
TOWARDS THE SOLID ANALYTIC RING: LOCALLY COMPACT ABELIAN
GROUPS

1. The ring of solid integers

In the previous talk we introduced the notion of analytic ring and proved that it has a good category of
complete modules. Our next task is to construct non-trivial examples of such objects. The first analytic
ring constructed, and the one mostly used in algebraic and non-archimidean geometry, is the ring of solid
integers. With no more additional words let us give the main definition:

Definition 1.1. The analytic ring of solid integers Z⌅ is the analytic ring with underline condensed ring
Z and whose measures at S 2 Prof are given by

Z⌅[S] = lim �
i

Z[Si],

where we write S = lim �i
Si as a limit of finite sets.

Let us discuss very briefly discuss the definition of the solid integers. In Lecture 3 we saw that the free
condensed abelian group generated by a profinite set S = lim �i

Si has the following shape:

Z[S] =
[

n

Z[S]`1n,

where Z[S]`1n is the profinite set written as

Z[S]`1n = lim �
i

Z[Si]`1n,

where Z[Si]`1n is the finite set of sums
P

s2Si
ass with

P
s |as|  n. Then, we can think of Z[S] as

some kind of `1-Z-valued measures on the profinite set S. On the other hand, let C(S,Z) be the space of
continuous functions from S to Z. Since Z is discrete we can write

C(S,Z) = lim�!
i

C(Si,Z),

taking Z-duals we see that
Z⌅[S] = C(S,Z)_.

Thus, Z⌅[S] is the space of Z-valued Radon measures of C(S,Z) (in analogy to the space of real or complex
valued Radon measures that we will recall in a later talk).

Example 1.2. Let S = N t {1} be the one point compactification of the integers. We can write

N t {1} = lim �
n2N

{1, . . . , n} [ {1}.

We have
Z⌅[N t {1}] =

Y

n2N[{1}

ZTn
.

In particular
Z⌅[N t {1}]/(1) = Z[[T ]]

is isomorphic to a power series ring over Z in one variable.

Our main goal is to prove the following theorem.
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Theorem 1.3 ([Sch19, Theorem 5.8]). The object Z⌅ is an analytic ring. More concretely, for any profinite

set S and any connective complex C• with terms Ci isomorphic to an arbitrary direct sum of Z⌅[S0
] for

varying profinite sets S
0
, the natural map

RHomZ(Z⌅[S], C•)! RHomZ(Z[S], C•)

is an equivalence. Furthermore, there is a full subcategory Solid ⇢ CondAb of solid abelian groups with

compact projective objects given by Z⌅[S] for S-profinite, and such that the animation of Solid is naturally

equivalent to the category D�0(Z⌅) of completed connective Z⌅-modules.

In order to prove Theorem 1.3 we need to study the objects Z⌅[S] and condensed Ext functors between
them. In Example 1.2 we saw that the solid abelian group generated by Nt{1} is isomorphic to

Q
Nt{1} Z,

we will show in the next lectures that any solid abelian group generated by a profinite set has this shape,
namely, it is a direct product of copies of Z. Thus, we need to study Ext’s functors of direct sums of objectsQ

I Z. To accomplish this goal we shall use the short exact sequence

0! Z! R! R/Z! 0

and translate the problem to the study of Ext functors of products of tori and copies of R. This naturally
leads to the study of locally compact abelian group inside the category of condensed abelian groups.

2. Locally compact abelian groups and condensed mathematics

Recall that a Hausdorff topological space X is locally compact if any point x 2 X has a basis consisting
con compact neighbourhoods of x. A Hausdorff topological abelian group is said locally compact if it is
locally compact as a topological space. By definition, a locally compact Hausdorff space X has closed
points and it is compactly generated, in particular its sheaf X on Prof is a condensed set and the underline
topological space X(⇤)top is naturally homeomorphic to X. Thus, we do not lose any topological information
by working with X instead.

We recall the classification theorem of locally compact abelian groups:

Theorem 2.1. (1) Let A be a locally compact abelian group, then there is an integer n 2 N and an

isomorphism A ⇠= Rn ⇥A
0
where A

0
admits an open compact subgroup.

(2) The Pontrjagin dual functor A 7! D(A) = Hom
co
(A,T) (where T = R/Z is the torus and the Hom

co

space has the compact open topology) takes values in locally compact abelian groups, and induces

a contravariant equivalence in the category of locally compact abelian groups. The biduality map

A! D(D(A)) is an isomorphism.

(3) The Pontrjagin duality functor A 7! D(A) restricts to a contravariant duality between compact

abelian groups and discrete abelian groups.

The first point to check is that the Pontrjagin duality functor is naturally given by the Hom functor as
condensed abelian groups:

Proposition 2.2 ([Sch19, Proposition 4.2]). Let X and Y be Hausdorff topological spaces with X compactly

generated, let Map
co
(X,Y ) denote the space of continuous maps X ! Y endowed with the compact open

topology. Then there is a natural equivalence

Map
co
(X,Y ) ⇠= Map(X,Y ),

where Map(X,Y ) is the condensed set defined by

Map(X,Y )(S) = Map(X ⇥ S, Y ).

In particular, if A and B are Hausdorff abelian groups with A compactly generated, we have an equivalence

of condensed abelian groups

Hom
co
(A,B) ⇠= Hom(A,B).

Proof. It suffices to show the statement about topological spaces. Indeed, for A and B Hausdorff abelian
groups with A compactly generated, Homco

(A,B) is the equalizer of some finite diagrams involving Map
co
(A,B)
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(same for Hom(A,B)). More precisely, Homco is the equalizer of the diagram

Map
co
(A,B) Map

co
(A⇥A,B)

Map
co
(A⇥A,B ⇥B),

f⇥f

f�(�+A�)

(�+B�)�f

resp. for Hom.
By definition, Map

co
(X,Y ) has the topology generated by the subspaces U(K,V ) of functions f : X ! Y

mapping a compact K ⇢ X into an open V ⇢ Y . Since X is Hausdorff and locally compact, the evaluation
map

X ⇥Map
co
(X,Y )! Y

is continuous. Thus, for a profinite set S and a continuous map S ! Map
co
(X,Y ) the associated map

X ⇥ S ! Y is continuous. This induces a natural map

Map
co
(X,Y )! Map(X,Y )

that we claim is an isomorphism. This boils down to show that for any profinite set S the map

Map(S,Map
co
(X,Y ))! Map(X ⇥ S, Y )

is a bijection. The map is clearly a injection, to see that it is surjective let F : X ⇥S ! Y be a continuous
map. For s 2 S let fs : X ! Y be the fiber of s. We want to show that for K ⇢ X compact and V ⇢ Y

open, the space of s 2 S such that fs(K) ⇢ V is open. Let s 2 S be such that fs(K) ⇢ V . Since F

is continuous, F�1
(V ) is an open subspace of X ⇥ S containing K ⇥ s, we can then find open subspaces

K ⇢ W ⇢ X and s 2 U ⇢ S such that W ⇥ U ⇢ F
�1

(V ), then K ⇥ U ⇢ F
�1

(V ) and for all s0 2 U we
have fs0(K) ⇢ V , proving what we wanted. ⇤

Our next task it to describe the RHom spaces between locally compact abelian groups, this is encoded
in the following key computation.

Theorem 2.3 ([Sch19, Theorem 4.3]). Let A =
Q

I T be the compact condensed abelian group, where I is

any index set.

(1) For any discrete abelian group M we have

RHom(A,M) =

M

I

M [�1],

where the map
L

I M [�1]! RHom(A,M) is induced by the maps

M [�1] = RHom(Z[1],M)! RHom(R/Z,M)
p⇤i�! RHom(

Y

I

R/Z,M) = RHom(A,M),

using the pullback under the projection pi :
Q

I R/Z! R/Z to the i-th factor, for i 2 I.

(2)
RHom(A,R) = 0.

Remark 2.4 ([Sch19, Remark 4.4]). An outstanding consequence of Theorem 2.3 is that

RHomZ(R,R) = R.

Indeed, by the short exact sequence 0! Z! R! T! 0, this is equivalent to part (2) for A = T.

In Lecture 4 we showed that condensed cohomology of (locally) compact Hausdorff spaces with discrete
coefficients can be computed as sheaf cohomology. We also showed that condensed cohomology of compact
Hausdorff spaces with values in R is trivial and equal to the continuous real valued functions. In the
statement of Theorem 2.3 we have extensions between compact abelian groups, discrete abelian groups and
R, a way one could try to compute them is by comparing somehow the Ext spaces with the condensed
cohomology of the underlying spaces. More concretely, we would like to compare the abelian group A with
the free objects Z[A] generated by A. This is achieved thanks to an unpublished theorem of Deligne:
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Theorem 2.5. (Eilenberg-MacLane, Breen, Deligne) There is a functorial resolution for an abelian group

A

· · ·!
niM

j=1

Z[Ari,j ]! · · ·Z[A3
]� Z[A2

]! Z[A2
]! Z[A]! A! 0, (2.1)

where the first maps

Z[A2
]! Z[A]! A! 0

send [(a, b)] 7! [a+ b]� [a]� [b], [a] 7! a ,and all ni and ri,j are non-negative integers.

We will not cover the proof of this important theorem on this lecture (hopefully in a future one), its proof
involves studying the stable homotopy theory (actually stable homology) of Eilenberg-MacLane spaces, see
[Sch19, Appendix to Lecture IV].

An immediate consequence of the theorem is the existence of a spectral sequence from condensed coho-
mology to Ext functors:

Corollary 2.6. For condensed abelian groups A,M and S an extremally disconnected set, there is a natural

spectral sequence

E
i1,i2
1 =

ni1Y

j=1

H
i2(A

ri1 ,j ⇥ S,M)) Ext
i1+i2(A,M)(S).

Proof. Just use the resolution (2.1), use that RHom(A,M)(S) = RHom(A⌦ Z[S],M), and that

RHom(Z[A]⌦ Z[S],M) = RHom(Z[A⇥ S],M) = R�(A⇥ S,M).

⇤

Proof of Theorem 2.3. We start by proving part (i). First, let us assume that I is finite, then we are reduce
to proving that

RHom(T,M) = M [�1].
By taking the short exact sequence 0! Z! R! T! 0 this boils down to proving that RHom(R,M) = 0.
By Corollary 2.6 we have a spectral sequence

E
i1,i2
1 =

ni1Y

j=1

H
i2(Rri1 ,j ⇥ S,M)) Ext

i1+i2(R,M)(S). (2.2)

The spaces Rn ⇥ S are locally compact, eg. by writing R =
S

k[�k, k]. We can then compute

R�(Rn ⇥ S,M) = R lim �
n

R�([�k, k]n ⇥ S,M).

But R�([�k, k]⇥S,M) is the same as sheaf cohomology since M is discrete, this one is homotopic invariant,
so the zero section S ! [�k, k]n ⇥ S induces an equivalence R�([�k, k]n ⇥ S,M) = R�(S,M) = C(S,M).
Therefore, the zero section S ! Rn ⇥ S induces an equivalence

R�(Rn ⇥ S,M) = C(S,M).

This shows that, thanks to the naturality of the resolution (2.1), the zero section 0 ! R induces an
equivalence for the spectral sequence (2.2), and so an equivalence

RHom(R,M) = RHom(0,M) = 0.

For a general index I, by the spectral sequence (2.2), we have that

RHom(

Y

I

T,M) = lim�!
J⇢I

RHom(

Y

J

T,M) = lim�!
I

M

J

M [�1] =
M

I

M [�1],

where J runs over finite subsets of I.
Now we prove (ii). By the aciclicity of real condensed cohomology on compact Hausdorff spaces, the

resolution (2.1) shows that RHom(A,R)(S) is computed by a Banach complex with terms given by the
Banach spaces

Lni
j=1C(A

ri,j ⇥ S,R). Now, consider the multiplication by 2 in RHom(A,R)(S). It is
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represented by multiplication by 2 in R, and also by multiplication by [2] in A. In other words, there is an
homotopy hn between 2⇥� and �[2] in the complex

0! C(A⇥ S,R)! C(A
2 ⇥ S,R)! · · ·!

niM

j=1

C(A
ri,j ⇥ S,R)! · · · .

Assume that f 2
Lni

j=1C(A
ri,j ⇥S,R) is such that df = 0. Then 2f � [2]

⇤
f = dh

⇤
i�1(f) and we can write

f =
1

2
([2]

⇤
f + dh

⇤
i�1(f)),

iterating this formula we find that

f = d(
1

2
h
⇤
i�1(f) +

1

4
h
⇤
i�1([2]

⇤
f) + · · · ),

but h
⇤
i�1 is a map of Banach spaces, so bounded, and [2]

⇤ is bounded by 1. This shows that the previous
series converges and that f is also a boundary. We deduce that

RHom(A,R) = 0

which finishes the proof. ⇤
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