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3. KAHLER MANIFOLDS

A Kaéhler manifold is a complex manifold M with a Kéhler form w which is closed
(dw = 0). A Kahler form is equivalent to a Hermitian metric h. We define these and
show how they are related on a single vector space V', then on the tangent bundle of M.
(However, on a single vector space, it doesn’t make sense to talk about closed forms.)

3.1. Kahler forms. We started with the basic concept of a Kéhler form. Suppose that
V' is a vector space over C: V = C" and W = Hom(V,R),

We=WroC=W"gwo,

Recall that We = Homg(V,C) and W'Y = Homc(V,C) C We. Now take Whi =
W0 @ WOl We want to look at

We'' = Wht 0 AW,
Thus elements of Wﬂé’l are alternating real forms of type (1,1).

Example 3.1.1. The basic example is V = C",
w=g Zdzj NdZ; = 3 Z(dacj +idy;) A (dxj —idy;) = dej A dy;.
J

Since aA\b=a®b—b®a, for z =z + iy, 2 = 2’ + iy’ € C" this form is
w(z,2') = Z(%’y} - yﬂ})-
J
The first form of w shows that it lies in W', The last form shows it is in A2Wg. The

scalar % is needed to make the form real. All Kahler forms will be equivalent to these.

Lemma 3.1.2. w € Wﬂé’l if and only if w:V XV — R is a skew symmetric R-bilinear
form so that

(3.1) w(lu, Iv) = w(u,v)

for all u,v € V.

Proof. First note that the condition w(lu, Iv) = w(u,v) is equivalent to the condition
(3.2) w(u, [v) + w(lu,v) =0

since I? = —1. By definition, Wﬂé’l is the set of skew-symmetric forms w on V' so that
we = w ® C lies in WY, This is equivalent to the condition that w¢ vanishes on pairs
of vectors from V10 or from V%', But V10 is the set of all vectors of the form

u=u—tlu
where u € V' and
w(w,v) = w(u —ilu,v —ilv)
= w(u,v) — w({lu, Iv) — i(w(u, Iv) + w(lu,v))
which is zero if and only if (3.1) and (3.2) hold. O
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Note that (3.2) implies that
9(u,v) = w(u, Iv)
is a symmetric bilinear pairing g : V' x V' — R since
g(U, u) = (,L}(U, IU) = _(’U(IUJ U) = w(uv IU) = g(“? U)

Definition 3.1.3. A hermitian form on a complex vector space V is defined to be a
map h:V xV — C so that

(1) h(u,v) is C-linear in u

(2) h(u,v) is C-antilinear in v

(3) h(v,u) = h(u,v)
Note that (3) implies that h(v,v) € R. The form h is said to be positive definite

if h(v,v) > 0 for all v # 0. A positive definite hermitian form on V is also called a
Hermitian metric on V.

Proposition 3.1.4. There is a 1 — 1 correspondence between hermitian forms h on V
and forms w € Wﬂé’l given by
w= —Sh.

Furthermore,

h(u,v) = g(u,v) — iw(u,v)
where g : V x V. — R is given by g(u,v) = w(u, Iv).
Proof. For the second part, h(u, Iv) = g(u,lv) — iw(u, Iv). Since h(u,v) is conjugate
linear in v, h(u, [v) = —ih(u,v) = —w(u,v) — ig(u,v). Comparing complex parts gives
g(u,v) = w(u, Iv). O
Example 3.1.5. The standard positive definite hermitian form on C” is:

h(Z, Z/) — sz_;. = Z({,EJ + zy])(x; + Zy;)
= (wal +yyp) =i Y (x5} — y;ah)

-~

g(z,2") w(z,2")

Definition 3.1.6. A Kahler form on V is a form w € Wlé’l whose corresponding
hermitian form h is positive definite. In particular, Kahler forms are nondegenerate.

3.2. Kahler metrics. Suppose that (M, ) is an almost complex manifold. Then a
Hermitian metric 4 on M is a Hermitian metric h, on the tangent space T, at each
point which varies smoothly with = € M. Associated to h we have:

w=—Sh
which is a 2-form on M which is also in Q}wl which is equivalent to the equation
w(lu, Iv) = w(u,v)

for any two vectors w,v € Ty, at any point € M. By Definition 3.1.6, w is a Kahler
form. However we usually want w to be closed. We say that the Hermitian metric h is
a Kahler metric if the corresponding Kéhler form w is closed.
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Proposition 3.2.1. The real part of a Hermitian metric h is a Riemannian metric g
on M which is also invariant under I:

g(u,v) = w(u, Iv) = g(Iu, Iv)
Proof. Wekﬂv that g is a symmetric real form. If v # 0 € Ty, is a nonzero vector,
h(v,v) = h(v,v) is a positive real number. So,
g(v,v) = h(v,v) >0
So, g is a Riemannian metric on M. O

Note that M is oriented since any complex vector space has a natural real orientation.

Theorem 3.2.2. Given a Hermitian metric h on the complex manifold M, the volume
form on M associated to the Riemannian metric g = Rh is equal to w™/n!.

To prove this, we need the matrices for general h,w in local coordinates:
2= (21, ,2,) : U—=C", 2z =uz;+iy;

and Z = (Z1,---,%Z,) centered at o € U. Then dz;,dz; form bases for le\fwo,ﬂ?\}[lxo.
These are W0, WO for V = Ty a,. So h € Q) is given by

h = ZO&Z']‘ dZZ X dfj

where a;; : M — C (notation: ay; € Q). These functions are given by:

a 0
= (3r0,)

Since h(u,v) = h(v,u), o; = ;. Since —Sz = £(z — %), we have:

i _ _ { _
w=—-Sh= 5 Z (Oéij dZZ &® de — Oy dZZ (%9 dzj) = § Z(yij dZZ VAN de.

Proof of Theorem 3.2.2. By a C-linear change of the coordinates z = (z1,--- ,2,), we
can arrange for % to be ortho-normal at the point xy. In other words,

o 0
ij(x0) = ha (%7 %) = 0
i j

Wgy = %Zdzj/\dij :de]/\dyj

Then, at z,

by Example 3.1.1. So,

w" = Z dxﬂ(l) VAN dy,r(l) AN da]ﬂ(g) AN dyﬁ(g) VAR d:L‘ﬂ-(n) A dy,f(n)
TESK

which is n! times the volume form dzi A dy; A - - - Adx,, A dy, at the point zy. Since this
hold at every point zg € M, w™/n! is the volume form at each point. O
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3.3. Kahler manifolds.

Definition 3.3.1. A Kdhler manifold is a complex manifold with a Kéhler metric which
is, by definition, a Hermitian metric h so that w is closed (dw = 0).

Corollary 3.3.2. On a compact Kihler manifold M, for every 1 < k < n, the form w*
is closed but not exact. Le., [W*] #0 € H**(M).

Proof. w* is clearly closed:
dw" = kw* dw =0
If w* = da then
dla Aw™™) =da Aw"F = w"
which is impossible since the volume form is nonzero in H?"(M) when M is an oriented
compact manifold. O

Corollary 3.3.3. A compact complex k-submanifold N of a Kdahler manifold M cannot
be the boundary of a (real) submanifold of M.

Proof. This follows immediately from Stokes” Theorem. If N = W then:

/dwk’:O:/wk:volN
w N

a contradiction, since w* is the volume form on N. 0]

3.4. Connections. Given a real C'"™ k-dimensional vector bundle E on a real manifold
X we want to take the derivative of a section of E. This is given by a connection. Recall
that a connection V on FE is a linear map
V:AYE) = AYE) =T(T% ®r E)
satisfying the Leibnitz equation
V(fo)=df ® o+ fVo

forall f: X >R (f €Q%),0eTE=AE)=C>(E).
Thus, V takes a section o of F and gives V(o) € A'(F) which is a 1-form on X with
coefficients in E:

V(o) € AYE) =T (T% ®r E) = I'Homg(Tx, E).

We interpret V(o) as the derivative of o.
Analogy: Let f : X — R be a smooth function. Then D(f) =df : Tx — R is a
1-form on X:
df € TT; = T Hom(Ty, R).
Given a vector field ¢ on X, Dy(f) = df(¢) is the directional derivative of f in the
direction . This is at every z € X. So, Dy(f) € Q% is a smooth function on X.
For a connection we write:

Vy(o) =V (o) e TE.

This is the V-directional derivative of the section ¢ in the direction of the tangent vector

field 4.



MATH 250B: COMPLEX ALGEBRAIC GEOMETRY 23

Following our philosophy of concentrating on concepts and definitions (and skipping
proofs of theorems), we reformulate the definition of a connection.

Lemma 3.4.1. If E, E' are vector bundles on X then
Homx (E, E') = I'Homg(E, E') = Homge (I'E, T'E").
Proof. Locally, a homomorphism of vector bundles E¥ — E’ is given by a map
M : X — Homg(R* R)

which is a family of ¢ x k matrices M (x), with entries m;; : X — R.
Locally, sections of E = X x R* are given by k functions on X:

uelE = (uy, - ,ug) :Zuiei

where e; are “basic sections” of E and u; € Q%. Le., I'E is a free Q%-module. An
Q%-morphism M : TE — T'E’ is therefore given by:

M(o) = ZuiM(ei) = Zuimije; = (uy, - ,up)M
So, M is given by the same data: a matrix with entries m;; € Q%. 0

For a connection V : TE — AY(E), TE, A'(E) are both Q% modules. But V is not
a homomorphism of Q5 modules:

V(fo)=df o+ f V(o).
However, if we have another connection V',
V'(fo)=df o+ fV'(0).
So, the difference
(V=V')(fo)=f(V-=V)o
is a homomorphism of 2y-modules. Analogously to the proof of Lemma 3.4.1 such
morphisms are given by matrices M = (m;;) with m;; € Qk.

In local coordinates, d is a connection. So, an arbitrary connection is given by V =
d+ ¢ or:

V(flv'” 7fk) = (df17 7dfk)+(f17 ,fk)M

where M is a k x k matrix with entries in QL.
If X has a Riemannian metric g then recall that the Levi-Civita connection V = V€
is the unique connection on £ = T); having the properties:

(1) dg(o,7) = g(Va, 1)+ g(o,VT) (V is compatible with g)
(2) V(7)o — V(o)T = [0, 7] usually written as:
Vo(r) = V(o) = [0, 7]

for any two vector fields o, 7 on X.
As discussed in class, Equation (1) says that, for any vector field ¢ on X,

dg(O', 7_) (@/J) = g(vd)g? 7) + g(o, va)'
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Explanation: Since g(o,7) € Q%, all three terms in Equation (1) are 1-forms on X. For
example, if Vo = > &a; where & are vector fields and «; are 1-forms on X, then

9(Vo,7) = g8, 7).
Applying both sides to the vector field ¥ we get:

VU T Zg gza az Z g 51042 = g(VU(@/J) ) = g(vwo-a 7—)'
Recall that a connection on a smooth bundle E over X is a linear map
V:TE = A"E) - AYE)

satisfying Leibniz rule. When X is a complex manifold and E is a holomorphic bundle,
A%E), AY(E) are the same set as before but with more structure:

ANE) = T(T} 92 B) = T(Tyc 8 B) = A(E) & A%(B)
and A°(E) = A%9(FE) is still the space of smooth sections of E. Then, any connection
V:AY(E) - AYE) = AY(E) @ A%Y(E)
has two components V10, V%! Last time we showed that
Op : A"(E) — A™(E)
given in local coordinates by Oy (f1, -+, fi) = (Of1,---,0fx) is well defined.

Proposition 3.4.2. Given a Hermitian metric h on a holomorphic bundle E, there is
a unique connection V on E so that

(1) dh(o,7) = h(Va,7) + h(o,V7) for all o, 7 € A% (E) (V is “compatible” with h)
(2) VO =0
This unique connection is called the Chern connection on E.
Proof. V = V' + V%! where V%! = 9 and V! is uniquely determined by:
(3.3) dh(o,7) = h(V"0,7) + h(o, OT)
since h(A%'o,7) = 0 and h(o, A7) = 0. In more detail, let V* = 9 + M where, in
local coordinates, M is a k X k matrix with entries in Q;O. We have:

'U) = Z hijUﬂ)j

where 5 9
g = h (82Z 84)
Then B
dh(u,v) = h(Ou,v) + h(u,0v) + Z dhiju;v;
and

h(Vu, v) = h(0u,v) + h(uM,v).
Let M be the solution of the equation

h(ubl,v) Z dh;ju;v;
which is bilinear in u,v. Then V! = 9 + M will satisfy (3.3). O
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1,0
Ty
. N
ZTX,R X

&

v W =1v+ Iv

FIGURE 1. (Showing that ®(V'?) is a connection on Txg.) Since i0 =
v + Tv = Tv, R(iv) = IN(0) making R : Ty" — Tx g an isomorphism of
complex vector spaces with ¢ acting as ¢ on T)l(’O and as [ on T'x g.

Theorem 3.4.3. Let (M, 1) be a complex manifold with a Hermitian metric h = g — iw
and let V€ be the Levi-Civita connection for g. Then the following are equivalent.

(1) h is a Kdhler metric (dw =0).

(2) VLC(Io) = IVLC (o) for every real vector field o on X .

(3) The holomorphic part of the Chern connection is equal to the Levi-Civita con-
nection:

%(Vl,[)) — vLC
(See Fig 1.) So, the Chern connection on Tx ¢ is “ (V'€ 0) 7.

Proof. (3) = (2). The Chern connection is complex linear and the holomorphic part is
the part where ¢ = I:

R(io) = IR(0)
for o a section of Ty". So,
Vi (Io) = RV (o)) = RV (o)) = IR(V(0)) = IV*(0).
(2) = (1). Since V = VL€ is compatible with g = R(h), we are given that
d(g(o,7)) = g(Vo,7) + g(o,VT).
Replacing 7 with I we get g(o, IT) = w(o,7) and VIT = IVT by (2). So,
dw(o, 7)) =w(Vo,7) +w(o, V).
Apply both to vector field ¢, use rule df (¢) = ¢(f) and skew-symmetry of w:
d(w(o, 7)) =w(Veo,7) —w(Ver,0).
Cyclically permute the three vector fields:
o(w(7,9)) = w(Vor, ¢) —w(Ved,T)
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T(w(p,0)) =w(V,0,0) —w(V,0o,0).
Now use (2.1), the coordinate invariant definition of dw:
dw(¢,0,7) = ¢p(w(o, 7)) — o(w(®, 7)) + T(w(9, 0))
—W([¢, U]a 7—) + w([¢7 7—]7 U) - (U([O', 7—]7 ¢)
Since [¢, 0] = Vg0 — V¢ and w(p, 7) = w(7, ¢), this is:
dw(,0,7) = p(w(0,7)) + o (w(T, @) + T(w(0, 7))
+w (Vo (@) = V(0),7) + w(Vy(r) = V(0),0) + w(V.(0) = Vu(T),¢) = 0.
(1) = (3). The proof is by reduction to the standard case: When the metric h is
constant, V¢ = d and V" = (9,9) and R(9) = d. So, (3) holds. Since these are first
order differential equations, it suffices for h to be constant to first order. Thus, assuming

(1), we need to show that, at each point, the metric A can be made constant to first
order. This follows from the following lemma. 0

Lemma 3.4.4. If h is a Kdahler metric on X then, in a nbh of each point, there are
holomorphic coordinates z; so that the matriz of h:

0 0 o 0
hz‘j—h(a—m—%)—h(a—zxa—z)

is the identity matriz plus O(]z|?).

Proof. We can choose coordinates which are ortho-normal at the chosen point (z = 0).
This makes the constant term of h;; the identity matrix. But we also have linear terms:

— / 2
hij = 61‘]’ + €ij + Eij + O<|Z| )
where ¢;; is a linear combination of 2, (¢;; are holomorphic)
Z k
and €}; is a linear combination of Z; (¢}, are antiholomorphic):
/ 2 : tk—
Since h is conjugate symmetric we have:
/ ..

The key property of these numbers is:
Claim: If A is Kahler then

k

Proof: Since 96;; = 0 and 0z = 0 = 862]- =0, at the point z = 0 we have:

0=0w= %Z@eijdzi/\dzj = %Zefjdzk/\dzi/\dgj
ij ijk
where we recall that the £ factor comes from: —S(z) = £(2—2) (and dw = 0 is equivalent
k

to Ow = 0 = Ow). In order for these terms to cancel, we must have €}; = €, as claimed.
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Now let 1
Z;- = Zj + 5 ZEZZiZk.
Since eszizk is symmetric in z;, 2z, we have
dZ; = de + Z EZdeZZ = de + Z Eidei = de + O(|Z|)
which implies;

iz = = Yt + O

J
0 0z; 0 0
- = e R 8;ii — €;1)— + O(|z|?
52 = 2oz, ~ 20 g + OU=F)
So, up to terms of second order, we have:

, o 0 -
hij =h (8_2{7 8_7;> = Z(@ — €k ) e (G50 — Gjé)

k.t
=D (G — €ar) (Gt + ene + €40 (G50 — €y)
kot
since €0 = €y,
= Z OirOredje — €irOredje + din€redje + Oin€ipdje — Oindrec)y
= 0ij — €ij + €ij + € — € = 0y
In other words, the matrix (h;;) of h with respect to the new coordinates 2} is equal to

the identity matrix up to second order. This proves the Lemma and completes the proof
of Theorem 3.4.3. 0
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3.5. Examples of Kahler manifolds. An easy example is a Riemann surface. This
is a complex 1-dimensional and real 2-dimensional manifold. Any Hermitian metric is
Kahler since all 2-forms on a real 2-dimensional manifold are closed.

The next example is CP" = P*(C). We will construct the Fubini-Study metric on
complex projective space P"(C) and showed that it is a Kéhler metric. This will imply
that all smooth projective varieties over C are Kahler manifolds.

The outline of the construction is:

L (L,h)— wp < hy,

Given a holomorphic line bundle L on a complex manifold X, chose a hermitian form A
on L. Then, there is an associated 2-form wy, on X (called the Chern form of (L, h)).
This 2-form wy, is associated to a Hermitian metric h,, on X (h, # h) which, if we are
lucky, will be positive definite and therefore a Kahler metric. We will apply this to the
canonical line bundle S* over X = P"(C) to obtain the Fubini-Study metric on P"(C).

A line bundle L over X is the union over open sets U; of U; x C. For each U;, take
the unit section ¢;(v) = (v,1). These in general don’t match. So, there are functions
gij - UvZ N Uj — C* so that

oi(v) = gij(v)o;(v)

for all v € U; NUj. Since 0 = gj;01 we have 0; = ¢;;0; = §ij9;10%k. SO,

on U; NU; NUy. Conversely, any collection of maps g¢;; : U; N U; — C* satisfying the
equations in the box will uniquely determine a line bundle. If the g;; are holomorphic

functions, the line bundle will be a holomorphic bundle.

For example, g;; := s% is another collection of functions satisfying the same (boxed)
ij

equations. So, {g;;} gives another holomorphic line bundle L* which one can show is
the dual bundle to L.
Let h be a Hermitian metric on L. Let h; : U; — R* be the positive function given
by h;(v) = h(o;(v),0;(v)). Since o; = g;;0; we get:
hi = h(0i,0i) = G0 (05, 05) = 9i;Gijh;
Lemma 3.5.1. Conversely, any family of functions h; : Uy — R satisfying the equa-
tions h; = gi;gi;h; gives a Hermitian metric on L.

Proof. Let hi be another collections of functions so that hi = g;;gi;h;. On each U; let
fi = hi/hi. Then f; = hi/h; = g;g;h;/g;iGsihi = hi/hi = fi. So, f = fi = f;isa
globally defined function on X and h' = fh is another metric on L. O

For example, h} = hi satisfies

i = gL b,

Therefore, h} gives a metric on L*.

Let )

w; = =—00log h;.
2
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Note that
log h; = log gi; + log i; + log h;.
Since g;; is holomorphic, 0log gi; = 0. Since g;; is antiholomorphic, dlogg;; = 0. So,
1 = 1 -
(98 IOg hz = —88 10g hj = Cdj.
1 271

w; = —
27

So, w = w; is a well-defined 2-form on all of X. Also dw = dw+0w = 0 since 92 = 0 = a9

Theorem 3.5.2. Given a holomorphic line bundle L on a complex manifold X and a
Hermitian metric h on L, there is a closed form w on X of type (1,1) given locally by

1 —
w = —00dlog h.
2me
We call w the Chern form of (L, h).

Now let X = P*(C). Recall that this is the quotient space of C"™'\0 modulo the

relation
(20,21, 5y 2n) ~ (Azo, -+, Azp)

for any A # 0 € C. The equivalence class is denoted [zg, - , z,]. Another interpretation
is that P"(C) is the set of one dimensional subspaces A of C"™!. Each such A is uniquely
determined by any nonzero vector (zgp,---,z,) € A and we make the identification
A=z, "+, 2n]

Let S be the tautological line bundle over P"(C) given by

S={(A,v)]A €P"(C)and v € A} C P*(C) x C"*

This is “tautological” since the fiber over the point A € P*(C) is the space A C C"*1.
Let U; be the open subset of P" given by

Ui ={lz] |z # 0}.
Let o; be the section of S over U; given by
20 2 Zn
oi(A) = oy([z0, -+ s 2]) = (2_17 o= 1, ’ZT) '
This is well-defined since, e.g., the jth coordinate is
G2
Zi Az
o;(A) is the unique element of A with ith coordinate equal to 1. Comparing this with
o;([2]) = (z_} ’5_27... ,z_’;)
we see that
o; = ﬁaj.
Zq
So, the transition functions for S are g;; = z;/z; with dual gi; = i /%;.
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Since the line bundle S is a subbundle of the trivial bundle P"* x C**! it gets a
metric by restricting the standard metric on C**! given by h(z,2') = 3~ 2Z}. So h(z) =
h(z,z) = > |z|*. Since the ith coordinate of o; is 1 we get:

hlo) =1+ |z]*

J#
On the dual bundle S* (called the canonical bundle over P") we have
1
h*(o]) = —=—3-
NORED SETE
Using |z;|* = 2,7;, the Chern form of S* on U; is
1 = 1
i = ——001 — .
v 271 Og(l—FZZjEj)

We calculated this step by step using first the equation

gL = 9 _ 1IN OF
e N Do

510g( ! _): —szdzj.
1+ZZij 1+Z|Zj’2
Apply 0 using the quotient rule to get:
Alog | —=——— | =— 0
1+ 2% 1+ 1%1%)

where we used the formula 0(fdz;) = g—idzi A dZ;. At the origin z = 0 we get

1
w:%Zdz]/\dE]

which is the standard form corresponding to (a positive scalar multiple of) the standard
metric with matrix equal to the identity matrix (divided by 7). So, the corresponding
metric h,, is positive definite at the point z = 0. However, the space P"(C) is homoge-
neous (the same at every point). This is easier to see if we use a vector space without a
basis: Let V' be any n + 1 dimensional vector space over C and let P(V') be the space
of 1-dimensional subspaces of V. Then it is clear that every point is the same as every
other point. The tautological bundle S and its dual are also defined without choice of
coordinates. So, we can choose coordinates to make any point the center point z = 0.
So, the canonically defined metric h,, is positive definite at every point.

to get:

Theorem 3.5.3. The hermitian form h,, corresponding to the canonical Chern form w
on the dual S* of the tautological line bundle over P*(C) is positive definite and therefore
a Kahler metric.

This form h, is called the Fubini-Study metric on P"(C).

Corollary 3.5.4. Every smooth projective variety over C is a Kahler manifold.



