
THE SOLID INTEGERS Z■

In this talk we will prove one of the foundational theorems in condensed mathematics. Let Z■ be the
datum (Z,Z■[−]) consisting on the condensed ring defined by the integers, and the functor from Extdis (or
Prof) to condensed abelian groups mapping S = lim←−i

Si to Z■[S] := lim←−i
Z[Si].

Theorem 0.1 ([Sch19, Theorem 5.8]). The object Z■ is an analytic ring. Moreover, the following hold:
(1) Let Solid ⊂ CondAb be the full subcategory consisting on condensed abelian groups M such that for

all profinite set S the natural map

HomZ(Z■[S],M)→ Map(S,M)

is a bijection. Then Solid is an abelian category stable under all small limits, colimits and extensions.
The objects

∏
I Z ∈ Solid, for any index set I, form a family of compact projective generators. The

inclusion Solid ⊂ CondAb has a left adjoint given by the solidification

M 7→ Z■ ⊗Z M = M■ : CondAb→ Solid.

(2) The category Solid has a unique symmetric monoidal structure ⊗■ making the functor Z■ ⊗Z −
symmetric monoidal.

(3) Let C = D(Z■) ⊂ D(Z) be the full subcategory defined by the analytic ring Z■. Then C ∈ D(Z)
belongs to C if and only if one of the following equivalent conditions hold:
(i) For all profinite set S the natural map

RHom(Z■[S], C)→ RHom(Z[S], C)

is an equivalence.
(ii) For all profinite set S the natural map

RHom(Z■[S], C)→ RHom(Z[S], C)

is an equivalence.
(iii) H i(C) ∈ Solid for all i ∈ Z.
In particular, the inclusion C ⊂ D(Z) is stable under all limits and colimits, and has a left adjoint
Z■ ⊗L

Z − given by the left derived functor of Z■ ⊗Z −.
(4) The category C has a unique symmetric monoidal structure ⊗L

■ making Z■⊗L
Z− symmetric monoidal.

The functor ⊗L
■ is the left derived functor of ⊗■. Moreover, for any index sets I and J , we have

that ∏
I

Z⊗L
■

∏
J

Z =
∏
I×J

Z.

The proof of the previous theorem will required several reductions to the key RHom computations
between locally compact abelian groups of the previous talk. Before that we need some preparations.

1. Pseudo-coherent objects

Let C be an abelian category with all colimits admitting compact projective generators, let D(C ) be
its (∞-)derived category and D≥0(C ) ⊂ D(C ) the full subcategory consisting on connective complexes
(equivalently, the animation of C ).

Definition 1.1. Let n ≥ 1 be an integer. An object A ∈ C is n-pseudo-coherent if Exti(A,−) commutes
with filtered colimits for all 0 ≤ i ≤ n− 1. We say that A is pseudo-coherent if it is n-pseudo-coherent for
all n ≥ 1.

Let P = {Pi}I be a fixed family of compact projective generators of C .
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Proposition 1.2. An object A ∈ C is n-pseudo-coherent if and only if it has a partial resolution

Cn → · · · → C1 → C0 → A→ 0 (1.1)

where each Ci is a finite direct sum of compact projective objects in P

Proof. We just give the argument for n = 1, we leave the general case to the reader. Note that A is
1-pseudo-coherent means that HomC (A,−) commutes with filtered colimits, i.e. that A is a compact object
of C . We find a partial resolution ⊕

j∈J
Pj →

⊕
i∈I

Pi → A→ 0.

Then, we can write A as a filtered colimit of the cokernels Xk of maps⊕
J ′
k

Pj →
⊕
I′k

Pi

where J ′
k ⊂ J and I ′k ⊂ I are finite subsets. Then, since X is compact and X = lim−→k

Xk, it is a retract of
some Xk, and one has the desired partial resolution of X after a suitable modification. Conversely, if X
has a resolution as in (1.1), we have an exact sequence

0→ Hom(A,−)→ Hom(C0,−)→ Hom(C1,−),
then, since each Hom(Ci,−) commute with filtered colimits in C , then so does A as wanted. □

Lemma 1.3. Let A ∈ C and suppose we have a resolution

· · · →M1 →M0 → A→ 0

with each Mi pseudo-coherent. Then A is pseudo-coherent.

Proof. The stupid truncation of the previous complex gives rise an hypercohomology spectral sequence with
E1-page

Ep,q
1 = Extq(Mp,−)⇒ Extp+q(A,−),

since each Mq is pseudo-coherent, the functors Extp(Mq,−) preserve filtered colimits for all p, q, and so
does Extn(A,−), proving that A is pseudo-coherent. □

When specialized to condensed abelian groups we have the following properties:

Proposition 1.4. Let X be a compact Hausdorff space, then Z[X] is a pseudo-coherent condensed abelian
group. Moreover, let A be a compact abelian group, then A⊗Z Z[X] is a pseudo-coherent condensed abelian
group.

Proof. Let S• → X be an hypercover by extremally disconnected sets, then we have a projective resolution

· · · → Z[S1]→ Z[S0]→ Z[X]→ 0,

proving that Z[X] is pseudo-coherent. Now let A be a compact abelian group, by the Breen-Deligne theorem
we have a resolution

· · · → Z[A2]→ Z[A]→ A→ 0

where each term is a finite direct sum of terms of the form Z[Ar] for r ∈ N. Tensoring with Z[X] we get a
resolution with terms given by finite sums of free condensed abelian groups generated by compact Hausdorff
spaces (note that the free condensed abelian groups are flat being the sheafification of a flat pre-sheaf).
The proposition follows by the first statement and Lemma 1.3. □

2. Some preparations before the proof

Let S = lim←−i
Si be a profinite set, recall that we have defined the free solid abelian group generated by S

as
Z■[S] = lim←−

i

Z[Si],

equivalently it can be constructed as the space of Z-valued measures

Z■[S] = HomZ(C(S,Z),Z).
The following theorem gives a clear description of this object as condensed abelian group.
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Theorem 2.1 (Nöbelin-Specker, [Sch19, Theorem 5.4]). For any profinite set S, the abelian group C(S,Z)
of continuous maps from S to Z is a free abelian group. In particular, if C(S,Z) ∼=

⊕
I Z is a fixed basis,

we have an isomorphism of condensed abelian groups

Z■[S] ∼=
∏
I

Z.

Proof. Let us take an injection S ↪→
∏

I{0, 1} for some set I. Choose a well ordering on I, so I is some
ordinal λ and elements in I identify with ordinals µ < λ. For each µ < λ we get eµ ∈ C(S,Z) the idempotent
object mapping to the µ-component of

∏
I{0, 1}. Order the products eµ1 · · · eµr with µ1 > · · · > µr with

the lexicographic order (including the empty product corresponding to r = 0). Let E be the set of such
products that cannot be written as linear combinations of smaller such products. We claim that E is a
basis of C(S,Z).

We argue by induction of λ, the case λ = 0 being trivial. For any µ < λ let Sµ be the image of S in∏
µ′<µ{0, 1}. If λ is a limit ordinal, then the result follows formally from the result of the Sµ by taking

colimits of the sets Eµ (this holds since Sµ′ ⊂ Sµ for µ′ ⊂ µ). Then, we can assume that λ = ρ+ 1 and let
us write S = Sρ. We have a closed immersion S ↪→ S × {0, 1}. Let Si = S ∩ S × {i} for i = 0, 1; these are
open and closed subspaces covering S, and so closed subspaces of S covering S. Let S

′ be the intersection
of S1 and S2 in S. Then we have a short exact sequence

0→ C(S,Z)→ C(S,Z)→ C(S
′
,Z)→ 0

where the second map sends f to the difference of the two restrictions in S
′.

By induction, the part of the basis vectors of E that do not start with eρ form a basis of C(S,Z). On the
other hand, the basis vectors of E that start with eρ project to a basis of C(S

′
,Z) (by applying the induction

hypothesis to S
′ with its closed immersion into

∏
µ<ρ{0, 1}; note that the image of eρeµ1 · · · eµk

∈ C(S,Z)
in C(S

′
,Z) is just eµ1 · · · eµk

). Thus, E defines a basis of C(S,Z) as desired. □

Remark 2.2. If S is metrizable then we can embed S ↪→
∏

N{0, 1}. Thus, the previous proof simplifies in
this situation as the images of S in

∏n
i=1{0, 1} is finite and a simple induction does the work.

A consequence of the previous theorem is that hypercovers still produce resolutions for the free solid
abelian groups.

Proposition 2.3. Let S• → S be an hypercover of a profinite sets S by profinite sets. Then the correspond-
ing complex

· · ·Z■[S1]→ Z■[S0]→ Z■[S]→ 0

is exact.

Proof. Since a profinite set has no higher condensed cohomology for discrete coefficients, we have an exact
sequence

0→ C(S,Z)→ C(S0,Z)→ C(S1,Z)→ · · · .
Taking duals and using Theorem 2.1 we get the proposition. □

As a first approximation to Theorem 0.1 we can show that the free solid abelian groups are indeed solid:

Proposition 2.4 ([Sch19, Proposition 5.7]). For any profinite sets S and S′, the natural map

RHom(Z■[S
′],Z■[S])→ RHom(Z[S′],Z■[S])

is an equivalence.

Proof. By Theorem 0.1 we have isomorphisms Z■[S
′] ∼=

∏
J Z and Z■[S] ∼=

∏
I Z depending on a basis of

the spaces of Z-valued continuous functions of S′ and S respectively. Thus, we can assume without loss of
generality that S = ∗ and Z■[S] = Z. Consider the short exact sequence

0→
∏
J

Z→
∏
J

R→
∏
J

T→ 0.
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Then the proposition follows from the fact that

RHom(
∏
J

T,Z) =
⊕
J

Z[−1],

RHom(
∏
J

R,Z) = RHomR(
∏
J

R, RHom(R,Z)) = 0,

and
RHom(Z[S′],Z) = C(S′,Z) =

⊕
J

Z.

□

3. Proof of Theorem 0.1

We want to show the following theorem (which is precisely part of the definition of being an analytic
ring).

Theorem 3.1. Let S be a profinite set and let C• be a connective complex with terms Ci isomorphic to
direct sums of terms of the form

∏
I Z for I varying index sets. Then the natural map

RHom(Z■[S], C•)→ RHom(Z[S], C•)

is an equivalence.

Proof. Recall that
Z■[S] =M(S,Z) = Hom(C(S,Z),Z).

Define
M(S,R) = Hom(C(S,Z),R) andM(S,T) = Hom(C(S,Z),T),

we have a short exact sequence of condensed abelian groups

0→M(S,Z)→M(S,R)→M(S,T)→ 0.

Then, it suffices to prove the following claim:

Claim. For all C• as in the statement of the theorem, and all profinite set S, we have

RHom(M(S,T), C•) ∼= RHom(Z[S], C•)[−1] = RΓ(S,C•).

Indeed, suppose the claim holds, by taking S = ∗ we get that

RHom(T, C•) = C•[−1] = RHom(Z[1], C•).

Then RHom(R, C•) = 0. Therefore, for a general S we get that

RHom(M(S,R), C•) = RHomR(M(S,R), RHom(R, C•)) = 0,

and we get a natural equivalence

RHom(M(S,Z), C•) = RHom(M(S,T), C•)[1] = RHom(Z[S], C•).

Let us now prove the claim, we do it in three main steps:
Step 1. We first assume that C• = C0[0] is concentrated in degree 0. By Proposition 1.4 we know
that M(S,T) ⊗ Z[S′] is a pseudo-coherent condensed abelian group for any profinite set S′, then
M(S,T) is internally pseudo-coherent (i.e. the internal Exti(M(S,T),−) functors commute with
filtered colimits), and we can formally reduced to the case C0 =

∏
I Z which follows from Proposition

2.4.
Step 2 Now suppose that C• has only finitely many non-zero terms, the claim hods from Step 1 by
taking the stupid filtration of C•.
Step 3. Now suppose that C• is arbitrary. It suffices to show that there is some k ≥ 0, independent
of C• and S, such that both RHom(M(S,T), C•) and RHom(Z[S], C•) are in homological degrees
≥ −k (eq. cohomological degrees ≤ k); we will see that we can actually take k = 1. Indeed, this
property will imply that both functors above coincide for C• and its stupid truncation σ≤k+n+1C•,
for homology groups in degrees i ≤ n, reducing the Claim to complexes supported in finitely many
degrees, which follows by Step 2.
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We now focus in Step 3 above. Let us write Cn =
⊕

i∈Jn
∏

Ki,n
Z. We define a new complex C•,R whose

terms are Cn,R = Cn =
⊕

i∈Jn
∏

Ki,n
R, obtained by naturally extending the differentials of C•. For this, it

suffices to show that the natural map

Hom(Cn+1,R, Cn,R)→ Hom(Cn+1, Cn,R)

is an isomorphism. We can formally assume that Cn+1 =
∏

I Z, and it is enough to see that

RHom(
∏
I

T, Cn,R) = 0.

Since
∏

I T is pseudo-coherent, we can commute with direct sums, and then we can formally commute with
products. We then are reduced to the statement

RHom(
∏
I

T,R) = 0

which was proved in the previous lecture.
Therefore, we have a complex of condensed R-vector spaces C•,R. Define C•,T to fit in a short exact

sequence of complexes
0→ C• → C•,R → C•,T → 0.

Thus, it is enough to prove that

RHom(M(S,T), C•,R), ;RHom(M(S,T), C•,T), ;RHom(Z[S], C•,R) and RHom(Z[S], C•,T)

are concentrated in cohomological degrees ≤ 1. By writing C•,R and C•,T as limits of their canonical trunca-
tions τ≤iC•,R and τ≤iC•,T, it suffices to prove the statement for the truncations. These are finite complexes,
sot it suffices to prove the statement for each term. We are then reduce to prove the cohomological bound
for the condensed abelian groups given by the kernels of maps di,R : Ci,R → Ci−1,R and di,T : Ci,T → Ci−1,T.
Then, by taking filtered colimits, and sinceM(S,T) and Z[S] are pseudo-coherent, we can further assume
that Ci

∼=
∏

I Z and Ci−1
∼=

∏
J Z.

Case ker di,T. the group K is the kernel of a map of the form
∏

T →
∏

T. Then K is a compact
abelian group, and its Pontrjagin dual D(K) is discrete and admits a resolution

0→ F1 → F2 → D(K)→ 0

with Fi free abelian groups. This shows that K fits in a short exact sequence

0→ K →
∏
I

T→
∏
J

T→ 0,

and we reduce to prove the bound for products of tori, then formally for just T, and finally for Z
or T which follows by previous cohomological computations.
Case ker di,R. the group K = ker di,T is the kernel of a map

∏
I R →

∏
I R that arises from the

R-linear extension of a map
∏

I Z→
∏

J Z. This second map is the dual of a map
⊕

J Z→
⊕

I Z,
and so di,R is the dual of the R-linear extension⊕

J

R→
⊕
I

R.

But any map between real vector spaces factors by a split surjection followed by a split injection,
and any real vector space is free. This implies that K is the dual of a real vector space of the form⊕

R, so isomorphic to
∏

R. We then can reduce to K = R and the statement follows from previous
cohomological computations.

□

Most of the Theorem 0.1 is deduced from the abstract definition of analytic ring (see [Sch19, Lemma
5.9]), the only non-trivial statement is point (4).
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Proposition 3.2 ([Sch19, Proposition 6.3]). For any two index sets I and J we have∏
I

Z⊗L
■

∏
J

Z =
∏
I×J

Z,

Moreover, ⊗L
■ is the left derived functor of ⊗■.

Proof. Since the solidification functor is a left adjoint of the inclusion D(Z■) ⊂ D(Z), we have that for any
extremally disconnected sets S and S′

Z■[S]⊗L
■ Z■[S

′] = Z■ ⊗L
Z (Z[S × S′]).

Now let T• → S × S′ be an hypercover by extremally disconnected sets, we get that Z■ ⊗L
Z (Z[S × S′]) is

equivalent to the complex
· · · → Z■[T1]→ Z■[T0]→ 0,

but Proposition 2.3 implies that it is equivalent to Z■[S × S′], proving that

Z■[S]⊗L
■ Z■[S

′] = Z■[S × S′].

This shows that ⊗L
■ is the left derived functor of ⊗■. Now, by fixing basis of C(S,Z) and C(S,Z) indexed

by I and J respectively, the space C(S×S′,Z) has a basis indexed by I×J . This shows that, by identifying
Z■[S] ∼=

∏
I Z and Z■[S

′] ∼=
∏

J Z, we get∏
I

Z⊗L
■

∏
J

Z =
∏
I×J

Z.

For general index sets I and J we can find extremally disconnected sets S and S′ such that
∏

I Z and
∏

J Z
are direct summands of Z■[S] and Z■[S

′], the corollary follows. □

4. Examples of solid abelian groups

After this important theorem we show some examples of solid abelian groups that appear in the nature.

Proposition 4.1 ([Sch19, Example 6.5]). Let X be a CW complex, and let H•(X) denote the singular
homology complex. Then there is a canonical isomorphism

Z■[X] ∼= H•(X).

Proof. The functor Z■[−] = Z■⊗L
Z (Z[−]) commutes with filtered colimits, so does the homology complex.

Then, we can assume that X is a finite CW complex, in particular a compact Hausdorff space. Then, by
Proposition 1.4 Z[X] is a pseudo-coherent condensed abelian group, in particular it admits a projective
resolution with terms given by Z[S] with S extremally disconnected sets. This shows that Z■[X] is equiva-
lent to a complex C• with Cn

∼=
∏

In
Z, implying that Z■[X] is reflexive. Then, it suffices to find a natural

identification
Z■[X]∨ = RHom(Z■[X],Z) = RHom(Z[X],Z) ∼= H•(X)

where H•(X) is the singular cohomology complex. But the LHS is also sheaf cohomology, producing the
desired equivalence

Z■[X]∨ ∼= H•(X)

since X is a CW complex. □

Some first computations of solid tensor products are recollected in the following proposition.

Proposition 4.2 ([Sch19, Example 6.4]). The following hold:
(1) We have Z[[T1]]⊗L

■ Z[[T2]] = Z[[T1, T2]].
(2) Zp ⊗L

■ Z[[T ]] = Zp[[T ]]. More generally, Zp ⊗L
■

∏
I Z =

∏
I Zp.

(3) The tensor Zp ⊗L
■ Zℓ is 0 if p ̸= ℓ and Zp if p = ℓ.

(4) We have Z■ ⊗L
Z R = 0.
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Proof. We can write Z[[Ti]] ∼=
∏

n∈N ZTn
i , then part (1) follows from Proposition 3.2. For part (2), we have

a short exact sequence of condensed abelian groups

0→ Z[[T ]] T−p−−−→ Z[[T ]]→ Zp → 0,

by Proposition 3.2 we see that Zp ⊗L
■

∏
I Z is represented by the complex∏

I

Z[[T ]] T−p−−−→
∏
I

Z[[T ]]

which is equivalent to
∏

I Zp, proving what we wanted.
For (3), Zp ⊗L

■ Zℓ is represented by the complex

Zp[[T ]]
T−ℓ−−→ Zp[[T ]].

If ℓ = p this is equivalent to Zp, if ℓ ̸= p then T − ℓ is invertible and the complex is 0.
Finally, for (4), by the proof of Theorem 3.1 we know that for all conective complex C• with terms given

by direct sums of products of Z, we have that

RHom(R, C•) = 0,

but D≥0(Z■) is generated under sifted colimits of objects of the form
∏

I Z, and so they are represented by
such a kind of complex C•. This implies that for all N ∈ D≥(Z■) we have

RHom(R,M) = 0,

implying that Z■ ⊗L
Z R = 0. □

In the next lecture we will give more examples of solid tensor products, we will also construct more solid
analytic rings which are relevant for algebraic and rigid geometry.
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