb{Z})$-module. This implies that j_{*} commutes with colimits as wanted. Finally, the same explicit description of $j_{*} j^{*} M$ shows that for any profinite set S we have

$$
j_{*} j^{*} R \underline{\operatorname{Hom}}_{\mathbb{Z}}(\mathbb{Z}[S], M)=R \underline{\operatorname{Hom}}_{\mathbb{Z}}\left(\mathbb{Z}[S], j_{*} j^{*} M\right) .
$$

Since $j_{*} \mathscr{C} \subset \mathscr{D}((\mathbb{Z}[T], \mathbb{Z}) \llbracket)$ is the full subcategory of objects M such that $M \rightarrow j_{*} j^{*} M$ is an equivalence, the pair $\left(\mathbb{Z}[T], j_{*} \mathscr{C}\right)$ defines an analytic ring structure on $\mathbb{Z}[T]$ by [CS20, Proposition 12.20].

Step 5. Finally, we need to compute, for S a profinite set, the compact projective generator of $j_{*} \mathscr{C}$ generated by S, namely,

$$
j_{*} j^{*}\left(\mathbb{Z} \mathbf{\square}[S] \otimes_{\mathbb{Z}} \mathbb{Z}[T]\right)
$$

We first prove the case of $S=*$, we have an excision sequence

$$
\iota_{*}!\mathbb{Z}[T] \rightarrow \mathbb{Z}[T] \rightarrow j_{*} j^{*} \mathbb{Z}[T]
$$

We need to prove that

$$
\iota_{*}{ }^{\prime}!\mathbb{Z}[T]=R \underline{\operatorname{Hom}}_{\mathbb{Z}[T]}\left(\mathbb{Z}\left(\left(T^{-1}\right)\right), \mathbb{Z}[T]\right)=0
$$

By step 1 we have that

$$
\begin{aligned}
\iota_{*}!^{!} \mathbb{Z}[T] & =\operatorname{fib}\left(R{\underline{\operatorname{Hom}_{\mathbb{Z}}[T]}}\left(\mathbb{Z}[[X]] \otimes_{\mathbb{Z}} \mathbb{Z}[T], \mathbb{Z}[T]\right) \xrightarrow{X T-1} R{\underline{\operatorname{Hom}_{\mathbb{Z}}[T]}}\left(\mathbb{Z}[[X]] \otimes_{\mathbb{Z}} \mathbb{Z}[T], \mathbb{Z}[T]\right)\right) \\
& =\operatorname{fib}\left(R{\left.\left.\left.\underline{\operatorname{Hom}_{\mathbb{Z}}}(\mathbb{Z}[[X]]), \mathbb{Z}\right) \otimes_{\mathbb{Z}} \mathbb{Z}[T] \xrightarrow{X T-1} R \underline{\operatorname{Hom}}_{\mathbb{Z}}(\mathbb{Z}[[X]]), \mathbb{Z}\right) \otimes_{\mathbb{Z}} \mathbb{Z}[T]\right)}=\mathrm{fib}\left(\mathbb{Z}\left[X^{ \pm 1}\right] / X \mathbb{Z}[X] \otimes_{\mathbb{Z}} \mathbb{Z}[T] \xrightarrow{X T-1} \mathbb{Z}\left[X^{ \pm 1}\right] / X \mathbb{Z}[X] \otimes_{\mathbb{Z}} \mathbb{Z}[T]\right)\right. \\
& =0,
\end{aligned}
$$

obtaining what we wanted.
We now prove the claim for general S. Recall that by construction, the kernel of j^{*} is precisely $\mathscr{D}\left(\left(\mathbb{Z}\left(\left(T^{-1}\right)\right), \mathbb{Z}\right) \mathbf{\square}\right)$. Then, we need to show that the quotient

$$
\begin{equation*}
Q(S):=\operatorname{cofib}\left(\mathbb{Z} \llbracket[S] \otimes_{\mathbb{Z}, \llbracket} \mathbb{Z}[T] \rightarrow \mathbb{Z}[T] \llbracket[S]\right) \tag{1.4}
\end{equation*}
$$

has a natural structure of $\mathbb{Z}\left(\left(T^{-1}\right)\right)$-module. Indeed, if this holds true, we get that

$$
j_{*} j^{*}\left(\mathbb{Z} \llbracket[S] \otimes_{\mathbb{Z}} \mathbb{Z}[T]\right)=j_{*} j^{*} \mathbb{Z}[T] \llbracket[S]
$$

but $\mathbb{Z}[T] \llbracket S]=\lim _{i} \mathbb{Z}[T]\left[S_{i}\right]$ is a limit of finite free $\mathbb{Z}[T]$-modules, so that $\left.j_{*} j^{*} \mathbb{Z}[T] \llbracket S\right]=\mathbb{Z}[T] \llbracket[S]$ since $j_{*} \mathscr{C}$ is stable under limits by step 4 .

Step 6. In this final step we show that (1.4) has a natural structure of $\mathbb{Z}\left(\left(T^{-1}\right)\right)$-module. Let us fix an isomorphism $\mathbb{Z} \llbracket[S]=\prod_{I} \mathbb{Z}$, it suffices to see that there is an equivalence of $\mathbb{Z}[T]$-modules

$$
Q(S)=Q^{\prime}(S):=\operatorname{cofib}\left(\left(\prod_{I} \mathbb{Z}\left[\left[T^{-1}\right]\right]\right)[T] \rightarrow \prod_{I} \mathbb{Z}\left(\left(T^{-1}\right)\right)\right) .
$$

Consider the following diagram with exact rows

By the snake lemma we have a long exact sequence

$$
0 \rightarrow \operatorname{ker} f \rightarrow \operatorname{ker} g \rightarrow \operatorname{ker} h \rightarrow \operatorname{coker} f \rightarrow \operatorname{coker} g \rightarrow \operatorname{coker} h \rightarrow 0 .
$$

It is clear that $\operatorname{ker} f=\operatorname{ker} g=0$, to show that h is an isomorphism we just need that coker $f \cong \operatorname{coker} g$ is an isomorphism, but both terms can be identified with $T^{-1} \prod_{I} \mathbb{Z}\left[\left[T^{-1}\right]\right]$, proving what we wanted. Equivalently, the square

is a pushout square in $\mathscr{D}\left((\mathbb{Z}[T], \mathbb{Z}) \mathbf{\square}\right.$, which directly implies that $Q(S) \cong Q^{\prime}(S)$ as $\mathbb{Z}[T]$-modules.
Remark 1.2. Note that the definition of $\mathbb{Z}[T]$ via a functor of measures is analogue to that of $\mathbb{Z} \mathbf{\square}$. In Proposition 2.1 we will construct even more examples of solid rings using this idea.

Remark 1.3. We now explain a more clear relation of the previous construction with rigid geometry. Let p be a prime number, and let $\mathbb{Z}_{p, ■}$ be the induced analytic ring structure from \mathbb{Z} to \mathbb{Z}_{p}. The compact projective generators of $\mathscr{D}\left(\mathbb{Z}_{p, \mathbf{\square}}\right)$ are the modules of the form

$$
\mathbb{Z}_{p} \otimes_{\mathbb{Z}}^{L} \prod_{I} \mathbb{Z}=\prod_{I} \mathbb{Z}_{p}
$$

We let $\mathbb{Q}_{p}, \llbracket$ also denote the induced analytic ring structure from \mathbb{Z} to \mathbb{Q}_{p}, the compact projective generators of $\mathscr{D}\left(\mathbb{Q}_{p, \mathbf{\square}}\right)$ have the form $\left(\prod_{I} \mathbb{Z}_{p}\right)\left[\frac{1}{p}\right]$.

In Theorem 1.1 we constructed an analytic ring $\mathbb{Z}[T]$ over the polynomial algebra, such that the objects $\Pi_{I} \mathbb{Z}[T]$ are compact projective generators in $\mathscr{D}(\mathbb{Z}[T] \llbracket)$. This analytic ring structure was constructed as the complement of the analytic ring $\left(\mathbb{Z}\left[\left[T^{-1}\right]\right], \mathbb{Z}\right) \llbracket$ over $\mathbb{P}_{\mathbb{Z}}^{1}$. Therefore, both $\mathbb{Z}[T]$ and $\left(\mathbb{Z}\left(\left(T^{-1}\right)\right), \mathbb{Z}\right)$ ■
define subspaces of $\mathbb{P}_{\mathbb{Z}}^{1}$ corresponding to \mathbb{A}^{1} and ∞ with respect to its Zariski spectrum. A natural question is to describe the behavior of the pullback of these subspaces to other condensed subrings, for example \mathbb{Z}_{p} or \mathbb{Q}_{p}. It turns out that these new spaces are very well explained using Huber's theory of adic spaces.

The algebra $\mathbb{Q}_{p} \otimes_{\mathbb{Z}}^{L}, \mathbb{Z}\left[\left[T^{-1}\right]\right]$ is equivalent to $\mathbb{Z}_{p}\left[\left[T^{-1}\right]\right]\left[\frac{1}{p}\right]$, which consists on the bounded functions of an open disc of radius 1 around $\infty \in \mathbb{P}_{\mathbb{Q}_{p}}^{1}$, namely, $\overline{\mathbb{D}}_{\mathbb{Q}_{p}}(\infty, 1)$. The complement of $\overline{\mathbb{D}}_{\mathbb{Q}_{p}}(\infty, 1)$ in $\mathbb{P}_{\mathbb{Q}_{p}}^{1}$ should be then the open affinoid disc of radius 1 around 0 , namely $\mathbb{D}_{\mathbb{Q}_{p}}(0,1)=\operatorname{Spa}\left(\mathbb{Q}_{p}\langle T\rangle, \mathbb{Z}_{p}\langle T\rangle\right)$. It turns out that the base change of analytic rings $\mathbb{Q}_{p} \otimes_{\mathbb{Z}}^{L} \llbracket \mathbb{Z}[T]$ is given by the Tate algebra $\mathbb{Q}_{p}\langle T\rangle$, with a family of compact projective generators

$$
\left(\prod_{I} \mathbb{Z}_{p}\langle T\rangle\right)\left[\frac{1}{p}\right] .
$$

We see then that the datum defining $\mathbb{Q}_{p}\langle T\rangle_{■}$
consists on the analytic ring $\mathbb{Q}_{p}\langle T\rangle$ (the first factor on the Huber pair defining $\left.\mathbb{D}_{\mathbb{Q}_{p}}(0,1)\right)$, and on the open bounded subring $\mathbb{Z}_{p}\langle T\rangle$ (the second factor of the Huber pair). A more explicit relation between (discrete) Huber rings and analytic rings will be discussed in $\$ 2$.

2. Discrete Huber pairs

The construction of the analytic ring $\mathbb{Z}[T]$ of Theorem 1.1 can be slightly generalized.
Proposition 2.1. Let A be an algebra of finite type over \mathbb{Z}. For a profinite set $S=\lim _{\gtrless_{i}} S_{i}$ consider

$$
A_{\square}[S]=\underset{{\underset{\gtrless}{i}}^{\lim }}{\lim _{i}} A\left[S_{i}\right] .
$$

Then A defines an analytic ring structure over A.
Proof. By an inductive argument, one can handle the case of a polynomial algebra $A=\mathbb{Z}\left[T_{1}, \ldots, T_{n}\right]$, namely, in the proof of Theorem 1.1 we just needed the Steps 1-6 to hold, and this would work over any base A_{\square} (once A_{\square} is an analytic ring). Now, let A be a quotient of $\mathbb{Z}\left[T_{1}, \ldots, T_{n}\right]$, we claim that the induced analytic ring $\left(A, \operatorname{Mod}_{A}\left(\mathscr{D}\left(\mathbb{Z}\left[T_{1}, \ldots, T_{n}\right] \mathbf{\square}\right)\right)\right.$ defines A_{\square}. It suffices to prove that

$$
\prod_{I} \mathbb{Z}\left[T_{1}, \ldots, T_{n}\right] \otimes_{\mathbb{Z}\left[T_{1}, \ldots, T_{n}\right]}^{L} A=\prod_{I} A .
$$

The ring $\mathbb{Z}\left[T_{1}, \ldots, T_{n}\right]$ is noetherian, since A is a finitely generated module we can find a resolution

$$
\cdots \rightarrow P_{2} \rightarrow P_{1} \rightarrow P_{0} \rightarrow A \rightarrow 0
$$

where each P_{i} a finite free $\mathbb{Z}\left[T_{1}, \ldots, T_{n}\right]$-module. Thus, we get that

$$
\begin{aligned}
\prod_{I} \mathbb{Z}\left[T_{1}, \ldots, T_{n}\right] \otimes_{\mathbb{Z}\left[T_{1}, \ldots, T_{n}\right]}^{L} A & =\left[\cdots \prod_{I} P_{2} \rightarrow \prod_{I} P_{1} \rightarrow \prod_{I} P_{0}\right] \\
& =\prod_{I}\left[\cdots \rightarrow P_{2} \rightarrow P_{1} \rightarrow P_{0}\right] \\
& =\prod_{I} A
\end{aligned}
$$

as wanted.
Even more generally, we can combine induced analytic ring structures together with the analytic rings of Proposition 2.1.
Definition 2.2. Let (A, S) be a pair consisting on a discrete ring A and a set of elements $S \subset A$. We define the analytic ring (A, S) by taking the underlying condensed ring A, and declaring an A-module M to be (A, S)-complete if for all $s \in S$ the restriction of M to $\mathbb{Z}[s]$-module is $\mathbb{Z}[s]$-complete as in Theorem 1.1.

Different sets $S \subset A$ provide different analytic structures on A, however, the map $(A, S) \mapsto(A, S)$ is not an injection. One could ask what is the maximal set $S^{\prime} \subset A$ containing S such that $(A, S) \mathbf{\square}=\left(A, S^{\prime}\right) \llbracket$, it turns out that this is naturally explained using Huber's theory of affinoid rings:
Proposition 2.3. Let (A, S) be as in Definition 2.2. Then there is a maximal set $S \subset S^{\prime}$ such that $(A, S) \mathbf{\square}=\left(A, S^{\prime}\right)$ घatisfying the following properties:
(1) The set S^{\prime} is the ring given by the integral closure of $\mathbb{Z}[S]$ in A.
(2) If A is of finite type over \mathbb{Z}, then we have that $(A, A) \llbracket=A_{\square}$ as in Proposition 2.1.

Proof. Part (2) follows from part (1) and Proposition 2.1 after taking a surjection from a polynomial algebra. Note also that for any $a \in A$ we have a map of analytic rings $\mathbb{Z}[a] \square A_{\square}$, namely, the product $\prod_{I} A$ is already $\mathbb{Z}[a]$-complete being a product of discrete $\mathbb{Z}[a]$-modules.

We now prove part (1). First, we describe the compact projective generators of (A, S). First, let us write $S=\bigcup_{i} S_{i}$ as an union of finite sets, then we have that

$$
(A, S) \llbracket \underset{i}{l}\left(A, S_{i}\right)
$$

(namely, $\mathscr{D}((A, S) \mathbf{\square})=\bigcap_{i} \mathscr{D}\left(\left(A, S_{i}\right) \mathbf{\square}\right)$ as full subcategories of $\left.\mathscr{D}((A, \mathbb{Z}) \mathbf{\square})\right)$. For each S_{i} let $B_{i} \subset A$ be the finitely generated subring generated by S_{i}, then the same proof of Proposition 2.1 shows that

$$
\left(A, S_{i}\right) \llbracket[K]=A \otimes_{B_{i}} B_{i, \llbracket}[K]
$$

for K a profinite set (take the polynomial algebra generated by S_{i} and the induced analytic structure on B_{i} and $\left.A\right)$. Let $B=\underset{\longrightarrow}{\lim } B_{i}$, one deduces that

$$
\left(A, S_{i}\right) \llbracket[K]=A \otimes_{B} B \square[K]
$$

with $B \llbracket[K]=\underset{\longrightarrow}{\lim _{i}} B_{i, ■}[K]$.
Let us fix an isomorphism $\mathbb{Z} \llbracket K]=\prod_{I} \mathbb{Z}$. Let A^{+}be the integral closure of B in A and let $a \in A^{+}$, then there is a polynomial $p(T)=T^{n}+b_{n-1} T^{n-1}+\cdots+b_{0}$ over some B_{i} such that $P(a)=0$. Consider the polynomial algebra $B_{i}[T]$, it suffices to show that the map $T \mapsto a$ extend to a morphism of analytic rings

$$
\left(B_{i}[T] / p(T)\right) \mathbf{\square} \rightarrow(A, S)_{\square},
$$

but $B_{i}[T] / p(T)$ is a finite free B_{i}-module, so that

$$
\prod_{I} B_{i}[T] / p(T)=\left(B_{i}[T] / p(T)\right) \otimes_{B_{i}} \prod_{I} B_{i},
$$

and $\left(B_{i}[T] / p(T)\right)$ has the induced analytic structure from $B_{i, \boldsymbol{\square}}$. This provides morphisms of analytic rings

$$
\mathbb{Z}[T] \rightarrow B_{i}[T] \rightarrow\left(B_{i}[T] / p(T)\right) \text { ■ }=\left(B[T] / p(T), B_{i}\right) \text { ■ } \rightarrow(A, S)
$$

as wanted.
Conversely, let $a \in A$ be such that the map $(\mathbb{Z}[a], \mathbb{Z})$ ■ (A, S) factors through $\mathbb{Z}[a] \square(A, S)$. For each B_{i} let $B_{i}^{\prime}=B_{i}[a]$ be the subring of A generated by B_{i} and a, and let $B^{\prime}=\underset{\longrightarrow}{\lim } B_{i}^{\prime}$. Then the assumption on a shows that for any K profinite

$$
(A, S) \llbracket[K]=A \otimes_{B}\left(\underset{i}{\left(\lim _{I}\right.} \prod_{I} B_{i}\right)=A \otimes_{B^{\prime}}\left(\underset{i}{\left(\lim _{i}\right.} \prod_{I} B_{i}^{\prime}\right) .
$$

An equivalent way to write down the previous colimits is as follows:

$$
(A, S) \llbracket[K]=\underset{\overrightarrow{M, B_{i}}}{\underset{\longrightarrow}{\mid}} \prod_{I} M
$$

where $M \subset A$ runs over all the finitely generated submodules of B_{i} in A. Taking $I=\mathbb{N}$, the sequence $\left(a, a^{2}, \ldots\right) \in \prod_{\mathbb{N}} B_{i}^{\prime} \subset \underset{\longrightarrow}{\lim _{M, B_{i}}} \prod_{\mathbb{N}} M$. Therefore, there is some j and some finitely generated B_{j}-module $M \subset A$ such that $\left(a, a^{2}, a^{3}, \ldots\right) \in \prod_{\mathbb{N}} M$. This proves that the algebra $B_{j}^{\prime}=B_{j}[a]$ is a submodule of M, and so that a is integral over B_{j}. This proves that the maximal set S^{\prime} in (1) is the integral closure of B in A, showing the proposition.

We naturally arrive to the notion of a discrete Huber pair:
Definition 2.4. A discrete Huber pair is the datum $\left(A, A^{+}\right)$of a discrete ring A and an integrally closed subring $A^{+} \subset A$. A morphism of discrete Huber pairs $\left(A, A^{+}\right) \rightarrow\left(B, B^{+}\right)$is a morphism of discrete rings $A \rightarrow B$ mapping A^{+}to B^{+}.

Corollary 2.5. There is a fully faithful embedding from the category of discrete Huber pairs into the category of analytic rings over \mathbb{Z} given by

$$
\left(A, A^{+}\right) \mapsto\left(A, A^{+}\right) ■ .
$$

Proof. By Proposition 2.3 we can recover the ring A^{+}as the set of elements $a \in A$ such that the map $(\mathbb{Z}[T], \mathbb{Z}) \rightarrow\left(A, A^{+}\right)$of analytic rings factors through $(\mathbb{Z}[T], \mathbb{Z}) \rightarrow \mathbb{Z}[T] \quad \rightarrow\left(A, A^{+}\right)$. This shows the conservativity of $\left(A, A^{+}\right) \mapsto\left(A, A^{+}\right)$. Let us now take $\left(A, A^{+}\right)$and $\left(B, B^{+}\right)$be two Huber rings, and consider a map of analytic rings $\left(A, A^{+}\right) \rightarrow\left(B, B^{+}\right)$. By definition the space Map AnRing $\left(\left(A, A^{+}\right) \mathbf{\square},\left(B, B^{+}\right) \mathbf{\square}\right)$ is the full subspace of the mapping space of condensed rings $\operatorname{Map}_{\text {CondRing }}(A, B)$ such that the restriction of $M \in \mathscr{D}\left(\left(B, B^{+}\right) \mathbf{\square}\right)$ to an A-module is $\left(A, A^{+}\right)$-complete. But Proposition 2.3 implies that for $a \in A^{+}$we have a composition of analytic rings

$$
\mathbb{Z}[a] \square\left(A, A^{+}\right) \llbracket\left(B, B^{+}\right) \llbracket,
$$

and so the image of a in B must land in B^{+}by the same proposition. This finishes the proof.
The theory of (complete) Huber pairs and adic spaces can be better explained and generalized using condensed mathematics. For a better reference towards this direction we recommend Lectures VII-X of the course in Analytic Stacks held by Clausen and Scholze: https://people.mpim-bonn.mpg.de/scholze/ AnalyticStacks.html, see also And21.

References

[And21] Grigory Andreychev. Pseudocoherent and perfect complexes and vector bundles on analytic adic spaces. https: //arxiv.org/abs/2105.12591, 2021.
[CS20] Dustin Clausen and Peter Scholze. Lectures on Analytic Geometry. https://www.math.uni-bonn.de/people/ scholze/Analytic.pdf, 2020.
[CS22] Dustin Clausen and Peter Scholze. Condensed Mathematics and Complex Geometry. https://people.mpim-bonn. mpg.de/scholze/Complex.pdf, 2022.
[Sch19] Peter Scholze. Lectures on Condensed Mathematics. https://www.math.uni-bonn.de/people/scholze/Condensed. pdf. 2019.

[^0]: ${ }^{1}$ We say that a quasi-coherent complex M in \mathbb{P}^{1} is T^{-1}-torsion if $M \otimes_{\boldsymbol{O}_{\mathbb{1}}}^{L} \mathbb{Z}[T]=0$, resp. T^{-1}-adically complete if $M=R \varliminf_{n}\left(M \otimes_{\mathcal{O}\left(\mathbb{P}^{1}\right)}^{L} \mathbb{Z}\left[T^{-1}\right] /\left(T^{-n}\right).\right)$

