MORE ON SOLID ANALYTIC RINGS: DISCRETE HUBER PAIRS

1. Quasi-coherent sheaves on \mathbb{P}^1

We continue with further examples of solid rings that appear in algebraic and rigid geometry. To motivate their definition we will use the geometry of the projective space \mathbb{P}^1 .

1.1. Algebraic interpretation of ∞ . Classically, \mathbb{P}^1 can be constructed from two copies of the affine line \mathbb{A}^1 , namely Spec $\mathbb{Z}[T]$ and Spec $\mathbb{Z}[T^{-1}]$, glued along \mathbb{G}_m , namely Spec $\mathbb{Z}[T^{\pm 1}]$. Quasi-coherent sheaves on \mathbb{P}^1 are obtained by descent from quasi-coherent sheaves on Spec $\mathbb{Z}[T]$ and Spec $\mathbb{Z}[T^{-1}]$ that agree on \mathbb{G}_m . On the other hand, a quasi-coherent sheaf \mathscr{F} on \mathbb{P}^1 has an excision sequence

$$0 \to \mathscr{F}[T^{-1}] \to \mathscr{F} \to \mathscr{F}|_{\operatorname{Spec} \mathbb{Z}[T]} \to H^1_{\infty} \mathscr{F} \to 0,$$
(1.1)

where $\mathscr{F}[T^{-1}]$ is the T^{-1} -torsion of \mathscr{F} , and $H^1_{\infty}\mathscr{F}$ is a higher cohomology group of sections of \mathscr{F} supported at ∞ . Geometrically, the sequence above arises from writing

$$|\mathbb{P}^1| = |\operatorname{Spec} \mathbb{Z}[T]| \bigsqcup |\operatorname{Spf} \mathbb{Z}[[T^{-1}]]| = |\mathbb{A}^1| \bigsqcup |\infty|,$$

where we understand the formal spectrum $\operatorname{Spf} \mathbb{Z}[[T^{-1}]]$ as the ind-scheme $\varinjlim_n \operatorname{Spec} \mathbb{Z}[T^{-1}]/(T^{-n})$. The (derived) categories of modules on $\operatorname{Spf} \mathbb{Z}[[T^{-1}]]$ can be then realised as both the category of (derived) T^{-1} -adically complete modules or the category of T^{-1} -torsion modules on $\mathbb{P}^{1,1}$.

Thus, the sequence (1.1) is a consequence of the following localization sequence of ∞ -derived categories

$$\mathscr{D}(\operatorname{Spf} \mathbb{Z}[[T^{-1}]]) \cong \mathscr{D}(\mathbb{P}^1)^{T^{-1} - \operatorname{torsion}} \subset \mathscr{D}(\mathbb{P}^1) \xrightarrow{\otimes_{\mathbb{Z}[T]}^{L}} \mathscr{D}(\operatorname{Spec} \mathbb{Z}[T]).$$

Geometrically, the previous sequence describes a quasi-coherent sheaf on \mathbb{P}^1 as an extension of a sheaf on the affine space $\operatorname{Spec} \mathbb{Z}[T]$, and a sheaf supported at (the formal completion of) $\infty \in \mathbb{P}^1$.

1.2. Solid interpretation of ∞ . Let us now consider the previous objects living in condensed mathematics. Let $\mathscr{D}(\mathbb{Z}_{\blacksquare})$ be the derived category of solid abelian groups. For any discrete ring A we can consider the induced analytic ring

$$(A,\mathbb{Z})_{\blacksquare} := (A, \operatorname{Mod}_A(\mathscr{D}(\mathbb{Z}_{\blacksquare}))),$$

and write $\mathscr{D}((A, \mathbb{Z})_{\blacksquare})$ for its derived category of complete modules. By definition, a condensed A-module is in $\mathscr{D}((A, \mathbb{Z})_{\blacksquare})$ if and only if its underlying condensed \mathbb{Z} -module structure is solid.

We can formally construct the category $\mathscr{D}(\mathbb{P}^1, \mathbb{Z}_{\blacksquare})$ of solid quasi-coherent sheaves of \mathbb{P}^1 by gluing the categories of modules $\mathscr{D}((\mathbb{Z}[T], \mathbb{Z})_{\blacksquare})$ and $\mathscr{D}((\mathbb{Z}[T^{-1}], \mathbb{Z})_{\blacksquare})$ along $\mathscr{D}((\mathbb{Z}[T^{\pm 1}], \mathbb{Z})_{\blacksquare})$.

Then, $\mathbb{Z}[[T^{-1}]]$ is now promoted from a discrete ring with some completeness property to a ring with an honest topology/condensed ring structure. Therefore, instead of taking T^{-1} -complete solid modules of \mathbb{P}^1 (i.e. the formal scheme Spf $\mathbb{Z}[[T^{-1}]]$), we can consider the induced analytic ring

$$\mathbb{Z}[[T^{-1}]]_{\blacksquare} = (\mathbb{Z}[[T^{-1}]], \operatorname{Mod}_{\mathbb{Z}[[T^{-1}]]}(\mathscr{D}(\mathbb{Z}_{\blacksquare}))),$$

and write $\mathscr{D}(\mathbb{Z}[[T^{-1}]]_{\blacksquare})$ for its category of derived complete modules. In a previous lecture we saw that the free solid $\mathbb{Z}[[T^{-1}]]$ -module generated by a profinite set $S = \varprojlim_i S_i$ was given by

$$\mathbb{Z}[[T^{-1}]]_{\blacksquare}[S] = \varprojlim_i \mathbb{Z}[[T^{-1}]][S_i],$$

which in turn is isomorphic to $\prod_{I} \mathbb{Z}[[T^{-1}]]$ for some index set I; these are compact projective generators of $\mathscr{D}(\mathbb{Z}[[T^{-1}]]_{\blacksquare})$.

By definition, $\mathbb{Z}[[T^{-1}]]_{\blacksquare}$ has the induced analytic structure from $\mathbb{Z}_{\blacksquare}$, namely, a condensed $\mathbb{Z}[[T^{-1}]]_{\blacksquare}$ -module is complete if and only if its underlying condensed abelian group is $\mathbb{Z}_{\blacksquare}$ -complete. Then, any solid

¹We say that a quasi-coherent complex M in \mathbb{P}^1 is T^{-1} -torsion if $M \otimes_{\mathscr{O}_{\mathbb{P}^1}}^L \mathbb{Z}[T] = 0$, resp. T^{-1} -adically complete if $M = R \lim_{\mathbb{P}^n} (M \otimes_{\mathscr{O}_{\mathbb{P}^1}}^L \mathbb{Z}[T^{-1}]/(T^{-n}).)$

 T^{-1} -complete module over $\mathbb{Z}[T^{-1}]$ is a module over $\mathbb{Z}[[T^{-1}]]_{\blacksquare}$: this follows from stability under limits of complete modules on analytic rings. However, the category $\mathscr{D}(\mathbb{Z}[[T^{-1}]]_{\blacksquare})$ is larger! For instance, the algebra $\mathbb{Z}((T^{-1})) = \mathbb{Z}[[T^{-1}]][T]$ is a solid $\mathbb{Z}[[T^{-1}]]$ -module which is not T^{-1} -adically complete.

We could then declare $\mathscr{D}(\mathbb{Z}[[T^{-1}]]_{\bullet})$ to be the category of sheaves of \mathbb{P}^1_{\bullet} supported at ∞ , and take $\mathbb{A}^1_{\bullet} = \mathbb{P}^1_{\bullet} \setminus \{\infty\}$ to be its complement. Concretely, we ask ourselves whether we have a localization sequence of categories

$$\mathscr{D}(\mathbb{Z}[[T^{-1}]]_{\blacksquare}) \to \mathscr{D}(\mathbb{P}^1) \to \mathscr{D}(\mathbb{A}^1_{\blacksquare})$$
(1.2)

so that $\mathbb{Z}[T]_{\blacksquare} := (\mathbb{Z}[T], \mathscr{D}(\mathbb{A}^{1}_{\blacksquare}))$ defines a new analytic ring structure on the polynomial algebra $\mathbb{Z}[T]$. Furthermore, since $\mathscr{D}(\mathbb{P}^{1})^{T^{-1}-\wedge} \subset \mathscr{D}(\mathbb{Z}[[T^{-1}]]_{\blacksquare})$, the fiber sequences (1.1) and (1.2) would imply that

$$\mathscr{D}(\mathbb{Z}[T]_{\blacksquare}) := \mathscr{D}(\mathbb{A}^1_{\blacksquare}) \subset \mathscr{D}((\mathbb{Z}[T], \mathbb{Z})_{\blacksquare}).$$

Therefore, by localizing (1.2) to $\mathbb{A}^1 = \operatorname{Spec} \mathbb{Z}[T]$ we should have a fiber sequence as follows:

$$\mathscr{D}((\mathbb{Z}((T^{-1})),\mathbb{Z}))) \to \mathscr{D}((\mathbb{Z}[T],\mathbb{Z})) \to \mathscr{D}(\mathbb{Z}[T])$$

The realization of this idea lies in the following theorem:

Theorem 1.1 ([Sch19, Theorem 8.1]). Consider the functor on condensed $\mathbb{Z}[T]$ -modules mapping a profinite set $S = \varprojlim_i S_i$ to

$$\mathbb{Z}[T]_{\blacksquare}[S] = \varprojlim_i \mathbb{Z}[T][S_i].$$

Then $\mathbb{Z}[T]$ is an analytic ring over $\mathbb{Z}_{\blacksquare}$ with underlying ring $\mathbb{Z}[T]$. Moreover, we have a localization sequence

$$\mathscr{D}((\mathbb{Z}((T^{-1})),\mathbb{Z})_{\blacksquare}) \to \mathscr{D}((\mathbb{Z}[T],\mathbb{Z})_{\blacksquare}) \to \mathscr{D}(\mathbb{Z}[T]_{\blacksquare}).$$

More precisely, let $\iota : (\mathbb{Z}[T], \mathbb{Z})_{\blacksquare} \to (\mathbb{Z}((T^{-1})), \mathbb{Z})_{\blacksquare}$ and $j : (\mathbb{Z}[T], \mathbb{Z})_{\blacksquare} \to \mathbb{Z}[T]_{\blacksquare}$ be the natural morphisms of analytic rings. The following holds:

(1) The $(\mathbb{Z}[T],\mathbb{Z})$ algebra $\mathbb{Z}((T^{-1}))$ is compact and idempotent. We let $\iota_* : \mathscr{D}((\mathbb{Z}((T^{-1})),\mathbb{Z})) \to \mathscr{D}((\mathbb{Z}[T],\mathbb{Z}))$ denote the forgetful functor, and let ι^* and $\iota^!$ be its left and right adjoint respectively, namely

$$i^*M = \mathbb{Z}((T^{-1})) \otimes^L_{(\mathbb{Z}[T],\mathbb{Z})_{\blacksquare}} M$$

and

$$\iota^! M = R\underline{\operatorname{Hom}}_{\mathbb{Z}[T]}(\mathbb{Z}((T^{-1})), M).$$

(2) The base change functor $j^* : \mathbb{Z}[T]_{\blacksquare} \otimes^{L}_{(\mathbb{Z}[T],\mathbb{Z})_{\blacksquare}} - : \mathscr{D}((\mathbb{Z}[T],\mathbb{Z})_{\blacksquare}) \to \mathscr{D}(\mathbb{Z}[T]_{\blacksquare})$ has a fully faithful right adjoint j_* (the forgetful functor) such that

$$j_*j^*M = R\underline{\operatorname{Hom}}_{\mathbb{Z}[T]}(\operatorname{fib}[\mathbb{Z}[T] \to \mathbb{Z}((T^{-1}))], M).$$

In particular, we have a natural equivalence of categories

$$\mathscr{D}(\mathbb{Z}[T]_{\blacksquare}) = \mathscr{D}((\mathbb{Z}[T], \mathbb{Z})_{\blacksquare}) / \mathscr{D}(((\mathbb{Z}((T^{-1})), \mathbb{Z})_{\blacksquare}))$$

(3) The base change functor j^* has a fully faithful left adjoint $j_!$ given by

$$j_! j^* M = (\operatorname{fib}[\mathbb{Z}[T] \to \mathbb{Z}((T^{-1}))]) \otimes_{(\mathbb{Z}[T],\mathbb{Z})_{\blacksquare}}^L M.$$

Furthermore, we have excision fibrations for $M \in \mathscr{D}((\mathbb{Z}[T],\mathbb{Z}))$

$$j_!j^*M \to M \to \iota_*\iota^*M$$

and

$$\iota_*\iota^! M \to M \to j_*j^*M.$$

Proof. Most of the proposition will follow from the properties of $\mathbb{Z}((T^{-1}))$ (i.e. compact and idempotent) thanks to the localization sequence that one obtains at the level of categories, see [CS22, Construction 5.2]. Let us explain the main steps in the proof:

Step 1. First let us show that $\mathbb{Z}((T^{-1}))$ is a compact $(\mathbb{Z}[T], \mathbb{Z})_{\blacksquare}$ -algebra. This follows from the resolution

$$0 \to \mathbb{Z}[[X]] \otimes_{\mathbb{Z}} \mathbb{Z}[T] \xrightarrow{XT-1} \mathbb{Z}[[X]] \otimes_{\mathbb{Z}} \mathbb{Z}[T] \to \mathbb{Z}((T^{-1})) \to 0$$
(1.3)

and the fact that $(\prod_I \mathbb{Z}) \otimes_{\mathbb{Z}} A$ is a family of compact projective generators for $\mathscr{D}((A, \mathbb{Z})_{\blacksquare})$ and any discrete ring A.

Step 2. The $(\mathbb{Z}[T],\mathbb{Z})_{\blacksquare}$ -algebra $\mathbb{Z}((T^{-1}))$ is idempotent. This follows from the exact sequence (1.3), namely, one gets that

$$\begin{aligned} \mathbb{Z}((T^{-1})) \otimes_{(\mathbb{Z}[T],\mathbb{Z})_{\blacksquare}}^{L} \mathbb{Z}((T^{-1})) &= \operatorname{cofib}(\mathbb{Z}[[X]] \otimes_{\mathbb{Z}_{\blacksquare}} \mathbb{Z}((T^{-1})) \xrightarrow{XT-1} \mathbb{Z}[[X]] \otimes_{\mathbb{Z}_{\blacksquare}} \mathbb{Z}((T^{-1}))) \\ &= \operatorname{cofib}(\mathbb{Z}[[X, T^{-1}]][T] \xrightarrow{X-T^{-1}} \mathbb{Z}[[X, T^{-1}]][T]) \\ &= \mathbb{Z}((T^{-1})). \end{aligned}$$

Formally we deduce that $\iota_* : \mathscr{D}((\mathbb{Z}((T^{-1})), \mathbb{Z})_{\blacksquare}) \subset \mathscr{D}((\mathbb{Z}[T], \mathbb{Z})_{\blacksquare})$ is a full subcategory stable under limits and colimits, with inclusion having left and right adjoint

$$\iota^* M = \mathbb{Z}((T^{-1})) \otimes_{(\mathbb{Z}[T],\mathbb{Z})_{\blacksquare}}^{L} M \text{ and } \iota^! M = R\underline{\operatorname{Hom}}_{\mathbb{Z}[T]}(\mathbb{Z}((T^{-1})), M).$$

In particular, $\mathscr{D}((\mathbb{Z}((T^{-1})),\mathbb{Z}))$ defines an analytic ring structure on $\mathbb{Z}[T]!$.

Step 3. Construction of $\mathscr{D}(\mathbb{Z}[T]_{\blacksquare})$. By step 2, $\mathscr{D}((\mathbb{Z}((T^{-1})),\mathbb{Z})_{\blacksquare})$ is a thick tensor-ideal of $\mathscr{D}((\mathbb{Z}[T],\mathbb{Z})_{\blacksquare})$ stable under all limits and colimits. We can then define the quotient category

$$\mathscr{C} := \mathscr{D}((\mathbb{Z}[T], \mathbb{Z})_{\blacksquare}) / \mathscr{D}((\mathbb{Z}((T^{-1})), \mathbb{Z})_{\blacksquare}).$$

We have a localization functor $j^* : \mathscr{D}((\mathbb{Z}[T],\mathbb{Z})) \to \mathscr{C}$, and j^* has fully faithful left and right adjoints satisfying

$$j_! j^* M = \operatorname{fib}(\mathbb{Z}[T] \to \mathbb{Z}((T^{-1}))) \otimes_{(\mathbb{Z}[T],\mathbb{Z})_{\blacksquare}} M \text{ and } j_* j^* M = R \operatorname{\underline{Hom}}_{\mathbb{Z}[T]}(\operatorname{fib}(\mathbb{Z}[T] \to \mathbb{Z}((T^{-1}))), M))$$

for $M \in \mathscr{D}((\mathbb{Z}[T],\mathbb{Z}))$. Moreover, we have excision fiber sequences

$$j_!j^*M \to M \to \iota_*\iota^*M$$

and

$$\iota_*\iota^! M \to M \to j_*j^*M.$$

See [CS22, Lecture V] for more details. Our next task is to show that the fully faithful functor $j_* : \mathscr{C} \to \mathscr{D}((\mathbb{Z}[T],\mathbb{Z})_{\blacksquare})$ defines the analytic ring $\mathbb{Z}[T]_{\blacksquare}$.

Step 4. We need to prove that $j_*\mathscr{C} \subset \mathscr{D}((\mathbb{Z}[T],\mathbb{Z})_{\blacksquare})$ is stable under limits, colimits and mapping spaces from profinite sets (i.e. tensored over $\mathscr{D}(\text{CondAb})$). Stability under limits follows formally since j_* is a right adjoint. To see stability under colimits, note that

$$j_*j^*M = R\underline{\operatorname{Hom}}_{\mathbb{Z}[T]}(\operatorname{fib}(\mathbb{Z}[T] \to \mathbb{Z}((T^{-1}))), M),$$

and that fib($\mathbb{Z}[T] \to \mathbb{Z}((T^{-1}))$) is a compact ($\mathbb{Z}[T], \mathbb{Z})_{\blacksquare}$ -module. This implies that j_* commutes with colimits as wanted. Finally, the same explicit description of j_*j^*M shows that for any profinite set S we have

$$j_*j^*R\underline{\operatorname{Hom}}_{\mathbb{Z}}(\mathbb{Z}[S], M) = R\underline{\operatorname{Hom}}_{\mathbb{Z}}(\mathbb{Z}[S], j_*j^*M).$$

Since $j_*\mathscr{C} \subset \mathscr{D}((\mathbb{Z}[T],\mathbb{Z})_{\blacksquare})$ is the full subcategory of objects M such that $M \to j_*j^*M$ is an equivalence, the pair $(\mathbb{Z}[T], j_*\mathscr{C})$ defines an analytic ring structure on $\mathbb{Z}[T]$ by [CS20, Proposition 12.20].

Step 5. Finally, we need to compute, for S a profinite set, the compact projective generator of $j_*\mathscr{C}$ generated by S, namely,

$$j_*j^*(\mathbb{Z}_{\blacksquare}[S] \otimes_{\mathbb{Z}} \mathbb{Z}[T]).$$

We first prove the case of S = *, we have an excision sequence

$$\iota_*\iota'\mathbb{Z}[T] \to \mathbb{Z}[T] \to j_*j^*\mathbb{Z}[T]$$

We need to prove that

$$\iota_*\iota^! \mathbb{Z}[T] = R\underline{\operatorname{Hom}}_{\mathbb{Z}[T]}(\mathbb{Z}((T^{-1})), \mathbb{Z}[T]) = 0.$$

By step 1 we have that

$$\iota_*\iota^! \mathbb{Z}[T] = \operatorname{fib}(R\underline{\operatorname{Hom}}_{\mathbb{Z}[T]}(\mathbb{Z}[[X]] \otimes_{\mathbb{Z}} \mathbb{Z}[T], \mathbb{Z}[T]) \xrightarrow{XT-1} R\underline{\operatorname{Hom}}_{\mathbb{Z}[T]}(\mathbb{Z}[[X]] \otimes_{\mathbb{Z}} \mathbb{Z}[T], \mathbb{Z}[T]))$$

$$= \operatorname{fib}(R\underline{\operatorname{Hom}}_{\mathbb{Z}}(\mathbb{Z}[[X]]), \mathbb{Z}) \otimes_{\mathbb{Z}} \mathbb{Z}[T] \xrightarrow{XT-1} R\underline{\operatorname{Hom}}_{\mathbb{Z}}(\mathbb{Z}[[X]]), \mathbb{Z}) \otimes_{\mathbb{Z}} \mathbb{Z}[T])$$

$$= \operatorname{fib}(\mathbb{Z}[X^{\pm 1}]/X\mathbb{Z}[X] \otimes_{\mathbb{Z}} \mathbb{Z}[T] \xrightarrow{XT-1} \mathbb{Z}[X^{\pm 1}]/X\mathbb{Z}[X] \otimes_{\mathbb{Z}} \mathbb{Z}[T])$$

$$= 0,$$

obtaining what we wanted.

We now prove the claim for general S. Recall that by construction, the kernel of j^* is precisely $\mathscr{D}((\mathbb{Z}((T^{-1})),\mathbb{Z}))$. Then, we need to show that the quotient

$$Q(S) := \operatorname{cofib}(\mathbb{Z}_{\blacksquare}[S] \otimes_{\mathbb{Z},\blacksquare} \mathbb{Z}[T] \to \mathbb{Z}[T]_{\blacksquare}[S])$$
(1.4)

has a natural structure of $\mathbb{Z}((T^{-1}))$ -module. Indeed, if this holds true, we get that

$$j_*j^*(\mathbb{Z}_{\blacksquare}[S] \otimes_{\mathbb{Z}} \mathbb{Z}[T]) = j_*j^*\mathbb{Z}[T]_{\blacksquare}[S]_*$$

but $\mathbb{Z}[T]_{\blacksquare}[S] = \varprojlim_i \mathbb{Z}[T][S_i]$ is a limit of finite free $\mathbb{Z}[T]$ -modules, so that $j_*j^*\mathbb{Z}[T]_{\blacksquare}[S] = \mathbb{Z}[T]_{\blacksquare}[S]$ since $j_*\mathscr{C}$ is stable under limits by step 4.

Step 6. In this final step we show that (1.4) has a natural structure of $\mathbb{Z}((T^{-1}))$ -module. Let us fix an isomorphism $\mathbb{Z}_{\bullet}[S] = \prod_{I} \mathbb{Z}$, it suffices to see that there is an equivalence of $\mathbb{Z}[T]$ -modules

$$Q(S) = Q'(S) := \operatorname{cofib}((\prod_{I} \mathbb{Z}[[T^{-1}]])[T] \to \prod_{I} \mathbb{Z}((T^{-1}))).$$

Consider the following diagram with exact rows

$$\begin{array}{cccc} 0 & \longrightarrow & \prod_{I} \mathbb{Z} \otimes_{\mathbb{Z}} \mathbb{Z}[T] & \longrightarrow & \prod_{I} \mathbb{Z}[T] & \longrightarrow & Q(S) & \longrightarrow & 0 \\ & & & & \downarrow^{f} & & \downarrow^{g} & & \downarrow^{h} \\ 0 & \longrightarrow & \prod_{I} \mathbb{Z}[[T^{-1}]][T] & \longrightarrow & \prod_{I} \mathbb{Z}((T^{-1})) & \longrightarrow & Q'(S) & \longrightarrow & 0. \end{array}$$

By the snake lemma we have a long exact sequence

 $0 \to \ker f \to \ker g \to \ker h \to \operatorname{coker} f \to \operatorname{coker} g \to \operatorname{coker} h \to 0.$

It is clear that ker $f = \ker g = 0$, to show that h is an isomorphism we just need that coker $f \cong \operatorname{coker} g$ is an isomorphism, but both terms can be identified with $T^{-1} \prod_{I} \mathbb{Z}[[T^{-1}]]$, proving what we wanted. Equivalently, the square

is a pushout square in $\mathscr{D}((\mathbb{Z}[T],\mathbb{Z}))$, which directly implies that $Q(S) \cong Q'(S)$ as $\mathbb{Z}[T]$ -modules.

Remark 1.2. Note that the definition of $\mathbb{Z}[T]_{\blacksquare}$ via a functor of measures is analogue to that of $\mathbb{Z}_{\blacksquare}$. In Proposition 2.1 we will construct even more examples of solid rings using this idea.

Remark 1.3. We now explain a more clear relation of the previous construction with rigid geometry. Let p be a prime number, and let $\mathbb{Z}_{p,\blacksquare}$ be the induced analytic ring structure from \mathbb{Z} to \mathbb{Z}_p . The compact projective generators of $\mathscr{D}(\mathbb{Z}_{p,\blacksquare})$ are the modules of the form

$$\mathbb{Z}_p \otimes_{\mathbb{Z}_{\blacksquare}}^L \prod_I \mathbb{Z} = \prod_I \mathbb{Z}_p.$$

We let $\mathbb{Q}_{p,\blacksquare}$ also denote the induced analytic ring structure from \mathbb{Z} to \mathbb{Q}_p , the compact projective generators of $\mathscr{D}(\mathbb{Q}_{p,\blacksquare})$ have the form $(\prod_I \mathbb{Z}_p)[\frac{1}{p}]$.

In Theorem 1.1 we constructed an analytic ring $\mathbb{Z}[T]_{\blacksquare}$ over the polynomial algebra, such that the objects $\prod_{I} \mathbb{Z}[T]$ are compact projective generators in $\mathscr{D}(\mathbb{Z}[T]_{\blacksquare})$. This analytic ring structure was constructed as the complement of the analytic ring $(\mathbb{Z}[[T^{-1}]], \mathbb{Z})_{\blacksquare}$ over $\mathbb{P}^{1}_{\mathbb{Z}}$. Therefore, both $\mathbb{Z}[T]_{\blacksquare}$ and $(\mathbb{Z}((T^{-1})), \mathbb{Z})_{\blacksquare}$

define subspaces of $\mathbb{P}^1_{\mathbb{Z}}$ corresponding to \mathbb{A}^1 and ∞ with respect to its Zariski spectrum. A natural question is to describe the behavior of the pullback of these subspaces to other condensed subrings, for example \mathbb{Z}_p or \mathbb{Q}_p . It turns out that these new spaces are very well explained using Huber's theory of adic spaces.

The algebra $\mathbb{Q}_p \otimes_{\mathbb{Z},\blacksquare}^L \mathbb{Z}[[T^{-1}]]$ is equivalent to $\mathbb{Z}_p[[T^{-1}]][\frac{1}{p}]$, which consists on the bounded functions of an open disc of radius 1 around $\infty \in \mathbb{P}^1_{\mathbb{Q}_p}$, namely, $\overline{\mathbb{D}}_{\mathbb{Q}_p}(\infty, 1)$. The complement of $\overline{\mathbb{D}}_{\mathbb{Q}_p}(\infty, 1)$ in $\mathbb{P}^1_{\mathbb{Q}_p}$ should be then the open affinoid disc of radius 1 around 0, namely $\mathbb{D}_{\mathbb{Q}_p}(0, 1) = \operatorname{Spa}(\mathbb{Q}_p\langle T \rangle, \mathbb{Z}_p\langle T \rangle)$. It turns out that the base change of analytic rings $\mathbb{Q}_p \otimes_{\mathbb{Z},\blacksquare}^L \mathbb{Z}[T]_{\blacksquare}$ is given by the Tate algebra $\mathbb{Q}_p\langle T \rangle_{\blacksquare}$, with a family of compact projective generators

$$(\prod_{I} \mathbb{Z}_p \langle T \rangle)[\frac{1}{p}]$$

We see then that the datum defining $\mathbb{Q}_p\langle T \rangle_{\blacksquare}$ consists on the analytic ring $\mathbb{Q}_p\langle T \rangle$ (the first factor on the Huber pair defining $\mathbb{D}_{\mathbb{Q}_p}(0,1)$), and on the open bounded subring $\mathbb{Z}_p\langle T \rangle$ (the second factor of the Huber pair). A more explicit relation between (discrete) Huber rings and analytic rings will be discussed in §2.

2. DISCRETE HUBER PAIRS

The construction of the analytic ring $\mathbb{Z}[T]_{\blacksquare}$ of Theorem 1.1 can be slightly generalized.

Proposition 2.1. Let A be an algebra of finite type over \mathbb{Z} . For a profinite set $S = \lim_{i \to \infty} S_i$ consider

$$A_{\blacksquare}[S] = \varprojlim_i A[S_i].$$

Then A defines an analytic ring structure over A.

Proof. By an inductive argument, one can handle the case of a polynomial algebra $A = \mathbb{Z}[T_1, \ldots, T_n]$, namely, in the proof of Theorem 1.1 we just needed the Steps 1-6 to hold, and this would work over any base A_{\blacksquare} (once A_{\blacksquare} is an analytic ring). Now, let A be a quotient of $\mathbb{Z}[T_1, \ldots, T_n]$, we claim that the induced analytic ring $(A, \operatorname{Mod}_A(\mathscr{D}(\mathbb{Z}[T_1, \ldots, T_n]_{\blacksquare})))$ defines A_{\blacksquare} . It suffices to prove that

$$\prod_{I} \mathbb{Z}[T_1, \dots, T_n] \otimes^{L}_{\mathbb{Z}[T_1, \dots, T_n]} A = \prod_{I} A.$$

The ring $\mathbb{Z}[T_1, \ldots, T_n]$ is notherian, since A is a finitely generated module we can find a resolution

$$\cdots \to P_2 \to P_1 \to P_0 \to A \to 0$$

where each P_i a finite free $\mathbb{Z}[T_1, \ldots, T_n]$ -module. Thus, we get that

$$\prod_{I} \mathbb{Z}[T_{1}, \dots, T_{n}] \otimes_{\mathbb{Z}[T_{1}, \dots, T_{n}]}^{L} A = [\cdots \prod_{I} P_{2} \to \prod_{I} P_{1} \to \prod_{I} P_{0}]$$
$$= \prod_{I} [\cdots \to P_{2} \to P_{1} \to P_{0}]$$
$$= \prod_{I} A$$

as wanted.

Even more generally, we can combine induced analytic ring structures together with the analytic rings of Proposition 2.1:

Definition 2.2. Let (A, S) be a pair consisting on a discrete ring A and a set of elements $S \subset A$. We define the analytic ring $(A, S)_{\blacksquare}$ by taking the underlying condensed ring A, and declaring an A-module M to be $(A, S)_{\blacksquare}$ -complete if for all $s \in S$ the restriction of M to $\mathbb{Z}[s]$ -module is $\mathbb{Z}[s]_{\blacksquare}$ -complete as in Theorem 1.1.

Different sets $S \subset A$ provide different analytic structures on A, however, the map $(A, S) \mapsto (A, S)_{\blacksquare}$ is not an injection. One could ask what is the maximal set $S' \subset A$ containing S such that $(A, S)_{\blacksquare} = (A, S')_{\blacksquare}$, it turns out that this is naturally explained using Huber's theory of affinoid rings:

Proposition 2.3. Let (A, S) be as in Definition 2.2. Then there is a maximal set $S \subset S'$ such that $(A, S)_{\blacksquare} = (A, S')_{\blacksquare}$ satisfying the following properties:

- (1) The set S' is the ring given by the integral closure of $\mathbb{Z}[S]$ in A.
- (2) If A is of finite type over \mathbb{Z} , then we have that (A, A) = A = as in Proposition 2.1.

Proof. Part (2) follows from part (1) and Proposition 2.1 after taking a surjection from a polynomial algebra. Note also that for any $a \in A$ we have a map of analytic rings $\mathbb{Z}[a]_{\blacksquare} \to A_{\blacksquare}$, namely, the product $\prod_{I} A$ is already $\mathbb{Z}[a]_{\blacksquare}$ -complete being a product of discrete $\mathbb{Z}[a]$ -modules.

We now prove part (1). First, we describe the compact projective generators of $(A, S)_{\blacksquare}$. First, let us write $S = \bigcup_i S_i$ as an union of finite sets, then we have that

$$(A,S)_{\blacksquare} = \varinjlim_i (A,S_i)_{\blacksquare}$$

(namely, $\mathscr{D}((A, S)_{\blacksquare}) = \bigcap_i \mathscr{D}((A, S_i)_{\blacksquare})$ as full subcategories of $\mathscr{D}((A, \mathbb{Z})_{\blacksquare})$). For each S_i let $B_i \subset A$ be the finitely generated subring generated by S_i , then the same proof of Proposition 2.1 shows that

$$(A, S_i)_{\blacksquare}[K] = A \otimes_{B_i} B_{i,\blacksquare}[K]$$

for K a profinite set (take the polynomial algebra generated by S_i and the induced analytic structure on B_i and A). Let $B = \varinjlim_i B_i$, one deduces that

$$(A, S_i)_{\blacksquare}[K] = A \otimes_B B_{\blacksquare}[K]$$

with $B_{\blacksquare}[K] = \lim_{i \to i} B_{i,\blacksquare}[K].$

Let us fix an isomorphism $\mathbb{Z}_{\blacksquare}[K] = \prod_{I} \mathbb{Z}$. Let A^{+} be the integral closure of B in A and let $a \in A^{+}$, then there is a polynomial $p(T) = T^{n} + b_{n-1}T^{n-1} + \cdots + b_{0}$ over some B_{i} such that P(a) = 0. Consider the polynomial algebra $B_{i}[T]$, it suffices to show that the map $T \mapsto a$ extend to a morphism of analytic rings

$$(B_i[T]/p(T)) \blacksquare \to (A,S) \blacksquare,$$

but $B_i[T]/p(T)$ is a finite free B_i -module, so that

$$\prod_{I} B_{i}[T]/p(T) = (B_{i}[T]/p(T)) \otimes_{B_{i}} \prod_{I} B_{i}$$

and $(B_i[T]/p(T))$ has the induced analytic structure from $B_{i,\blacksquare}$. This provides morphisms of analytic rings

$$\mathbb{Z}[T]_{\blacksquare} \to B_i[T]_{\blacksquare} \to (B_i[T]/p(T))_{\blacksquare} = (B[T]/p(T), B_i)_{\blacksquare} \to (A, S)_{\blacksquare}$$

as wanted.

Conversely, let $a \in A$ be such that the map $(\mathbb{Z}[a], \mathbb{Z})_{\blacksquare} \to (A, S)_{\blacksquare}$ factors through $\mathbb{Z}[a]_{\blacksquare} \to (A, S)_{\blacksquare}$. For each B_i let $B'_i = B_i[a]$ be the subring of A generated by B_i and a, and let $B' = \varinjlim B'_i$. Then the assumption on a shows that for any K profinite

$$(A,S)_{\blacksquare}[K] = A \otimes_B (\varinjlim_i \prod_I B_i) = A \otimes_{B'} (\varinjlim_i \prod_I B'_i).$$

An equivalent way to write down the previous colimits is as follows:

$$(A,S)$$
 {\blacksquare} $[K] = \lim{M,B_i} \prod_I M$

where $M \subset A$ runs over all the finitely generated submodules of B_i in A. Taking $I = \mathbb{N}$, the sequence $(a, a^2, \ldots) \in \prod_{\mathbb{N}} B'_i \subset \lim_{M, B_i} \prod_{\mathbb{N}} M$. Therefore, there is some j and some finitely generated B_j -module $M \subset A$ such that $(a, a^2, a^3, \ldots) \in \prod_{\mathbb{N}} M$. This proves that the algebra $B'_j = B_j[a]$ is a submodule of M, and so that a is integral over B_j . This proves that the maximal set S' in (1) is the integral closure of B in A, showing the proposition.

We naturally arrive to the notion of a discrete Huber pair:

Definition 2.4. A discrete Huber pair is the datum (A, A^+) of a discrete ring A and an integrally closed subring $A^+ \subset A$. A morphism of discrete Huber pairs $(A, A^+) \to (B, B^+)$ is a morphism of discrete rings $A \to B$ mapping A^+ to B^+ .

Corollary 2.5. There is a fully faithful embedding from the category of discrete Huber pairs into the category of analytic rings over $\mathbb{Z}_{\blacksquare}$ given by

$$(A, A^+) \mapsto (A, A^+)_{\blacksquare}.$$

Proof. By Proposition 2.3 we can recover the ring A^+ as the set of elements $a \in A$ such that the map $(\mathbb{Z}[T], \mathbb{Z}) \to (A, A^+) \blacksquare$ of analytic rings factors through $(\mathbb{Z}[T], \mathbb{Z}) \to \mathbb{Z}[T] \blacksquare \to (A, A^+) \blacksquare$. This shows the conservativity of $(A, A^+) \mapsto (A, A^+) \blacksquare$. Let us now take (A, A^+) and (B, B^+) be two Huber rings, and consider a map of analytic rings $(A, A^+) \blacksquare \to (B, B^+) \blacksquare$. By definition the space $\operatorname{Map}_{\operatorname{AnRing}}((A, A^+) \blacksquare, (B, B^+) \blacksquare)$ is the full subspace of the mapping space of condensed rings $\operatorname{Map}_{\operatorname{CondRing}}(A, B)$ such that the restriction of $M \in \mathscr{D}((B, B^+) \blacksquare)$ to an A-module is $(A, A^+) \blacksquare$ -complete. But Proposition 2.3 implies that for $a \in A^+$ we have a composition of analytic rings

$$\mathbb{Z}[a] \blacksquare \to (A, A^+) \blacksquare \to (B, B^+) \blacksquare,$$

and so the image of a in B must land in B^+ by the same proposition. This finishes the proof.

The theory of (complete) Huber pairs and adic spaces can be better explained and generalized using condensed mathematics. For a better reference towards this direction we recommend Lectures VII-X of the course in Analytic Stacks held by Clausen and Scholze: https://people.mpim-bonn.mpg.de/scholze/AnalyticStacks.html, see also [And21].

References

- [And21] Grigory Andreychev. Pseudocoherent and perfect complexes and vector bundles on analytic adic spaces. https://arxiv.org/abs/2105.12591, 2021.
- [CS20] Dustin Clausen and Peter Scholze. Lectures on Analytic Geometry. https://www.math.uni-bonn.de/people/ scholze/Analytic.pdf, 2020.
- [CS22] Dustin Clausen and Peter Scholze. Condensed Mathematics and Complex Geometry. https://people.mpim-bonn. mpg.de/scholze/Complex.pdf, 2022.
- [Sch19] Peter Scholze. Lectures on Condensed Mathematics. https://www.math.uni-bonn.de/people/scholze/Condensed. pdf, 2019.