
MORE ON SOLID ANALYTIC RINGS: DISCRETE HUBER PAIRS

1. Quasi-coherent sheaves on P1

We continue with further examples of solid rings that appear in algebraic and rigid geometry. To motivate
their definition we will use the geometry of the projective space P1.

1.1. Algebraic interpretation of ∞. Classically, P1 can be constructed from two copies of the affine line
A1, namely SpecZ[T ] and SpecZ[T−1], glued along Gm, namely SpecZ[T±1]. Quasi-coherent sheaves on
P1 are obtained by descent from quasi-coherent sheaves on SpecZ[T ] and SpecZ[T−1] that agree on Gm.
On the other hand, a quasi-coherent sheaf F on P1 has an excision sequence

0→ F [T−1]→ F → F |SpecZ[T ] → H1
∞F → 0, (1.1)

where F [T−1] is the T−1-torsion of F , and H1
∞F is a higher cohomology group of sections of F supported

at ∞. Geometrically, the sequence above arises from writing

|P1| = |SpecZ[T ]|
⊔
|Spf Z[[T−1]]| = |A1|

⊔
|∞|,

where we understand the formal spectrum Spf Z[[T−1]] as the ind-scheme lim−→n
SpecZ[T−1]/(T−n). The

(derived) categories of modules on Spf Z[[T−1]] can be then realised as both the category of (derived)
T−1-adically complete modules or the category of T−1-torsion modules on P1.1

Thus, the sequence (1.1) is a consequence of the following localization sequence of ∞-derived categories

D(Spf Z[[T−1]]) ∼= D(P1)T
−1−torsion ⊂ D(P1)

⊗L
Z[T ]−−−→ D(SpecZ[T ]).

Geometrically, the previous sequence describes a quasi-coherent sheaf on P1 as an extension of a sheaf on
the affine space SpecZ[T ], and a sheaf supported at (the formal completion of) ∞ ∈ P1.

1.2. Solid interpretation of ∞. Let us now consider the previous objects living in condensed mathemat-
ics. Let D(Z■) be the derived category of solid abelian groups. For any discrete ring A we can consider
the induced analytic ring

(A,Z)■ := (A,ModA(D(Z■))),

and write D((A,Z)■) for its derived category of complete modules. By definition, a condensed A-module
is in D((A,Z)■) if and only if its underlying condensed Z-module structure is solid.

We can formally construct the category D(P1,Z■) of solid quasi-coherent sheaves of P1 by gluing the
categories of modules D((Z[T ],Z)■) and D((Z[T−1],Z)■) along D((Z[T±1],Z)■).

Then, Z[[T−1]] is now promoted from a discrete ring with some completeness property to a ring with an
honest topology/condensed ring structure. Therefore, instead of taking T−1-complete solid modules of P1

(i.e. the formal scheme Spf Z[[T−1]]), we can consider the induced analytic ring

Z[[T−1]]■ = (Z[[T−1]],ModZ[[T−1]](D(Z■))),

and write D(Z[[T−1]]■) for its category of derived complete modules. In a previous lecture we saw that the
free solid Z[[T−1]]-module generated by a profinite set S = lim←−i

Si was given by

Z[[T−1]]■[S] = lim←−
i

Z[[T−1]][Si],

which in turn is isomorphic to
∏

I Z[[T−1]] for some index set I; these are compact projective generators
of D(Z[[T−1]]■).

By definition, Z[[T−1]]■ has the induced analytic structure from Z■, namely, a condensed Z[[T−1]]■-
module is complete if and only if its underlying condensed abelian group is Z■-complete. Then, any solid

1We say that a quasi-coherent complex M in P1 is T−1-torsion if M ⊗L
OP1

Z[T ] = 0, resp. T−1-adically complete if
M = R lim←−n

(M ⊗L
O(P1) Z[T

−1]/(T−n).)

1



2 MORE ON SOLID ANALYTIC RINGS: DISCRETE HUBER PAIRS

T−1-complete module over Z[T−1] is a module over Z[[T−1]]■: this follows from stability under limits of
complete modules on analytic rings. However, the category D(Z[[T−1]]■) is larger! For instance, the algebra
Z((T−1)) = Z[[T−1]][T ] is a solid Z[[T−1]]-module which is not T−1-adically complete.

We could then declare D(Z[[T−1]]■) to be the category of sheaves of P1
■ supported at ∞, and take

A1
■ = P1

■\{∞} to be its complement. Concretely, we ask ourselves whether we have a localization sequence
of categories

D(Z[[T−1]]■)→ D(P1)→ D(A1
■) (1.2)

so that Z[T ]■ := (Z[T ],D(A1
■)) defines a new analytic ring structure on the polynomial algebra Z[T ].

Furthermore, since D(P1)T
−1−∧ ⊂ D(Z[[T−1]]■), the fiber sequences (1.1) and (1.2) would imply that

D(Z[T ]■) := D(A1
■) ⊂ D((Z[T ],Z)■).

Therefore, by localizing (1.2) to A1 = SpecZ[T ] we should have a fiber sequence as follows:

D((Z((T−1)),Z)■)→ D((Z[T ],Z)■)→ D(Z[T ]■).

The realization of this idea lies in the following theorem:

Theorem 1.1 ([Sch19, Theorem 8.1]). Consider the functor on condensed Z[T ]-modules mapping a profinite
set S = lim←−i

Si to
Z[T ]■[S] = lim←−

i

Z[T ][Si].

Then Z[T ]■ is an analytic ring over Z■ with underlying ring Z[T ]. Moreover, we have a localization sequence

D((Z((T−1)),Z)■)→ D((Z[T ],Z)■)→ D(Z[T ]■).

More precisely, let ι : (Z[T ],Z)■ → (Z((T−1)),Z)■ and j : (Z[T ],Z)■ → Z[T ]■ be the natural morphisms
of analytic rings. The following holds:

(1) The (Z[T ],Z)■-algebra Z((T−1)) is compact and idempotent. We let ι∗ : D((Z((T−1)),Z)■) →
D((Z[T ],Z)■) denote the forgetful functor, and let ι∗ and ι! be its left and right adjoint respectively,
namely

i∗M = Z((T−1))⊗L
(Z[T ],Z)■ M

and
ι!M = RHomZ[T ](Z((T−1)),M).

(2) The base change functor j∗ : Z[T ]■ ⊗L
(Z[T ],Z)■

− : D((Z[T ],Z)■) → D(Z[T ]■) has a fully faithful
right adjoint j∗ (the forgetful functor) such that

j∗j
∗M = RHomZ[T ](fib[Z[T ]→ Z((T−1))],M).

In particular, we have a natural equivalence of categories

D(Z[T ]■) = D((Z[T ],Z)■)/D(((Z((T−1)),Z)■)).

(3) The base change functor j∗ has a fully faithful left adjoint j! given by

j!j
∗M = (fib[Z[T ]→ Z((T−1))])⊗L

(Z[T ],Z)■ M.

Furthermore, we have excision fibrations for M ∈ D((Z[T ],Z)■)

j!j
∗M →M → ι∗ι

∗M

and

ι∗ι
!M →M → j∗j

∗M.

Proof. Most of the proposition will follow from the properties of Z((T−1)) (i.e. compact and idempotent)
thanks to the localization sequence that one obtains at the level of categories, see [CS22, Construction 5.2].
Let us explain the main steps in the proof:

Step 1. First let us show that Z((T−1)) is a compact (Z[T ],Z)■-algebra. This follows from the resolution

0→ Z[[X]]⊗Z Z[T ] XT−1−−−−→ Z[[X]]⊗Z Z[T ]→ Z((T−1))→ 0 (1.3)
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and the fact that (
∏

I Z)⊗ZA is a family of compact projective generators for D((A,Z)■) and any discrete
ring A.

Step 2. The (Z[T ],Z)■-algebra Z((T−1)) is idempotent. This follows from the exact sequence (1.3),
namely, one gets that

Z((T−1))⊗L
(Z[T ],Z)■ Z((T−1)) = cofib(Z[[X]]⊗Z■

Z((T−1))
XT−1−−−−→ Z[[X]]⊗Z■

Z((T−1)))

= cofib(Z[[X,T−1]][T ]
X−T−1

−−−−−→ Z[[X,T−1]][T ])

= Z((T−1)).

Formally we deduce that ι∗ : D((Z((T−1)),Z)■) ⊂ D((Z[T ],Z)■) is a full subcategory stable under limits
and colimits, with inclusion having left and right adjoint

ι∗M = Z((T−1))⊗L
(Z[T ],Z)■ M and ι!M = RHomZ[T ](Z((T−1)),M).

In particular, D((Z((T−1)),Z)■) defines an analytic ring structure on Z[T ]!.
Step 3. Construction of D(Z[T ]■). By step 2, D((Z((T−1)),Z)■) is a thick tensor-ideal of D((Z[T ],Z)■)

stable under all limits and colimits. We can then define the quotient category

C := D((Z[T ],Z)■)/D((Z((T−1)),Z)■).

We have a localization functor j∗ : D((Z[T ],Z)■) → C , and j∗ has fully faithful left and right adjoints
satisfying

j!j
∗M = fib(Z[T ]→ Z((T−1)))⊗(Z[T ],Z)■ M and j∗j

∗M = RHomZ[T ](fib(Z[T ]→ Z((T−1))),M)

for M ∈ D((Z[T ],Z)■). Moreover, we have excision fiber sequences

j!j
∗M →M → ι∗ι

∗M

and
ι∗ι

!M →M → j∗j
∗M.

See [CS22, Lecture V] for more details. Our next task is to show that the fully faithful functor j∗ : C →
D((Z[T ],Z)■) defines the analytic ring Z[T ]■.

Step 4. We need to prove that j∗C ⊂ D((Z[T ],Z)■) is stable under limits, colimits and mapping spaces
from profinite sets (i.e. tensored over D(CondAb)). Stability under limits follows formally since j∗ is a
right adjoint. To see stability under colimits, note that

j∗j
∗M = RHomZ[T ](fib(Z[T ]→ Z((T−1))),M),

and that fib(Z[T ] → Z((T−1))) is a compact (Z[T ],Z)■-module. This implies that j∗ commutes with
colimits as wanted. Finally, the same explicit description of j∗j∗M shows that for any profinite set S we
have

j∗j
∗RHomZ(Z[S],M) = RHomZ(Z[S], j∗j∗M).

Since j∗C ⊂ D((Z[T ],Z)■) is the full subcategory of objects M such that M → j∗j
∗M is an equivalence,

the pair (Z[T ], j∗C ) defines an analytic ring structure on Z[T ] by [CS20, Proposition 12.20].
Step 5. Finally, we need to compute, for S a profinite set, the compact projective generator of j∗C

generated by S, namely,
j∗j

∗(Z■[S]⊗Z Z[T ]).

We first prove the case of S = ∗, we have an excision sequence

ι∗ι
!Z[T ]→ Z[T ]→ j∗j

∗Z[T ].

We need to prove that
ι∗ι

!Z[T ] = RHomZ[T ](Z((T−1)),Z[T ]) = 0.
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By step 1 we have that

ι∗ι
!Z[T ] = fib(RHomZ[T ](Z[[X]]⊗Z Z[T ],Z[T ]) XT−1−−−−→ RHomZ[T ](Z[[X]]⊗Z Z[T ],Z[T ]))

= fib(RHomZ(Z[[X]]),Z)⊗Z Z[T ] XT−1−−−−→ RHomZ(Z[[X]]),Z)⊗Z Z[T ])

= fib(Z[X±1]/XZ[X]⊗Z Z[T ] XT−1−−−−→ Z[X±1]/XZ[X]⊗Z Z[T ])
= 0,

obtaining what we wanted.
We now prove the claim for general S. Recall that by construction, the kernel of j∗ is precisely

D((Z((T−1)),Z)■). Then, we need to show that the quotient

Q(S) := cofib(Z■[S]⊗Z,■ Z[T ]→ Z[T ]■[S]) (1.4)

has a natural structure of Z((T−1))-module. Indeed, if this holds true, we get that

j∗j
∗(Z■[S]⊗Z Z[T ]) = j∗j

∗Z[T ]■[S],
but Z[T ]■[S] = lim←−i

Z[T ][Si] is a limit of finite free Z[T ]-modules, so that j∗j
∗Z[T ]■[S] = Z[T ]■[S] since

j∗C is stable under limits by step 4.
Step 6. In this final step we show that (1.4) has a natural structure of Z((T−1))-module. Let us fix an

isomorphism Z■[S] =
∏

I Z, it suffices to see that there is an equivalence of Z[T ]-modules

Q(S) = Q′(S) := cofib((
∏
I

Z[[T−1]])[T ]→
∏
I

Z((T−1))).

Consider the following diagram with exact rows

0
∏

I Z⊗Z Z[T ]
∏

I Z[T ] Q(S) 0

0
∏

I Z[[T−1]][T ]
∏

I Z((T−1)) Q′(S) 0.

f g h

By the snake lemma we have a long exact sequence

0→ ker f → ker g → kerh→ coker f → coker g → cokerh→ 0.

It is clear that ker f = ker g = 0, to show that h is an isomorphism we just need that coker f ∼= coker g is an
isomorphism, but both terms can be identified with T−1

∏
I Z[[T−1]], proving what we wanted. Equivalently,

the square ∏
I Z⊗Z Z[T ]

∏
I Z[T ]

∏
I Z[[T−1]][T ]

∏
I Z((T−1))

is a pushout square in D((Z[T ],Z)■), which directly implies that Q(S) ∼= Q′(S) as Z[T ]-modules. □

Remark 1.2. Note that the definition of Z[T ]■ via a functor of measures is analogue to that of Z■. In
Proposition 2.1 we will construct even more examples of solid rings using this idea.

Remark 1.3. We now explain a more clear relation of the previous construction with rigid geometry. Let
p be a prime number, and let Zp,■ be the induced analytic ring structure from Z to Zp. The compact
projective generators of D(Zp,■) are the modules of the form

Zp ⊗L
Z■

∏
I

Z =
∏
I

Zp.

We let Qp,■ also denote the induced analytic ring structure from Z to Qp, the compact projective generators
of D(Qp,■) have the form (

∏
I Zp)[

1
p ].

In Theorem 1.1 we constructed an analytic ring Z[T ]■ over the polynomial algebra, such that the objects∏
I Z[T ] are compact projective generators in D(Z[T ]■). This analytic ring structure was constructed as

the complement of the analytic ring (Z[[T−1]],Z)■ over P1
Z. Therefore, both Z[T ]■ and (Z((T−1)),Z)■
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define subspaces of P1
Z corresponding to A1 and∞ with respect to its Zariski spectrum. A natural question

is to describe the behavior of the pullback of these subspaces to other condensed subrings, for example Zp

or Qp. It turns out that these new spaces are very well explained using Huber’s theory of adic spaces.
The algebra Qp ⊗L

Z,■ Z[[T−1]] is equivalent to Zp[[T
−1]][1p ], which consists on the bounded functions of

an open disc of radius 1 around∞ ∈ P1
Qp

, namely, DQp(∞, 1). The complement of DQp(∞, 1) in P1
Qp

should
be then the open affinoid disc of radius 1 around 0, namely DQp(0, 1) = Spa(Qp⟨T ⟩,Zp⟨T ⟩). It turns out
that the base change of analytic rings Qp⊗L

Z,■ Z[T ]■ is given by the Tate algebra Qp⟨T ⟩■, with a family of
compact projective generators

(
∏
I

Zp⟨T ⟩)[
1

p
].

We see then that the datum defining Qp⟨T ⟩■ consists on the analytic ring Qp⟨T ⟩ (the first factor on the
Huber pair defining DQp(0, 1)), and on the open bounded subring Zp⟨T ⟩ (the second factor of the Huber
pair). A more explicit relation between (discrete) Huber rings and analytic rings will be discussed in §2.

2. Discrete Huber pairs

The construction of the analytic ring Z[T ]■ of Theorem 1.1 can be slightly generalized.

Proposition 2.1. Let A be an algebra of finite type over Z. For a profinite set S = lim←−i
Si consider

A■[S] = lim←−
i

A[Si].

Then A defines an analytic ring structure over A.

Proof. By an inductive argument, one can handle the case of a polynomial algebra A = Z[T1, . . . , Tn],
namely, in the proof of Theorem 1.1 we just needed the Steps 1-6 to hold, and this would work over any
base A■ (once A■ is an analytic ring). Now, let A be a quotient of Z[T1, . . . , Tn], we claim that the induced
analytic ring (A,ModA(D(Z[T1, . . . , Tn]■))) defines A■. It suffices to prove that∏

I

Z[T1, . . . , Tn]⊗L
Z[T1,...,Tn]

A =
∏
I

A.

The ring Z[T1, . . . , Tn] is noetherian, since A is a finitely generated module we can find a resolution

· · · → P2 → P1 → P0 → A→ 0

where each Pi a finite free Z[T1, . . . , Tn]-module. Thus, we get that∏
I

Z[T1, . . . , Tn]⊗L
Z[T1,...,Tn]

A = [· · ·
∏
I

P2 →
∏
I

P1 →
∏
I

P0]

=
∏
I

[· · · → P2 → P1 → P0]

=
∏
I

A

as wanted. □

Even more generally, we can combine induced analytic ring structures together with the analytic rings
of Proposition 2.1:

Definition 2.2. Let (A,S) be a pair consisting on a discrete ring A and a set of elements S ⊂ A. We
define the analytic ring (A,S)■ by taking the underlying condensed ring A, and declaring an A-module M
to be (A,S)■-complete if for all s ∈ S the restriction of M to Z[s]-module is Z[s]■-complete as in Theorem
1.1.

Different sets S ⊂ A provide different analytic structures on A, however, the map (A,S) 7→ (A,S)■ is
not an injection. One could ask what is the maximal set S′ ⊂ A containing S such that (A,S)■ = (A,S′)■,
it turns out that this is naturally explained using Huber’s theory of affinoid rings:

Proposition 2.3. Let (A,S) be as in Definition 2.2. Then there is a maximal set S ⊂ S′ such that
(A,S)■ = (A,S′)■ satisfying the following properties:
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(1) The set S′ is the ring given by the integral closure of Z[S] in A.
(2) If A is of finite type over Z, then we have that (A,A)■ = A■ as in Proposition 2.1.

Proof. Part (2) follows from part (1) and Proposition 2.1 after taking a surjection from a polynomial algebra.
Note also that for any a ∈ A we have a map of analytic rings Z[a]■ → A■, namely, the product

∏
I A is

already Z[a]■-complete being a product of discrete Z[a]-modules.
We now prove part (1). First, we describe the compact projective generators of (A,S)■. First, let us

write S =
⋃

i Si as an union of finite sets, then we have that

(A,S)■ = lim−→
i

(A,Si)■

(namely, D((A,S)■) =
⋂

i D((A,Si)■) as full subcategories of D((A,Z)■)). For each Si let Bi ⊂ A be the
finitely generated subring generated by Si, then the same proof of Proposition 2.1 shows that

(A,Si)■[K] = A⊗Bi Bi,■[K]

for K a profinite set (take the polynomial algebra generated by Si and the induced analytic structure on
Bi and A). Let B = lim−→i

Bi, one deduces that

(A,Si)■[K] = A⊗B B■[K]

with B■[K] = lim−→i
Bi,■[K].

Let us fix an isomorphism Z■[K] =
∏

I Z. Let A+ be the integral closure of B in A and let a ∈ A+, then
there is a polynomial p(T ) = Tn + bn−1T

n−1 + · · · + b0 over some Bi such that P (a) = 0. Consider the
polynomial algebra Bi[T ], it suffices to show that the map T 7→ a extend to a morphism of analytic rings

(Bi[T ]/p(T ))■ → (A,S)■,

but Bi[T ]/p(T ) is a finite free Bi-module, so that∏
I

Bi[T ]/p(T ) = (Bi[T ]/p(T ))⊗Bi

∏
I

Bi,

and (Bi[T ]/p(T ))■ has the induced analytic structure from Bi,■. This provides morphisms of analytic rings

Z[T ]■ → Bi[T ]■ → (Bi[T ]/p(T ))■ = (B[T ]/p(T ), Bi)■ → (A,S)■

as wanted.
Conversely, let a ∈ A be such that the map (Z[a],Z)■ → (A,S)■ factors through Z[a]■ → (A,S)■.

For each Bi let B′
i = Bi[a] be the subring of A generated by Bi and a, and let B′ = lim−→B′

i. Then the
assumption on a shows that for any K profinite

(A,S)■[K] = A⊗B (lim−→
i

∏
I

Bi) = A⊗B′ (lim−→
i

∏
I

B′
i).

An equivalent way to write down the previous colimits is as follows:

(A,S)■[K] = lim−→
M,Bi

∏
I

M

where M ⊂ A runs over all the finitely generated submodules of Bi in A. Taking I = N, the sequence
(a, a2, . . .) ∈

∏
NB′

i ⊂ lim−→M,Bi

∏
NM . Therefore, there is some j and some finitely generated Bj-module

M ⊂ A such that (a, a2, a3, . . .) ∈
∏

NM . This proves that the algebra B′
j = Bj [a] is a submodule of M ,

and so that a is integral over Bj . This proves that the maximal set S′ in (1) is the integral closure of B in
A, showing the proposition. □

We naturally arrive to the notion of a discrete Huber pair:

Definition 2.4. A discrete Huber pair is the datum (A,A+) of a discrete ring A and an integrally closed
subring A+ ⊂ A. A morphism of discrete Huber pairs (A,A+) → (B,B+) is a morphism of discrete rings
A→ B mapping A+ to B+.

Corollary 2.5. There is a fully faithful embedding from the category of discrete Huber pairs into the category
of analytic rings over Z■ given by

(A,A+) 7→ (A,A+)■.
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Proof. By Proposition 2.3 we can recover the ring A+ as the set of elements a ∈ A such that the map
(Z[T ],Z)→ (A,A+)■ of analytic rings factors through (Z[T ],Z)→ Z[T ]■ → (A,A+)■. This shows the con-
servativity of (A,A+) 7→ (A,A+)■. Let us now take (A,A+) and (B,B+) be two Huber rings, and consider
a map of analytic rings (A,A+)■ → (B,B+)■. By definition the space MapAnRing((A,A

+)■, (B,B+)■) is
the full subspace of the mapping space of condensed rings MapCondRing(A,B) such that the restriction of
M ∈ D((B,B+)■) to an A-module is (A,A+)■-complete. But Proposition 2.3 implies that for a ∈ A+ we
have a composition of analytic rings

Z[a]■ → (A,A+)■ → (B,B+)■,

and so the image of a in B must land in B+ by the same proposition. This finishes the proof. □

The theory of (complete) Huber pairs and adic spaces can be better explained and generalized using
condensed mathematics. For a better reference towards this direction we recommend Lectures VII-X of the
course in Analytic Stacks held by Clausen and Scholze: https://people.mpim-bonn.mpg.de/scholze/
AnalyticStacks.html, see also [And21].
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