3. KÄHLER MANIFOLDS

A Kähler manifold is a complex manifold M with a Kähler form ω which is closed $(d \omega=0)$. A Kähler form is equivalent to a Hermitian metric h. We define these and show how they are related on a single vector space V, then on the tangent bundle of M. (However, on a single vector space, it doesn't make sense to talk about closed forms.)
3.1. Kähler forms. We started with the basic concept of a Kähler form. Suppose that V is a vector space over $\mathbb{C}: V \cong \mathbb{C}^{n}$ and $W_{\mathbb{R}}=\operatorname{Hom}(V, \mathbb{R})$,

$$
W_{\mathbb{C}}=W_{\mathbb{R}} \otimes \mathbb{C}=W^{1,0} \oplus W^{0,1}
$$

Recall that $W_{\mathbb{C}}=\operatorname{Hom}_{\mathbb{R}}(V, \mathbb{C})$ and $W^{1,0}=\operatorname{Hom}_{\mathbb{C}}(V, \mathbb{C}) \subset W_{\mathbb{C}}$. Now take $W^{1,1}=$ $W^{1,0} \otimes W^{0,1}$. We want to look at

$$
W_{\mathbb{R}}^{1,1}=W^{1,1} \cap \wedge^{2} W_{\mathbb{R}}
$$

Thus elements of $W_{\mathbb{R}}^{1,1}$ are alternating real forms of type $(1,1)$.
Example 3.1.1. The basic example is $V=\mathbb{C}^{n}$,

$$
\omega=\frac{i}{2} \sum_{j} d z_{j} \wedge d \bar{z}_{j}=\frac{i}{2} \sum\left(d x_{j}+i d y_{j}\right) \wedge\left(d x_{j}-i d y_{j}\right)=\sum d x_{j} \wedge d y_{j}
$$

Since $a \wedge b=a \otimes b-b \otimes a$, for $z=x+i y, z^{\prime}=x^{\prime}+i y^{\prime} \in \mathbb{C}^{n}$ this form is

$$
\omega\left(z, z^{\prime}\right)=\sum_{j}\left(x_{j} y_{j}^{\prime}-y_{j} x_{j}^{\prime}\right) .
$$

The first form of ω shows that it lies in $W^{1,1}$. The last form shows it is in $\wedge^{2} W_{\mathbb{R}}$. The scalar $\frac{i}{2}$ is needed to make the form real. All Kähler forms will be equivalent to these.
Lemma 3.1.2. $\omega \in W_{\mathbb{R}}^{1,1}$ if and only if $\omega: V \times V \rightarrow \mathbb{R}$ is a skew symmetric \mathbb{R}-bilinear form so that

$$
\begin{equation*}
\omega(I u, I v)=\omega(u, v) \tag{3.1}
\end{equation*}
$$

for all $u, v \in V$.
Proof. First note that the condition $\omega(I u, I v)=\omega(u, v)$ is equivalent to the condition

$$
\begin{equation*}
\omega(u, I v)+\omega(I u, v)=0 \tag{3.2}
\end{equation*}
$$

since $I^{2}=-1$. By definition, $W_{\mathbb{R}}^{1,1}$ is the set of skew-symmetric forms ω on V so that $\omega_{\mathbb{C}}=\omega \otimes \mathbb{C}$ lies in $W^{1,1}$. This is equivalent to the condition that $\omega_{\mathbb{C}}$ vanishes on pairs of vectors from $V^{1,0}$ or from $V^{0,1}$. But $V^{1,0}$ is the set of all vectors of the form

$$
\tilde{u}=u-i I u
$$

where $u \in V$ and

$$
\begin{gathered}
\omega(\tilde{u}, \tilde{v})=\omega(u-i I u, v-i I v) \\
=\omega(u, v)-\omega(I u, I v)-i(\omega(u, I v)+\omega(I u, v))
\end{gathered}
$$

which is zero if and only if (3.1) and (3.2) hold.

Note that (3.2) implies that

$$
g(u, v):=\omega(u, I v)
$$

is a symmetric bilinear pairing $g: V \times V \rightarrow \mathbb{R}$ since

$$
g(v, u)=\omega(v, I u)=-\omega(I u, v)=\omega(u, I v)=g(u, v)
$$

Definition 3.1.3. A hermitian form on a complex vector space V is defined to be a map $h: V \times V \rightarrow \mathbb{C}$ so that
(1) $h(u, v)$ is \mathbb{C}-linear in u
(2) $h(u, v)$ is \mathbb{C}-antilinear in v
(3) $h(v, u)=\overline{h(u, v)}$

Note that (3) implies that $h(v, v) \in \mathbb{R}$. The form h is said to be positive definite if $h(v, v)>0$ for all $v \neq 0$. A positive definite hermitian form on V is also called a Hermitian metric on V.

Proposition 3.1.4. There is a $1-1$ correspondence between hermitian forms h on V and forms $\omega \in W_{\mathbb{R}}^{1,1}$ given by

$$
\omega=-\Im h .
$$

Furthermore,

$$
h(u, v)=g(u, v)-i \omega(u, v)
$$

where $g: V \times V \rightarrow \mathbb{R}$ is given by $g(u, v)=\omega(u, I v)$.
Proof. For the second part, $h(u, I v)=g(u, I v)-i \omega(u, I v)$. Since $h(u, v)$ is conjugate linear in $v, h(u, I v)=-i h(u, v)=-\omega(u, v)-i g(u, v)$. Comparing complex parts gives $g(u, v)=\omega(u, I v)$.

Example 3.1.5. The standard positive definite hermitian form on \mathbb{C}^{n} is:

$$
\begin{aligned}
& h\left(z, z^{\prime}\right)=\sum z_{j} \bar{z}_{j}^{\prime}=\sum\left(x_{j}+i y_{j}\right)\left(x_{j}^{\prime}+i y_{j}^{\prime}\right) \\
& \quad=\underbrace{\sum\left(x_{j} x_{j}^{\prime}+y_{j} y_{j}^{\prime}\right)}_{g\left(z, z^{\prime}\right)}-i \underbrace{\sum\left(x_{j} y_{j}^{\prime}-y_{j} x_{j}^{\prime}\right)}_{\omega\left(z, z^{\prime}\right)}
\end{aligned}
$$

Definition 3.1.6. A Kähler form on V is a form $\omega \in W_{\mathbb{R}}^{1,1}$ whose corresponding hermitian form h is positive definite. In particular, Kähler forms are nondegenerate.
3.2. Kähler metrics. Suppose that (M, I) is an almost complex manifold. Then a Hermitian metric h on M is a Hermitian metric h_{x} on the tangent space $T_{M, x}$ at each point which varies smoothly with $x \in M$. Associated to h we have:

$$
\omega=-\Im h
$$

which is a 2-form on M which is also in $\Omega_{M}^{1,1}$ which is equivalent to the equation

$$
\omega(I u, I v)=\omega(u, v)
$$

for any two vectors $u, v \in T_{M, x}$ at any point $x \in M$. By Definition 3.1.6, ω is a Kähler form. However we usually want ω to be closed. We say that the Hermitian metric h is a Kähler metric if the corresponding Kähler form ω is closed.

Proposition 3.2.1. The real part of a Hermitian metric h is a Riemannian metric g on M which is also invariant under I:

$$
g(u, v)=\omega(u, I v)=g(I u, I v)
$$

Proof. We know that g is a symmetric real form. If $v \neq 0 \in T_{M, x}$ is a nonzero vector, $h(v, v)=\overline{h(v, v)}$ is a positive real number. So,

$$
g(v, v)=h(v, v)>0
$$

So, g is a Riemannian metric on M.
Note that M is oriented since any complex vector space has a natural real orientation.
Theorem 3.2.2. Given a Hermitian metric h on the complex manifold M, the volume form on M associated to the Riemannian metric $g=\Re h$ is equal to $\omega^{n} / n!$.

To prove this, we need the matrices for general h, ω in local coordinates:

$$
z=\left(z_{1}, \cdots, z_{n}\right): U \hookrightarrow \mathbb{C}^{n}, \quad z_{j}=x_{j}+i y_{j}
$$

and $\bar{z}=\left(\bar{z}_{1}, \cdots, \bar{z}_{n}\right)$ centered at $x_{0} \in U$. Then $d z_{j}, d \bar{z}_{j}$ form bases for $\Omega_{M, x_{0}}^{1,0}, \Omega_{M, x_{0}}^{0,1}$. These are $W^{1,0}, W^{0,1}$ for $V=T_{M, x_{0}}$. So $h \in \Omega_{M}^{1,1}$ is given by

$$
h=\sum \alpha_{i j} d z_{i} \otimes d \bar{z}_{j}
$$

where $\alpha_{i j}: M \rightarrow \mathbb{C}$ (notation: $\alpha_{i j} \in \Omega_{M, \mathbb{C}}^{0}$). These functions are given by:

$$
\alpha_{i j}=h\left(\frac{\partial}{\partial x_{i}}, \frac{\partial}{\partial x_{j}}\right) .
$$

Since $h(u, v)=\overline{h(v, u)}, \alpha_{j i}=\overline{\alpha_{i j}}$. Since $-\Im z=\frac{i}{2}(z-\bar{z})$, we have:

$$
\omega=-\Im h=\frac{i}{2} \sum\left(\alpha_{i j} d z_{i} \otimes d \bar{z}_{j}-\alpha_{j i} d \bar{z}_{i} \otimes d z_{j}\right)=\frac{i}{2} \sum \alpha_{i j} d z_{i} \wedge d \bar{z}_{j} .
$$

Proof of Theorem 3.2.2. By a \mathbb{C}-linear change of the coordinates $z=\left(z_{1}, \cdots, z_{n}\right)$, we can arrange for $\frac{\partial}{\partial x_{i}}$ to be ortho-normal at the point x_{0}. In other words,

$$
\alpha_{i j}\left(x_{0}\right)=h_{x_{0}}\left(\frac{\partial}{\partial x_{i}}, \frac{\partial}{\partial x_{j}}\right)=\delta_{i j}
$$

Then, at x_{0},

$$
\omega_{x_{0}}=\frac{i}{2} \sum d z_{j} \wedge d \bar{z}_{j}=\sum d x_{j} \wedge d y_{j}
$$

by Example 3.1.1. So,

$$
\omega^{n}=\sum_{\pi \in S_{n}} d x_{\pi(1)} \wedge d y_{\pi(1)} \wedge d x_{\pi(2)} \wedge d y_{\pi(2)} \wedge \cdots \wedge d x_{\pi(n)} \wedge d y_{\pi(n)}
$$

which is n ! times the volume form $d x_{1} \wedge d y_{1} \wedge \cdots \wedge d x_{n} \wedge d y_{n}$ at the point x_{0}. Since this hold at every point $x_{0} \in M, \omega^{n} / n!$ is the volume form at each point.

3.3. Kähler manifolds.

Definition 3.3.1. A Kähler manifold is a complex manifold with a Kähler metric which is, by definition, a Hermitian metric h so that ω is closed $(d \omega=0)$.
Corollary 3.3.2. On a compact Kähler manifold M, for every $1 \leq k \leq n$, the form ω^{k} is closed but not exact. I.e., $\left[\omega^{k}\right] \neq 0 \in H^{2 k}(M)$.

Proof. ω^{k} is clearly closed:

$$
d \omega^{k}=k \omega^{k-1} d \omega=0
$$

If $\omega^{k}=d \alpha$ then

$$
d\left(\alpha \wedge \omega^{n-k}\right)=d \alpha \wedge \omega^{n-k}=\omega^{n}
$$

which is impossible since the volume form is nonzero in $H^{2 n}(M)$ when M is an oriented compact manifold.

Corollary 3.3.3. A compact complex k-submanifold N of a Kähler manifold M cannot be the boundary of a (real) submanifold of M.
Proof. This follows immediately from Stokes' Theorem. If $N=\partial W$ then:

$$
\int_{W} d \omega^{k}=0=\int_{N} \omega^{k}=\operatorname{vol} N
$$

a contradiction, since ω^{k} is the volume form on N.
3.4. Connections. Given a real $C^{\infty} k$-dimensional vector bundle E on a real manifold X we want to take the derivative of a section of E. This is given by a connection. Recall that a connection ∇ on E is a linear map

$$
\nabla: A^{0}(E) \rightarrow A^{1}(E)=\Gamma\left(T_{X}^{*} \otimes_{\mathbb{R}} E\right)
$$

satisfying the Leibnitz equation

$$
\nabla(f \sigma)=d f \otimes \sigma+f \nabla \sigma
$$

for all $f: X \rightarrow \mathbb{R}\left(f \in \Omega_{X}^{0}\right), \sigma \in \Gamma E=A^{0}(E)=C^{\infty}(E)$.
Thus, ∇ takes a section σ of E and gives $\nabla(\sigma) \in A^{1}(E)$ which is a 1-form on X with coefficients in E :

$$
\nabla(\sigma) \in A^{1}(E)=\Gamma\left(T_{X}^{*} \otimes_{\mathbb{R}} E\right)=\Gamma \operatorname{Hom}_{\mathbb{R}}\left(T_{X}, E\right)
$$

We interpret $\nabla(\sigma)$ as the derivative of σ.
Analogy: Let $f: X \rightarrow \mathbb{R}$ be a smooth function. Then $D(f)=d f: T_{X} \rightarrow \mathbb{R}$ is a 1-form on X :

$$
d f \in \Gamma T_{X}^{*}=\Gamma \operatorname{Hom}\left(T_{X}, \mathbb{R}\right)
$$

Given a vector field ψ on $X, D_{\psi}(f)=d f(\psi)$ is the directional derivative of f in the direction ψ. This is at every $x \in X$. So, $D_{\psi}(f) \in \Omega_{X}^{0}$ is a smooth function on X.

For a connection we write:

$$
\nabla_{\psi}(\sigma):=\nabla(\sigma) \psi \in \Gamma E .
$$

This is the ∇-directional derivative of the section σ in the direction of the tangent vector field ψ.

Following our philosophy of concentrating on concepts and definitions (and skipping proofs of theorems), we reformulate the definition of a connection.

Lemma 3.4.1. If E, E^{\prime} are vector bundles on X then

$$
\operatorname{Hom}_{X}\left(E, E^{\prime}\right)=\Gamma \operatorname{Hom}_{\mathbb{R}}\left(E, E^{\prime}\right)=\operatorname{Hom}_{\Omega_{X}^{0}}\left(\Gamma E, \Gamma E^{\prime}\right)
$$

Proof. Locally, a homomorphism of vector bundles $E^{k} \rightarrow E^{\prime \ell}$ is given by a map

$$
M: X \rightarrow \operatorname{Hom}_{\mathbb{R}}\left(\mathbb{R}^{k}, \mathbb{R}^{\ell}\right)
$$

which is a family of $\ell \times k$ matrices $M(x)$, with entries $m_{i j}: X \rightarrow \mathbb{R}$.
Locally, sections of $E=X \times \mathbb{R}^{k}$ are given by k functions on X :

$$
u \in \Gamma E=\left(u_{1}, \cdots, u_{k}\right)=\sum u_{i} e_{i}
$$

where e_{i} are "basic sections" of E and $u_{i} \in \Omega_{X}^{0}$. I.e., ΓE is a free Ω_{X}^{0}-module. An Ω_{X}^{0}-morphism $M: \Gamma E \rightarrow \Gamma E^{\prime}$ is therefore given by:

$$
M(\sigma)=\sum u_{i} M\left(e_{i}\right)=\sum u_{i} m_{i j} e_{j}^{\prime}=\left(u_{1}, \cdots, u_{k}\right) M
$$

So, M is given by the same data: a matrix with entries $m_{i j} \in \Omega_{X}^{0}$.
For a connection $\nabla: \Gamma E \rightarrow A^{1}(E), \Gamma E, A^{1}(E)$ are both Ω_{X}^{0} modules. But ∇ is not a homomorphism of Ω_{X}^{0} modules:

$$
\nabla(f \sigma)=d f \sigma+f \nabla(\sigma)
$$

However, if we have another connection ∇^{\prime},

$$
\nabla^{\prime}(f \sigma)=d f \sigma+f \nabla^{\prime}(\sigma)
$$

So, the difference

$$
\left(\nabla-\nabla^{\prime}\right)(f \sigma)=f\left(\nabla-\nabla^{\prime}\right) \sigma
$$

is a homomorphism of Ω_{X}-modules. Analogously to the proof of Lemma 3.4.1 such morphisms are given by matrices $M=\left(m_{i j}\right)$ with $m_{i j} \in \Omega_{X}^{1}$.

In local coordinates, d is a connection. So, an arbitrary connection is given by $\nabla=$ $d+\varphi$ or:

$$
\nabla\left(f_{1}, \cdots, f_{k}\right)=\left(d f_{1}, \cdots, d f_{k}\right)+\left(f_{1}, \cdots, f_{k}\right) M
$$

where M is a $k \times k$ matrix with entries in Ω_{X}^{1}.
If X has a Riemannian metric g then recall that the Levi-Civita connection $\nabla=\nabla^{L C}$ is the unique connection on $E=T_{M}$ having the properties:
(1) $d g(\sigma, \tau)=g(\nabla \sigma, \tau)+g(\sigma, \nabla \tau)(\nabla$ is compatible with $g)$
(2) $\nabla(\tau) \sigma-\nabla(\sigma) \tau=[\sigma, \tau]$ usually written as:

$$
\nabla_{\sigma}(\tau)-\nabla_{\tau}(\sigma)=[\sigma, \tau]
$$

for any two vector fields σ, τ on X.
As discussed in class, Equation (1) says that, for any vector field ψ on X,

$$
d g(\sigma, \tau)(\psi)=g\left(\nabla_{\psi} \sigma, \tau\right)+g\left(\sigma, \nabla_{\psi} \tau\right)
$$

Explanation: Since $g(\sigma, \tau) \in \Omega_{X}^{0}$, all three terms in Equation (1) are 1-forms on X. For example, if $\nabla \sigma=\sum \xi_{i} \alpha_{i}$ where ξ_{i} are vector fields and α_{i} are 1-forms on X, then

$$
g(\nabla \sigma, \tau)=\sum g\left(\xi_{i}, \tau\right) \alpha_{i}
$$

Applying both sides to the vector field ψ we get:

$$
g(\nabla \sigma, \tau)(\psi)=\sum g\left(\xi_{i}, \tau\right) \alpha_{i}(\psi)=\sum g\left(\xi_{i} \alpha_{i}(\psi), \tau\right)=g(\nabla \sigma(\psi), \tau)=g\left(\nabla_{\psi} \sigma, \tau\right)
$$

Recall that a connection on a smooth bundle E over X is a linear map

$$
\nabla: \Gamma E=A^{0}(E) \rightarrow A^{1}(E)
$$

satisfying Leibniz rule. When X is a complex manifold and E is a holomorphic bundle, $A^{0}(E), A^{1}(E)$ are the same set as before but with more structure:

$$
A^{1}(E)=\Gamma\left(T_{X}^{*} \otimes_{\mathbb{R}} E\right)=\Gamma\left(T_{X, \mathbb{C}}^{*} \otimes_{\mathbb{C}} E\right)=A^{1,0}(E) \otimes A^{0,1}(E)
$$

and $A^{0}(E)=A^{0,0}(E)$ is still the space of smooth sections of E. Then, any connection

$$
\nabla: A^{0,0}(E) \rightarrow A^{1}(E)=A^{1,0}(E) \otimes A^{0,1}(E)
$$

has two components $\nabla^{1,0}, \nabla^{0,1}$. Last time we showed that

$$
\bar{\partial}_{E}: A^{0,0}(E) \rightarrow A^{0,1}(E)
$$

given in local coordinates by $\bar{\partial}_{U}\left(f_{1}, \cdots, f_{k}\right)=\left(\bar{\partial} f_{1}, \cdots, \bar{\partial} f_{k}\right)$ is well defined.
Proposition 3.4.2. Given a Hermitian metric h on a holomorphic bundle E, there is a unique connection ∇ on E so that
(1) $d h(\sigma, \tau)=h(\nabla \sigma, \tau)+h(\sigma, \nabla \tau)$ for all $\sigma, \tau \in A^{0,0}(E)(\nabla$ is "compatible" with $h)$
(2) $\nabla^{0,1}=\bar{\partial}_{E}$

This unique connection is called the Chern connection on E.
Proof. $\nabla=\nabla^{1,0}+\nabla^{0,1}$ where $\nabla^{0,1}=\bar{\partial}_{E}$ and $\nabla^{1,0}$ is uniquely determined by:

$$
\begin{equation*}
d h(\sigma, \tau)=h\left(\nabla^{1,0} \sigma, \tau\right)+h(\sigma, \bar{\partial} \tau) \tag{3.3}
\end{equation*}
$$

since $h\left(\Delta^{0,1} \sigma, \tau\right)=0$ and $h\left(\sigma, \Delta^{1,0} \tau\right)=0$. In more detail, let $\nabla^{1,0}=\partial+M$ where, in local coordinates, M is a $k \times k$ matrix with entries in $\Omega_{X}^{1,0}$. We have:

$$
h(u, v)=\sum h_{i j} u_{i} v_{j}
$$

where

$$
h_{i j}=h\left(\frac{\partial}{\partial z_{i}}, \frac{\partial}{\partial \bar{z}_{j}}\right) .
$$

Then

$$
d h(u, v)=h(\partial u, v)+h(u, \bar{\partial} v)+\sum d h_{i j} u_{i} v_{j}
$$

and

$$
h\left(\nabla^{1,0} u, v\right)=h(\partial u, v)+h(u M, v) .
$$

Let M be the solution of the equation

$$
h(u M, v)=\sum d h_{i j} u_{i} v_{j}
$$

which is bilinear in u, v. Then $\nabla^{1,0}=\partial+M$ will satisfy (3.3).

Figure 1. (Showing that $\Re\left(\nabla^{1,0}\right)$ is a connection on $T_{X, \mathbb{R}}$.) Since $i \tilde{v}=$ $i v+I v=\widetilde{I v}, \Re(i \tilde{v})=I \Re(\tilde{v})$ making $\Re: T_{X}^{1,0} \rightarrow T_{X, \mathbb{R}}$ an isomorphism of complex vector spaces with i acting as i on $T_{X}^{1,0}$ and as I on $T_{X, \mathbb{R}}$.

Theorem 3.4.3. Let (M, I) be a complex manifold with a Hermitian metric $h=g-i \omega$ and let $\nabla^{L C}$ be the Levi-Civita connection for g. Then the following are equivalent.
(1) h is a Kähler metric $(d \omega=0)$.
(2) $\nabla^{L C}(I \sigma)=I \nabla^{L C}(\sigma)$ for every real vector field σ on X.
(3) The holomorphic part of the Chern connection is equal to the Levi-Civita connection:

$$
\Re\left(\nabla^{1,0}\right)=\nabla^{L C}
$$

(See Fig 1.) So, the Chern connection on $T_{X, \mathrm{C}}$ is " $\left(\nabla^{L C}, \bar{\partial}\right)$ ".
Proof. (3) $\Rightarrow(2)$. The Chern connection is complex linear and the holomorphic part is the part where $i=I$:

$$
\Re(i \sigma)=I \Re(\sigma)
$$

for σ a section of $T_{X}^{1,0}$. So,

$$
\nabla^{L C}(I \sigma)=\Re\left(\nabla^{1,0}(I \sigma)\right)=\Re\left(i \nabla^{1,0}(\sigma)\right)=I \Re\left(\nabla^{1,0}(\sigma)\right)=I \nabla^{L C}(\sigma) .
$$

$(2) \Rightarrow(1)$. Since $\nabla=\nabla^{L C}$ is compatible with $g=\Re(h)$, we are given that

$$
d(g(\sigma, \tau))=g(\nabla \sigma, \tau)+g(\sigma, \nabla \tau)
$$

Replacing τ with $I \tau$ we get $g(\sigma, I \tau)=\omega(\sigma, \tau)$ and $\nabla I \tau=I \nabla \tau$ by (2). So,

$$
d(\omega(\sigma, \tau))=\omega(\nabla \sigma, \tau)+\omega(\sigma, \nabla \tau)
$$

Apply both to vector field ϕ, use rule $d f(\phi)=\phi(f)$ and skew-symmetry of ω :

$$
\phi(\omega(\sigma, \tau))=\omega\left(\nabla_{\phi} \sigma, \tau\right)-\omega\left(\nabla_{\phi} \tau, \sigma\right) .
$$

Cyclically permute the three vector fields:

$$
\sigma(\omega(\tau, \phi))=\omega\left(\nabla_{\sigma} \tau, \phi\right)-\omega\left(\nabla_{\sigma} \phi, \tau\right)
$$

$$
\tau(\omega(\phi, \sigma))=\omega\left(\nabla_{\tau} \phi, \sigma\right)-\omega\left(\nabla_{\tau} \sigma, \phi\right)
$$

Now use (2.1), the coordinate invariant definition of $d \omega$:

$$
\begin{gathered}
d \omega(\phi, \sigma, \tau)=\phi(\omega(\sigma, \tau))-\sigma(\omega(\phi, \tau))+\tau(\omega(\phi, \sigma)) \\
-\omega([\phi, \sigma], \tau)+\omega([\phi, \tau], \sigma)-\omega([\sigma, \tau], \phi)
\end{gathered}
$$

Since $[\phi, \sigma]=\nabla_{\phi} \sigma-\nabla_{\sigma} \phi$ and $\omega(\phi, \tau)=\omega(\tau, \phi)$, this is:

$$
\begin{gathered}
d \omega(\phi, \sigma, \tau)=\phi(\omega(\sigma, \tau))+\sigma(\omega(\tau, \phi))+\tau(\omega(\phi, \sigma)) \\
+\omega\left(\nabla_{\sigma}(\phi)-\nabla_{\phi}(\sigma), \tau\right)+\omega\left(\nabla_{\phi}(\tau)-\nabla_{\tau}(\phi), \sigma\right)+\omega\left(\nabla_{\tau}(\sigma)-\nabla_{\sigma}(\tau), \phi\right)=0 .
\end{gathered}
$$

$(1) \Rightarrow(3)$. The proof is by reduction to the standard case: When the metric h is constant, $\nabla^{L C}=d$ and $\nabla^{C h}=(\partial, \bar{\partial})$ and $\Re(\partial)=d$. So, (3) holds. Since these are first order differential equations, it suffices for h to be constant to first order. Thus, assuming (1), we need to show that, at each point, the metric h can be made constant to first order. This follows from the following lemma.

Lemma 3.4.4. If h is a Kähler metric on X then, in a nbh of each point, there are holomorphic coordinates z_{i} so that the matrix of h :

$$
h_{i j}=h\left(\frac{\partial}{\partial x_{i}}, \frac{\partial}{\partial x_{j}}\right)=h\left(\frac{\partial}{\partial z_{i}}, \frac{\partial}{\partial \bar{z}_{j}}\right)
$$

is the identity matrix plus $O\left(|z|^{2}\right)$.
Proof. We can choose coordinates which are ortho-normal at the chosen point $(z=0)$. This makes the constant term of $h_{i j}$ the identity matrix. But we also have linear terms:

$$
h_{i j}=\delta_{i j}+\epsilon_{i j}+\epsilon_{i j}^{\prime}+O\left(|z|^{2}\right)
$$

where $\epsilon_{i j}$ is a linear combination of z_{k} ($\epsilon_{i j}$ are holomorphic)

$$
\epsilon_{i j}=\sum \epsilon_{i j}^{k} z_{k}
$$

and $\epsilon_{i j}^{\prime}$ is a linear combination of $\bar{z}_{k}\left(\epsilon_{i j}^{\prime}\right.$ are antiholomorphic):

$$
\epsilon_{i j}^{\prime}=\sum \epsilon_{i j}^{\prime k} \bar{z}_{k}
$$

Since h is conjugate symmetric we have:

$$
\epsilon_{i j}^{\prime}=\bar{\epsilon}_{j i}
$$

The key property of these numbers is:
Claim: If h is Kähler then

$$
\epsilon_{i j}^{k}=\epsilon_{k j}^{i}
$$

Proof: Since $\partial \delta_{i j}=0$ and $\partial \bar{z}_{k}=0 \Rightarrow \partial \epsilon_{i j}^{\prime}=0$, at the point $z=0$ we have:

$$
0=\partial \omega=\frac{i}{2} \sum_{i j} \partial \epsilon_{i j} d z_{i} \wedge d \bar{z}_{j}=\frac{i}{2} \sum_{i j k} \epsilon_{i j}^{k} d z_{k} \wedge d z_{i} \wedge d \bar{z}_{j}
$$

where we recall that the $\frac{i}{2}$ factor comes from: $-\Im(z)=\frac{i}{2}(z-\bar{z})$ (and $d \omega=0$ is equivalent to $\partial \omega=0=\bar{\partial} \omega)$. In order for these terms to cancel, we must have $\epsilon_{i j}^{k}=\epsilon_{k j}^{i}$ as claimed.

Now let

$$
z_{j}^{\prime}=z_{j}+\frac{1}{2} \sum \epsilon_{i j}^{k} z_{i} z_{k}
$$

Since $\epsilon_{i j}^{k} z_{i} z_{k}$ is symmetric in z_{i}, z_{k}, we have

$$
d z_{j}^{\prime}=d z_{j}+\sum \epsilon_{i j}^{k} z_{k} d z_{i}=d z_{j}+\sum \epsilon_{i j} d z_{i}=d z_{j}+O(|z|)
$$

which implies;

$$
\begin{gathered}
d z_{j}=d z_{j}^{\prime}-\sum \epsilon_{i j} d z_{i}^{\prime}+O\left(|z|^{2}\right) \\
\frac{\partial}{\partial z_{i}^{\prime}}=\sum \frac{\partial z_{j}}{\partial z_{i}^{\prime}} \frac{\partial}{\partial z_{j}}=\sum\left(\delta_{i j}-\epsilon_{i j}\right) \frac{\partial}{\partial z_{j}}+O\left(|z|^{2}\right)
\end{gathered}
$$

So, up to terms of second order, we have:

$$
\begin{aligned}
h_{i j}^{\prime} & =h\left(\frac{\partial}{\partial z_{i}^{\prime}}, \frac{\partial}{\partial \bar{z}_{j}^{\prime}}\right)=\sum_{k, \ell}\left(\delta_{i k}-\epsilon_{i k}\right) h_{k \ell}\left(\delta_{j \ell}-\bar{\epsilon}_{j \ell}\right) \\
& =\sum_{k, \ell}\left(\delta_{i k}-\epsilon_{i k}\right)\left(\delta_{k \ell}+\epsilon_{k \ell}+\epsilon_{k \ell}^{\prime}\right)\left(\delta_{j \ell}-\epsilon_{\ell j}^{\prime}\right)
\end{aligned}
$$

since $\bar{\epsilon}_{j \ell}=\epsilon_{\ell j}^{\prime}$,

$$
\begin{gathered}
=\sum \delta_{i k} \delta_{k \ell} \delta_{j \ell}-\epsilon_{i k} \delta_{k \ell} \delta_{j \ell}+\delta_{i k} \epsilon_{k \ell} \delta_{j \ell}+\delta_{i k} \epsilon_{k \ell}^{\prime} \delta_{j \ell}-\delta_{i k} \delta_{k \ell} \epsilon_{j \ell}^{\prime} \\
=\delta_{i j}-\epsilon_{i j}+\epsilon_{i j}+\epsilon_{i j}^{\prime}-\epsilon_{i j}^{\prime}=\delta_{i j}
\end{gathered}
$$

In other words, the matrix $\left(h_{i j}^{\prime}\right)$ of h with respect to the new coordinates z_{j}^{\prime} is equal to the identity matrix up to second order. This proves the Lemma and completes the proof of Theorem 3.4.3.
3.5. Examples of Kähler manifolds. An easy example is a Riemann surface. This is a complex 1-dimensional and real 2-dimensional manifold. Any Hermitian metric is Kähler since all 2-forms on a real 2-dimensional manifold are closed.

The next example is $\mathbb{C} P^{n}=\mathbb{P}^{n}(\mathbb{C})$. We will construct the Fubini-Study metric on complex projective space $\mathbb{P}^{n}(\mathbb{C})$ and showed that it is a Kähler metric. This will imply that all smooth projective varieties over \mathbb{C} are Kähler manifolds.

The outline of the construction is:

$$
L \mapsto(L, h) \mapsto \omega_{L} \leftrightarrow h_{\omega}
$$

Given a holomorphic line bundle L on a complex manifold X, chose a hermitian form h on L. Then, there is an associated 2-form ω_{L} on X (called the Chern form of (L, h)). This 2-form ω_{L} is associated to a Hermitian metric h_{ω} on $X\left(h_{\omega} \neq h\right)$ which, if we are lucky, will be positive definite and therefore a Kähler metric. We will apply this to the canonical line bundle S^{*} over $X=\mathbb{P}^{n}(\mathbb{C})$ to obtain the Fubini-Study metric on $\mathbb{P}^{n}(\mathbb{C})$.

A line bundle L over X is the union over open sets U_{i} of $U_{i} \times \mathbb{C}$. For each U_{i}, take the unit section $\sigma_{i}(v)=(v, 1)$. These in general don't match. So, there are functions $g_{i j}: U_{i} \cap U_{j} \rightarrow \mathbb{C}^{\times}$so that

$$
\sigma_{i}(v)=g_{i j}(v) \sigma_{j}(v)
$$

for all $v \in U_{i} \cap U_{j}$. Since $\sigma_{j}=g_{j k} \sigma_{k}$ we have $\sigma_{i}=g_{i j} \sigma_{j}=g_{i j} g_{j k} \sigma_{k}$. So,

$$
g_{i k}=g_{i j} g_{j k}
$$

on $U_{i} \cap U_{j} \cap U_{k}$. Conversely, any collection of maps $g_{i j}: U_{i} \cap U_{j} \rightarrow \mathbb{C}^{\times}$satisfying the equations in the box will uniquely determine a line bundle. If the $g_{i j}$ are holomorphic functions, the line bundle will be a holomorphic bundle.

For example, $g_{i j}^{*}:=\frac{1}{g_{i j}}$ is another collection of functions satisfying the same (boxed) equations. So, $\left\{g_{i j}^{*}\right\}$ gives another holomorphic line bundle L^{*} which one can show is the dual bundle to L.

Let h be a Hermitian metric on L. Let $h_{i}: U_{i} \rightarrow \mathbb{R}^{+}$be the positive function given by $h_{i}(v)=h\left(\sigma_{i}(v), \sigma_{i}(v)\right)$. Since $\sigma_{i}=g_{i j} \sigma_{j}$ we get:

$$
h_{i}=h\left(\sigma_{i}, \sigma_{i}\right)=g_{i j} \overline{g_{i j}} h\left(\sigma_{j}, \sigma_{j}\right)=g_{i j} \overline{g_{i j}} h_{j}
$$

Lemma 3.5.1. Conversely, any family of functions $h_{i}: U_{i} \rightarrow \mathbb{R}^{+}$satisfying the equations $h_{i}=g_{i j} \overline{g_{i j}} h_{j}$ gives a Hermitian metric on L.

Proof. Let h_{i}^{\prime} be another collections of functions so that $h_{i}^{\prime}=g_{i j} \overline{g_{i j}} h_{j}^{\prime}$. On each U_{i} let $f_{i}=h_{i}^{\prime} / h_{i}$. Then $f_{j}=h_{j}^{\prime} / h_{j}=g_{j i} \overline{g_{j i}} h_{i}^{\prime} / g_{j i} \overline{g_{j i}} h_{i}=h_{i}^{\prime} / h_{i}=f_{i}$. So, $f=f_{i}=f_{j}$ is a globally defined function on X and $h^{\prime}=f h$ is another metric on L.

For example, $h_{i}^{*}=\frac{1}{h_{i}}$ satisfies

$$
h_{i}^{*}=g_{i j}^{*}{\overline{g_{i j}}}^{*} h_{j}^{*}
$$

Therefore, h_{i}^{*} gives a metric on L^{*}.
Let

$$
\omega_{i}=\frac{1}{2 \pi i} \partial \bar{\partial} \log h_{i}
$$

Note that

$$
\log h_{i}=\log g_{i j}+\log \overline{g_{i j}}+\log h_{j}
$$

Since $g_{i j}$ is holomorphic, $\bar{\partial} \log g_{i j}=0$. Since $\overline{g_{i j}}$ is antiholomorphic, $\partial \log \overline{g_{i j}}=0$. So,

$$
\omega_{i}=\frac{1}{2 \pi i} \partial \bar{\partial} \log h_{i}=\frac{1}{2 \pi i} \partial \bar{\partial} \log h_{j}=\omega_{j}
$$

So, $\omega=\omega_{i}$ is a well-defined 2-form on all of X. Also $d \omega=\partial \omega+\bar{\partial} \omega=0$ since $\partial^{2}=0=\bar{\partial}^{2}$.
Theorem 3.5.2. Given a holomorphic line bundle L on a complex manifold X and a Hermitian metric h on L, there is a closed form ω on X of type $(1,1)$ given locally by

$$
\omega=\frac{1}{2 \pi i} \partial \bar{\partial} \log h
$$

We call ω the Chern form of (L, h).
Now let $X=\mathbb{P}^{n}(\mathbb{C})$. Recall that this is the quotient space of $\mathbb{C}^{n+1} \backslash 0$ modulo the relation

$$
\left(z_{0}, z_{1}, \cdots, z_{n}\right) \sim\left(\lambda z_{0}, \cdots, \lambda z_{n}\right)
$$

for any $\lambda \neq 0 \in \mathbb{C}$. The equivalence class is denoted $\left[z_{0}, \cdots, z_{n}\right]$. Another interpretation is that $\mathbb{P}^{n}(\mathbb{C})$ is the set of one dimensional subspaces Δ of \mathbb{C}^{n+1}. Each such Δ is uniquely determined by any nonzero vector $\left(z_{0}, \cdots, z_{n}\right) \in \Delta$ and we make the identification $\Delta=\left[z_{0}, \cdots, z_{n}\right]$.

Let S be the tautological line bundle over $\mathbb{P}^{n}(\mathbb{C})$ given by

$$
S=\left\{(\Delta, v) \mid \Delta \in \mathbb{P}^{n}(\mathbb{C}) \text { and } v \in \Delta\right\} \subset \mathbb{P}^{n}(\mathbb{C}) \times \mathbb{C}^{n+1}
$$

This is "tautological" since the fiber over the point $\Delta \in \mathbb{P}^{n}(\mathbb{C})$ is the space $\Delta \subset \mathbb{C}^{n+1}$.
Let U_{i} be the open subset of \mathbb{P}^{n} given by

$$
U_{i}=\left\{[z] \mid z_{i} \neq 0\right\} .
$$

Let σ_{i} be the section of S over U_{i} given by

$$
\sigma_{i}(\Delta)=\sigma_{i}\left(\left[z_{0}, \cdots, z_{n}\right]\right)=\left(\frac{z_{0}}{z_{i}}, \cdots, \frac{z_{i}}{z_{i}}=1, \cdots, \frac{z_{n}}{z_{i}}\right) .
$$

This is well-defined since, e.g., the j th coordinate is

$$
\frac{z_{j}}{z_{i}}=\frac{\lambda z_{j}}{\lambda z_{i}}
$$

$\sigma_{i}(\Delta)$ is the unique element of Δ with i th coordinate equal to 1 . Comparing this with

$$
\sigma_{j}([z])=\left(\frac{z_{0}}{z_{j}}, \cdots, \frac{z_{i}}{z_{j}}, \cdots, \frac{z_{n}}{z_{j}}\right)
$$

we see that

$$
\sigma_{i}=\frac{z_{j}}{z_{i}} \sigma_{j}
$$

So, the transition functions for S are $g_{i j}=z_{j} / z_{i}$ with dual $g_{i j}^{*}=z_{i} / z_{j}$.

Since the line bundle S is a subbundle of the trivial bundle $\mathbb{P}^{n} \times \mathbb{C}^{n+1}$ it gets a metric by restricting the standard metric on \mathbb{C}^{n+1} given by $h\left(z, z^{\prime}\right)=\sum z_{j} \bar{z}_{j}^{\prime}$. So $h(z)=$ $h(z, z)=\sum\left|z_{j}\right|^{2}$. Since the i th coordinate of σ_{i} is 1 we get:

$$
h\left(\sigma_{i}\right)=1+\sum_{j \neq i}\left|z_{j}\right|^{2} .
$$

On the dual bundle S^{*} (called the canonical bundle over \mathbb{P}^{n}) we have

$$
h^{*}\left(\sigma_{i}^{*}\right)=\frac{1}{1+\sum\left|z_{j}\right|^{2}} .
$$

Using $\left|z_{j}\right|^{2}=z_{j} \overline{z_{j}}$, the Chern form of S^{*} on U_{i} is

$$
\omega_{i}=\frac{1}{2 \pi i} \partial \bar{\partial} \log \left(\frac{1}{1+\sum z_{j} \bar{z}_{j}}\right) .
$$

We calculated this step by step using first the equation

$$
\bar{\partial} \log \frac{1}{f}=-\frac{\bar{\partial} f}{f}=-\frac{1}{f} \sum \frac{\partial f}{\partial \bar{z}_{j}} d \bar{z}_{j}
$$

to get:

$$
\bar{\partial} \log \left(\frac{1}{1+\sum z_{j} \bar{z}_{j}}\right)=\frac{-\sum z_{j} d \bar{z}_{j}}{1+\sum\left|z_{j}\right|^{2}}
$$

Apply ∂ using the quotient rule to get:

$$
\partial \bar{\partial} \log \left(\frac{1}{1+\sum z_{j} \bar{z}_{j}}\right)=-\left(\frac{\left(1+\sum\left|z_{j}\right|^{2}\right) \sum d z_{j} \wedge d \bar{z}_{j}-\sum z_{i} \bar{z}_{j} d z_{i} \wedge d \bar{z}_{j}}{\left(1+\sum\left|z_{j}\right|^{2}\right)^{2}}\right)
$$

where we used the formula $\partial\left(f d \bar{z}_{j}\right)=\sum \frac{\partial f}{\partial z_{i}} d z_{i} \wedge d \bar{z}_{j}$. At the origin $z=0$ we get

$$
\omega=\frac{i}{2 \pi} \sum d z_{j} \wedge d \bar{z}_{j}
$$

which is the standard form corresponding to (a positive scalar multiple of) the standard metric with matrix equal to the identity matrix (divided by π). So, the corresponding metric h_{ω} is positive definite at the point $z=0$. However, the space $\mathbb{P}^{n}(\mathbb{C})$ is homogeneous (the same at every point). This is easier to see if we use a vector space without a basis: Let V be any $n+1$ dimensional vector space over \mathbb{C} and let $\mathbb{P}(V)$ be the space of 1-dimensional subspaces of V. Then it is clear that every point is the same as every other point. The tautological bundle S and its dual are also defined without choice of coordinates. So, we can choose coordinates to make any point the center point $z=0$. So, the canonically defined metric h_{ω} is positive definite at every point.

Theorem 3.5.3. The hermitian form h_{ω} corresponding to the canonical Chern form ω on the dual S^{*} of the tautological line bundle over $\mathbb{P}^{n}(\mathbb{C})$ is positive definite and therefore a Kähler metric.

This form h_{ω} is called the Fubini-Study metric on $\mathbb{P}^{n}(\mathbb{C})$.
Corollary 3.5.4. Every smooth projective variety over \mathbb{C} is a Kähler manifold.

