
On a result of Deligne
by Ivan Zelich

In this note, we discuss canonical resolutions attached to abelian groups.
The construction is most natually expressed as resolutions in certain abelian
functor categories. Rather surprisingly, the existence of these canonical resolu-
tons rely on results from stable homotopy theory. We have written these notes
with the goal of de-mystifying the relationship.

0.1. Framing the problem
Given an abelian group A, we want to associate a natural free resolution F •A −→
A. The claim is that there is a functorial resolution:

. . .→ ⊕ni
j=1Z[Ari,j ]→ . . . −→ Z[A3]⊕ Z[A2]→ Z[A2]→ Z[A]→ A→ 0

We may construct the first few terms rather easily, in particular, the map d1 :
Z[A2] −→ Z[A] is associated to the set map

(a, b) 7−→ [a+ b]− [a]− [b].

One finds that constructing this resolution by hand captures some non-trivial
group relations that are very hard to write down. For example, we observe that
[(a, b)]− [(b, a)] and [(a, b+ c)] + [(b, c)]− [(a+ c, b)]− [(a, c)] are in Ker(d1).

0.2. Let us begin by acknowledging that construction a functorial resolution
implies we should be looking at functor categories. In particular, its not even
clear what this resolution should look like on the full subcategory Latt of finite
free Z-modules, so let us start there.

Consider the abelian category A := FunAb(Latt,Ab);1 it has all limits and
colimits computed termwise, and moreover, it has compact projective gener-
ators. A set of such compact projective is given by the functors taking P ∈
Latt to Z [Pn] for some n ≥ 0. Indeed, Pn = HomLatt (Zn, P ), so for any
F ∈ Fun(Latt,Ab), one has

HomFunAb(Latt,Ab) (Z [HomLatt (Zn,−)] , F ) = HomFun(Latt,Sets) (HomLatt (Zn,−) , F ) = F (Zn) ,

which commutes with all limits and colimits, and as F is determined by the
values F (Zn), one also sees that they form a generating family. (One may write
F as a filtered colimit using its functor of elements construction). Our notation
for this generating set will be

{
hZZn

}
n≥0, in analogy with Yoneda lemma.

The claim is that the functor ψ : Latt −→ Ab taking P 7−→ P has a
resolution by these compact projectives. If this is the case, one has a resolution
in FunAb(Latt,Ab) as:

C∗(−) := . . .→
ki⊕
j=1

hZZri,j → . . .→
k0⊕
j=1

hZZr0,j → ψ → 0.

1We use the subscript Ab to denote abelian functors i.e. normal functors whose induced
map on Hom sets is additive.
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Equivalently, we can ask for a resolution of the form:

C∗(P ) := . . .→
ki⊕
j=1

Z [P ri,j ]
dri,j→ . . .→

k0⊕
j=1

Z [P r0,j ]→ P → 0,

∀P ∈ Latt.

0.3. Extending this to arbitrary abelian groups
One notes that the differentials di,rj above are determined independently of P ;
indeed they are built from morphisms hZZm −→ hZZn , which by Yoneda are de-
termined by formal Z-linear sums of Mm×n : Zm −→ Zn. We define C∗(A) to
be the complex formed by substituting A for P where A is an arbitrary abelian
group. The main point here is that each chain map in C∗(A) is uniquely defined
via the universal morphisms discussed above.

We first want to see C∗(A) is an actual complex. We know the result for
finite free abelian groups A, and thus for free abelian groups of arbitrary rank
by taking filtered colimits. Every abelian group A has a surection P −→
A where P is free, which leads to a termwise surjection C∗(P ) −→ C∗(A),
and consequently we conclude C∗(A) is complex. We thus have a functor
C∗(−) : Ab −→ Ch+(Ab), which can extend termwise to a functor C∗(−) :
Ch+(Ab) −→ Ch+(Ab), which by a spectral sequence argument will preserve
quasi-isomorphisms. As such, we can then conclude C∗(A) is a resolution of A
by taking a projective resolution P • −→ A and using the the result for each
P j ∈ P •.

0.4. Can’t we just construct the complex by hand?
One candidate is the Bar construction. Let us recall its definition. First, we
recall that the Dold-Kan equivalence gives an equivalence of model categories
between

sAb Ch+

N

K

.

We have Eilenberg-Maclean spaces K(A,n) := K(A[n]), and in particular, one
has a Bar construction B(−) : Ab −→ sAb, A 7−→ K(A[1]). We can extend
B(−) to a functor sAb termwise and then take the underlying simplicial set
of the bi-simplicial set. By a spectral sequence argument, one sees that B(−)
defined in this way sends quasi-isomorphisms to quasi-isomorphisms.

Associating A 7−→ BA gives us a simplicial resolution2 of A, but this is
only a projective resolution when A is projective/free. To remedy this, consider
consider the adjunction

Ab Set
i

Z(−)

,

2This is not strictly true; by construction π1(BA) = A, and are 0 elsewhere. A suitable
shift would make it a resolution of A, but for expository purposes, its easier to just think of
it as a resolution.
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and extend termwise to get a functor Z[−] : sSet −→ sAb. This functor is not
exact, the problem being that it is not additive on morphisms between simplicial
abelian groups. Nevertheless, we get a complex Z[BA]. What are the homotopy
groups of this?

Recall that we have an equivalence of model categories

Top sSet
S(−)

|−|

.

In particular, one has |BA| ' K(A, 1), and one sees Z[X] is precisely the sin-
gular chains of the simplicial space |X|, and hence π∗(Z[X]) = H∗(|X|;Z).
Moreover, we have a justification for a passing comment made earlier that Z[−]
does not preserve quasi-isomorphisms of associated chain complexes; computing
the homotopy groups of Z[BA] is as hard as computing the homology groups of
K(A, 1), which is hard.

Not all is lost. These homology groups are understood in the stable limit.
In other words, every abelian group A associates a spectrum HA, and for a
spectrum X := {X(n)}n≥0 one associates the integral stable homology groups
Hst
i (X) := limnHn+i(X(n);Z). It is easy to represent K(A,n) as a simplicial

set; one iteratively applies B to BA. The statement from homotopy theory is
as follows:

Theorem:[1, 11.1] For a finite free abelian group A, the homology groups

Hi (Z [BnA]) = Hi(K(A,n),Z)

vanish for i < n and are given by Mi−n ⊗Z A for n ≤ i < 2n, where M∗ :=
π∗(HZ⊗SHZ), the dual Steenrod algebra of Z, and are finitely generated abelian
groups.

As we will see, as n gets large, we get sequence Z [BnP ] [−n] −→ P −→ 0, for
all P ∈ Latt. While this sequence is not exact, its existence can be interpretted
as a complex of compact projectives for our original functor ψ. Furthermore,
this result from stable homotopy theory will imply P is n-psuedocoherent, and
this will be enough to get the canonical resolution via general nonsense as we
let n −→∞.

0.5. Pseudo-coherence
In an arbitrary abelian category A with all limits and colimits, admitting a set
(class?) of compact projective generators A0, we say an an object X ∈ A is
n-pseudocoherent if ExtiA(X,−) : A −→ Ab commutes with all filtered colimits
for all i = 0, 1, ..., n − 1. We say X is pseudocoherent if it is n-pseudocoherent
for all n ≥ 1.

The relevance for this terminology can be seen readily in algebraic geometry.
For example, there is a very important reason why in statements of Grothendieck
duality one works over coherent rings R and it’s category of coherent modules.
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Indeed, one can prove that coherent modules M in this case are pseudocoher-
ent, like in the case of Noetherian rings, and this property allows one to work
with RHomR(M,−) geometrically, as then it is stable under localisation and
pullback. When M doesn’t have this pseudocoherence property, these intuitive
results break apart very quickly. To prove the results above, one shows the
following lemma:

Lemma: An object X ∈ A is n-pseudocoherent if and only if there is a partial
resolution

kn⊕
j=1

Pn,j → . . .→
ki⊕
j=1

Pi,j → . . .→
k0⊕
j=0

P0,j → X → 0

where all Pi,j ∈ A0 are in the fixed set of compact projective generators, and the
ki are nonnegative integers. More precisely, given any shorter partial resolution
of X of this form, it can be prolonged to a partial resolution of length n.

We sketch the proof. It is clear the existence of such resolutions implies
pseudocoherent. One then shows for n = 1. Consider an arbitrary projective
resolution:

⊕j∈J1P1,j
φ−→ ⊕j∈J0P0,j −→ X −→ 0,

where Pi,j ∈ A0. For every finite subsets I1, I0 of J1, J0 respectively, with
φ(I1) ⊂ I0, consider the natural maps:

⊕j∈J1P1,j ⊕j∈J0P0,j X 0

⊕j∈I1P1,j ⊕j∈I0P0,j XI 0

where the down arrows on the right side are splittings, and the dashed arrows
are induced via the universal property. Taking colimits on the bottom over
all subsets I1, I0, one obtains the identity morphism id : X −→ X being split
by some morphism X −→ XI , due to HomA(X,−) commuting with colimits.
Hence, X is a retract of XI , the latter of which is compact, and is therefore
compact as well.

To show for arbitrary n, we begin by noting that X is at least n− 2 psedo-
coherent, giving a resolution of length n − 2. At the n − 2 level, one takes the
kernel, which is in fact 1 pseudocoherent, and uses the above result to extend
the complex. In particular, the following 2 out of 3 properties are useful:

Lemma: Consider an exact sequence 0 −→ A −→ B −→ C −→ 0. If B,C are n-
pseudocoherent, then A is n− 1-pseudocoherent. If A,B are n-pseudocoherent,
then C is n-pseudocoherent.
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0.6. The key lemma
Let A be an abelian category as above. Let X ∈ A and assume given a complex

C : . . .→ Pi → . . .→ P0 → X → 0

A such that all Pi ∈ A are compact projective. If Hi(C) is n− i− 1 pseudoco-
herent for all i = 0, . . . , n− 1, then X is n-pseudocoherent.

This can be proved by the lemmas listed in the previous section.

0.7. The proof
The claim is that the functor Latt −→ Ab taking ψ : P 7−→ P is pseudocoherent.
We proceed by induction on it being n-pseudocoherent. The partial resolution
Z[P 2] −→ Z[P ] −→ P −→ 0 shows ψ is 1-pseudocoherent. Assume ψ is n-1-
pseudocoherent. Consider the complex:

Z[BP ][−n] −→ P −→ 0.

By stable homotopy theory, HiZ[BP ][−n] = Mi ⊗Z P , where Mi are finite
abelian groups, so each Hi(Z[Bψ][−n]) is n-1 pseudocoherent,3 for i = 0, . . . , n−
1. We then conclude ψ is n-pseudocoherent, by the lemma above.
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3To see this, we have a presentation Zni1 −→ Zni0 for finite integers ni0 , ni1 of Mi, one
then considers the constant functor cMi

: Latt −→ Ab. One remarks that our presentation

gives a resolution of cMi
by direct sums of the compact projective hZ0 , so cMi

is pseudcoherent.
By nonsense, cMi

⊗ ψ is n− 1-pseudocoherent when ψ is.
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