Factorization in Polynomial Rings

Throughout these notes, F' denotes a field.

1 Long division with remainder

We begin with some basic definitions.

Definition 1.1. Let R be an integral domain and let r, s € R. We say that
r divides s, written r|s, if there exists a t € R such that s = rt, i.e. s is a
multiple of . Thus, for example, every r € R divides 0, but r is divisible
by 0 <— r=0.

By definition, r is a unit <= r‘l. We claim that r is a unit <= r’s
forall s € R <= r|1. (Proof: if r is a unit, then, for all s € R, s = r(r~'s)
and hence T’S. Next, r‘s forall s € R = r|1, and finally T’l = ris
a unit.) We will usually ignore units when we discuss factorization because
they contribute what are essentially trivial factors.

In case R = F[z], the group of units (F[x])* of the ring F[z] is F**, the
group of units in the field F, and hence the group of nonzero elements of
F under multiplication. Thus f divides every g € Flz] <= f divides 1
<= f € F* is a nongzero constant polynomial. Note that, if ¢ € F* is a
unit, then f’g = cf‘g <= f’cg.

Proposition 1.2 (Long division with remainder). Let f € Flx], f # 0, and
let g € F[z]. Then there exist unique polynomials q,r € F[x], with either
r =0 ordegr < degf, such that

g=rfo+r

Proof. First we prove existence. The proposition is clearly true if ¢ = 0,
since then we can take ¢ = r = 0. Otherwise, we argue by induction on
degg. If degg = 0 and deg f = 0, then f = ¢ € F* is a nonzero constant,
and then g = c¢(c7!g) 4+ 0, so we can take ¢ = c g and r = 0. If degg = 0
and deg f > 0, or more generally if n = deg g < deg f = d, then we can take



g = 0 and r = g. Now assume that, for a fixed f, the existence of ¢ and
r has been proved for all polynomials of degree < n, and suppose that g is
a polynomial of degree n. As above, we can assume that n > d = deg f.
Let f = Z?:o a;z’, with ag # 0, and let ¢ = Y (bz’. In this case,
g — bnagl:r”*df is a polynomial of degree at most n — 1 (or 0). By the
inductive hypothesis and the case g = 0, there exist polynomials q1,7 € F|z]
with either r = 0 or degr < deg f, such that

g~ buag'a"0f = fai + 1.

Then
g=flbpa;'a" ™+ q1) +r = fq+r,

where we set ¢ = bnaglznn_d + q1. This completes the inductive step and
hence the existence part of the proof.
To see uniqueness, suppose that

g=fq+ri=fq+rs,
where either r1 = 0 or degry < deg f, and similarly for ro. We have
(@1 —aq2)f =12 =11,

hence either ¢; — g2 = 0 or g1 — g2 # 0 and then

deg((q1 — q2)f) = deg(q1 — q2) + deg f > deg f.

Moreover, in this case ro — r1 % 0. But then
deg(ry — r1) < max{degry,degry} < deg f,

a contradiction. Thus q; — g2 = 0, hence ro — r; = 0 as well. It follows that
q1 = 2 and ro = r1, proving uniqueness. 0

Remark 1.3. The analogue of Proposition 1.2 holds in an arbitrary ring
R (commutative, with unity as always) provided that we assume that f is
monic, in other words, f # 0 and its leading coefficient is 1. The proof is
essentially the same.

The following is really just a restatement of Proposition 1.2 in more
abstract language:

Corollary 1.4. Let f € Flx], f # 0. Then every coset g+ (f) has a unique
representative r, where r = 0 or degr < deg f.



Proof. By Proposition 1.2, we can write g = fqg+ r with r = 0 or degr <
deg f. Then r € g+ (f) since the difference g — r is a multiple of f,
hence lies in (f). The uniqueness follows as in the proof of uniqueness for
Proposition 1.2: if 71 4+ (f) = 2 + (f), with each r; either 0 of of degree
smaller than deg f, then f!rg—rl, and hence ro—r; =0, so that r;y =ry. 0O

Corollary 1.5. Let a € F. Then every f € Flx] is of the form f =
(x —a)g+ f(a). Thus f(a) =0 <— (:c—a)’f.

Proof. Applying long division with remainder to x — a and f, we see that
f = (x — a)g + ¢, where either ¢ = 0 or degc = 0, hence ¢ € F*. (This
also follows directly, for an arbitrary ring: if f = Z?:o a;x', write f =
flx —a+a) = Z?:o ai(r — a + a)’. Expanding out each term via the
binomial theorem then shows that f = Zf:o b;(z — a)® for some b; € F, and
then we take ¢ = by.)

Finally, to determine ¢, we evaluate f at a:

fla) =evy(f) =evo((z—a)g+c)=0+c=c
Hence ¢ = f(a). O

Recall that, for a polynomial f € F[z], a root or zero of f in F' is an
a € F such that f(a) =evy(f) =0.

Corollary 1.6. Let f € F[z], f # 0, and suppose that deg f = d. Then
there are at most d roots of f in any field E containing F. In other words,
suppose that F is a subfield of a field E. Then

#{a€ E: f(a) =0} <d.

Proof. We can clearly assume that £ = F. Argue by induction on deg f, the
case deg f = 0 being obvious. Suppose that the corollary has been proved
for all polynomials of degree d — 1. If deg f = d and there is no root of f in
F', then we are done because d > 0. Otherwise, let a; be a root. Then we
can write f = (z — a1)g, where degg = d — 1. Let ag be a root of f with
a9 75 aj. Then

0= f(az) = (az — ar)g(az).
Since F' is a field and ag # a1, aa — a1 # 0 and we can cancel it to obtain
glaz) = 0, i.e. ay is a root of g (here we must use the fact that F' is a
field). By induction, g has at most d — 1 roots in F' (where we allow for the
possibility that a; is also a root of g). Then

{a € F: f(a) =0} ={a1}U{a € F:g(a) =0}.



Since #{a € F : g(a) = 0} < d—1, it follows that #{a € F : f(a) =0} <
d. O

Corollary 1.7. Let F be an infinite field. Then the evaluation homomor-
phism E from F[z] to F¥ is injective. In other words, if f1, f» € F|x] are two
polynomials which define the same function, i.e. are such that fi(a) = fa(a)
for all a € F, then f1 = fo.

Proof. 1t suffices to prove that Ker E = {0}, i.e. that if f € F[z] and
f(a) =0 for all @ € F', then f = 0. This is clear from Corollary 1.6, since a
nonzero polynomial can have at most finitely many roots and F' was assumed
infinite. O

Corollary 1.6 has the following surprising consequence concerning the
structure of finite fields, or more generally finite subgroups of the group F™*
under multiplication:

Theorem 1.8 (Existence of a primitive root). Let F' be a field and let G
be a finite subgroup of the multiplicative group (F*,-). Then G is cyclic. In
particular, if F is a finite field, then the group (F*,-) is cyclic.

Proof. Let n = #(G) be the order of G. First we claim that, for each
d}n, the set {a € G : a® = 1} has at most d elements. In fact, clearly
{acG:a’=1}C{a € F:a%=1}. But theset {a € F:a? =1} is the
set of roots of the polynomial 2% — 1 in F. Since the degree of ¢ — 1 is d,
by Corollary 1.6, #{a € F : a® = 1} < d. Hence #{a € G : a? =1} < d
as well. The theorem now follows from the following purely group-theoretic
result, whose proof we include for completeness. ]

Proposition 1.9. Let G be a finite group of order n, written multiplica-
tively. Suppose that, for each d|n, the set {g € G : g = 1} has at most n
elements. Then G is cyclic.

Proof. Let ¢ be the Euler p-function. The key point of the proof is the
identity (proved in Modern Algebra I, or in courses in elementary number

theory)
Z o(d) =n.

dln

Now, given a finite group G as in the statement of the proposition, define
a new function ¢: N — Z via: 9(d) is the number of elements of G of
order exactly d. By Lagrange’s theorem, if ¢)(d) # 0, then d}n. Since every



element of G has some well-defined finite order, adding up all of values of
1(d) is the same as counting all of the elements of G. Hence

#(G)=n=> d(d) =>_ ().

deN dn

Next we claim that, for all d}n, Y(d) < ¢(d); more precisely,

o(d) = 0, if there is no element of G of order d;
| o(d), if there is an element of G of order d.

Clearly, if there is no element of G of order d, then 1(d) = 0. Conversely,
suppose that there is an element a of G of order d. Then #((a)) = d, and
every element g € (a) has order dividing d, hence g¢ = 1 for all g € (a).
But since there at most d elements ¢ in G such that ¢ = 1, the set of
all such elements must be exactly (a). In particular, an element g of order
exactly d must both lie in (a) and be a generator of (a). Since the number
of generators of (a) is the same as the number of generators of any cyclic
group of order d, namely ¢(d), the number of elements of G of order d is
then ¢(d). Thus, if there is an element of G of order d, then by definition
(d) = p(d).

Now compare the two expressions

Since, for each value of d|n, ¥(d) < ¢(d), and the sums are the same, we
must have 1(d) = ¢(d) for all d|n. In particular, taking d = n, we see that
Y(n) = p(n) # 0. It follows that there exists an element of G of order
n = #(G), and hence G is cyclic. O

Example 1.10. (1) In case p is a prime and F' = F, = Z/pZ, then a
generator for (Z/pZ)* is called a primitive root.

(2) For F' = C, the finite multiplicative subgroups of C* are the groups pu,
of n™ roots of unity. A generator of ji,, in other words a complex number
whose order in the group (C*,-) is exactly n, is called a primitive nth root
of unity. The standard such generator is e2 /",

Remark 1.11. If on the other hand G is an infinite subgroup of F*, then GG
is not in general cyclic. For example, Q* is not a cyclic group. The situation
for R* is even more drastic: R* is uncountable, but every cyclic group is
either finite or isomorphic to Z, hence countable.



2 Factorization and principal ideals

The outline of the discussion of factorization in F[z] is very similar to that
for factorization in Z. We begin with:

Proposition 2.1. Every ideal in F|x] is a principal ideal.

Proof. Let I be an ideal in F[z|. If I = {0}, then clearly I = (0) as well, and
so [ is principal. Thus we may assume that I # {0}. Let f € I be a non-zero
polynomial such that deg f is the minimal possible value among nonnegative
integers of the form deg g, where g € I and g # 0. More precisely, the set of
nonnegative integers

{degg:g €I and g+#0}

is a nonempty subset of NU{0} and hence by the well-ordering principle has a
smallest element, necessarily of the form deg f for some non-zero polynomial
f € 1. We claim that f is a generator of I, i.e. that I = (f).

Clearly, as f € I, (f) € I. To see the opposite inclusion, let g € I.
Then we can apply long division with remainder to f and ¢: there exist
q,r € Flx], with either r = 0 or degr < deg f, such that g = fq+ r. Since
g€ land (f) CI,r=g— fq €I But,ifr # 0, then degr < degf,
contradicting the choice of f. So r = 0, so that g = fq € (f). Since g was
an arbitrary element of I, it follows that I C (f) and hence that I = (f).
Thus [ is principal. O

Definition 2.2. Let f,g € F[z], where not both of f, g are zero. A greatest
common divisor of f and g, written ged(f, g), is a polynomial d such that

1. The polynomial d is a divisor of both f and g: d’f and d‘g.

2. If e is a polynomial such that e’ fand e

g, then e’d.
Proposition 2.3. Let f, g € F|x], not both 0.

(i) If d is a greatest common divisor of f and g, then so is cd for every
ce F*.

(ii) If d1 and dy are two greatest common divisors of f and g, then there
exists a ¢ € F* such that dy = cd;.

(iii) A greatest common divisor d of f and g exists and is of the form
d=rf+sg for somer,s € Flz].



Proof. (i) This is clear from the definition.

(ii) if dy and dp are two greatest common divisors of f and g, then by
definition dy ‘dg and dg}dl. Thus there exist u,v € F[z]| such that d2 = ud;
and dy = vde. Hence d; = uvd;. Since a greatest common divisor can never
be 0 (it must divide both f and g and at least one of these is non-zero) and
F[z] is an integral domain, it follows that 1 = ww, i.e. both u and v are units
in F[z], hence elements of F™*. Thus ds = cd; for some ¢ € F*.

(iii) To see existence, define

(f:9) = (f) +(9) ={rf +sg:r,s c Fla}.

It is easy to see that (f,g) is an ideal (it is the ideal sum of the principal
ideals (f) and (g)) and that f,g € (f,g). By Proposition 2.1, there exists
a d € F[z] such that (f,g) = (d). In particular, d = rf + sg for some
r,s € Flz], and, as f,g € (d), d’f and d|g. Finally, if e’f and e|g, then it
is easy to check that e divides every expression of the form rf + sg. Hence
d, and so d is a greatest common divisor of f and g. O

e

Remark 2.4. We could specify the ged of f and g uniquely by requiring
that it be monic. However, for more general rings, this choice is not avail-
able, and we will allow there to be many different geds of f and g, all related
by multiplication by a unit of F[z], in other words a nonzero constant poly-
nomial.

Remark 2.5. In fact, we can find the polynomials r, s described in (iii) of
the proposition quite explicitly by a variant of the Euclidean algorithm.

Remark 2.6. If R is a general integral domain, then we can define a great-
est common divisor of a and b by the obvious analogue of Definition 2.2.
However, in a general integral domain, greatest common divisors may not
exist, and even when they do always exist, they need not be given as linear
combinations ar + bs as in Part (iii) of Proposition 2.3.

Definition 2.7. Let f,g € Flz]. Then f and g are relatively prime if 1
is a ged of f and g. It is easy to see that this definition is equivalent to:
there exist r,s € F[z]| such that 1 = rf + sg. (If 1 is a ged of f and g,
then 1 = rf + sg for some r,s € F[z| by Proposition 2.3. Conversely, if
1 =rf + sg, then a ged d of f, g must divide 1 and hence is a unit ¢, and
hence after multiplying by ¢! we see that 1 is a ged of f and g.)

Proposition 2.8. Let f, g € F[z] be relatively prime, and suppose that flgh
for some h € Flz]. Then f|h.



Proof. Let r,s € F[x] be such that 1 =rf + sg. Then
h=rfh+ sgh.

Clearly f |r fh, and by assumption f }gh and hence f ‘sgh. Thus f divides
the sum rfh 4+ sgh = h. O

Definition 2.9. Let p € Fz]. Then p is irreducible if p is neither 0 nor a
unit (i.e. p is a non-constant polynomial), and if p = fg for some f, g € F[z],
then either f = ¢ € F* and hence g = ¢ 'p,or g =c € F* and f = ¢ p.
Equivalently, p is not a product fg of two polynomials f,g € F[z]| such
that both deg f < degp and degg < degp. In other words: an irreducible
polynomial is a non-constant polynomial that does not factor into a product
of polynomials of strictly smaller degrees. Finally, we say that a polynomial
is reducible if it is not irreducible.

Example 2.10. A linear polynomial (polynomial of degree one) is irre-
ducible. A quadratic (degree 2) or cubic (degree 3) polynomial is reducible
<= it has a linear factor in F[z] <= it has a root in F. Thus for
example 2 — 2 is irreducible in Q[z] but not in R[x], and the same is true
for 3 — 2. . Likewise 22 + 1 is irreducible in R[z] but not in C[z]. The
polynomial f = x? 4+ x + 1 is irreducible in Fa[z] as it does not have a root
in Fa. (£(0) = f(1) = 1.

On the other hand, the polynomial 2 —4 is not irreducible in Q[z], even
though it does not have a root in Q.

Proposition 2.11. Let p be irreducible in F[x].
(i) For every f € F[z], either p|f or p and f are relatively prime.
(ii) For all f,g € Flx], ifp‘fg, then either p‘f or p‘g.

Proof. (i) Let d = gcd(p, f). Then d|p, so d is either a unit or a unit times
p, hence we can take for d either 1 or p. If 1 is a ged of p and f, then p and
f are relatively prime. If p is a ged of p and f, then p‘ f.

(ii) Suppose that p|fg but that p does not divide f. By (i), p and f are
relatively prime. By Proposition 2.8, since p‘ fg and p and f are relatively
prime, p‘g. Thus either p}f or p}g. O

Corollary 2.12. Let p be irreducible in F[x], let fi,...,fn € F[z], and
suppose that p’fl -+ fn. Then there exists an i such that p‘fi.

Proof. This is a straightforward inductive argument starting with the case
n = 2 above. O



Theorem 2.13 (Unique factorization in polynomial rings). Let f be a non
constant polynomial in F[x], i.e. f is neither O nor a unit. Then there
exist irreducible polynomials p1,...,pr, not necessarily distinct, such that
f=p1-p. In other words, f can be factored into a product of irreducible
polynomials (where, in case f is itself irreducible, we let k = 1 and view f as
a one element “product”). Moreover, the factorization is unique up to mul-
tiplying by units, in the sense that, if q1,...,q¢ are irreducible polynomials
such that
f=pipe=aq

then k = ¢, and, possibly after reordering the q;, for every i, 1 <i <k, there
exists a ¢; € F* such that ¢; = ¢;p;.

Proof. The theorem contains both an existence and a uniqueness statement.
To prove existence, we argue by complete induction on the degree deg f of
f. If deg f = 1, then f is irreducible and we can just take £ = 1 and
p1 = f. Now suppose that existence has been shown for all polynomials of
degree less than n, where n > 1, and let f be a polynomial of degree n.
If f is irreducible, then as in the case n = 1 we take £k = 1 and p; = f.
Otherwise f = gh, where both g and h are nonconstant polynomials of
degrees less than n. By the inductive hypothesis, both g and h factor into
products of irreducible polynomials. Hence the same is the true of the
product gh = f. Thus every polynomial of degree n can be factored into a
product of irreducible polynomials, completing the inductive step and hence
the proof of existence.

To prove the uniqueness part, suppose that f = p1---pr = q1 - - - ¢¢ where
the p; and ¢; are irreducible. The proof is by induction on the number k
of factors in the first product. If £ = 1, then f = p; and p; divides the
product q; - - - go. By Corollary 2.12, there exists an ¢ such that p; ‘qi. After
relabeling the ¢;, we can assume that ¢ = 1. Since ¢; is irreducible and p;
is not a unit, there exists a ¢ € F* such that ¢; = ¢p;. We claim that £ =1
and hence that ¢ = f = p;. To see this, suppose that £ > 2. Then

P1 = Cp1g2 -+ - qe-

Since p; # 0, we can cancel it to obtain 1 = ¢gs - - - q¢. Thus ¢; is a unit for
i > 2, contradicting the fact that ¢; is irreducible. This proves uniqueness
when k = 1.

For the inductive step, suppose that uniqueness has been proved for all
polynomials which are a product of k — 1 irreducible polynomials, and let
f =p1--pr = q1---q where the p; and ¢; are irreducible as above. As



before, pl‘ql -+ qp hence, there exists an 7 such that pl‘qi. After relabeling
the g;, we can assume that ¢ = 1 and that there exists a ¢; € F™* such that
q1 = c1p1. Thus

P1- Pk = C1P192 - - qe,

and so canceling we obtain ps - - - pr = (c1q2) -+ - - q¢- Then, since the prod-
uct on the left hand side involves k —1 factors, by induction k—1 = ¢—1 and
hence k = ¢£. Moreover there exist ¢; € F* such that ¢; = ¢;p; if ¢ > 2, and
c1qo = cops. After renaming 61_102 by co, we see that ¢; = ¢;p; for all ©+ > 1.
This completes the inductive step and hence the proof of uniqueness. O

3 Prime and maximal ideals in F[x]

Theorem 3.1. Let I be an ideal in F|x|. Then the following are equivalent:
(i) I is a maximal ideal.
(i1) I is a prime ideal and I # {0}.

(iii) There exists an irreducible polynomial p such that I = (p).

Proof. (i) = (ii): We know that if an ideal I (in any ring R) is maximal,
then it is prime. Also, the ideal {0} is not a maximal ideal in F[z], since
there are other proper ideals which contain it, for example (z); alternatively,
F[z]/{0} = F[z] is not a field. Hence if I is a maximal ideal in F[z], then
I is a prime ideal and I # {0}.

(i) == (iii): Since every ideal in F'[z| is principal by Proposition 2.1,
we know that I = (p) for some polynomial p, and must show that p is
irreducible. Note that p # 0, since I # {0}, and p is not a unit, since I #
F[z] is not the whole ring. Now suppose that p = fg. Then fg =p € (p),
and hence either f € (p) or g € (p). Say for example that f € (p). Then
f = hp for some h € F[x] and hence

p = fg = hgp.

Canceling the factors p, which is possible since p # 0, we see that hg = 1.
Hence g is a unit, say ¢ = ¢ € F*, and thus f = ¢ 'p. It follows that p is
irreducible.

(ili) = (i): Suppose that I = (p) for an irreducible polynomial p. Since p
is not a unit, no multiple of p is equal to 1, and hence I # R. Suppose that
J is an ideal of R and that I C J. We must show that J = I or that J = R.
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In any case, we know by Proposition 2.1 that J = (f) for some f € F[x].
Since p € (p) =1 C J = (f), we know that f’p. As p is irreducible, either
f is a unit or f = ¢p for some ¢ € F*. In the first case, J = (f) = R, and
in the second case f € (p), hence J = (f) C (p) = I. Since by assumption
1 CJ,I=J. Thus I is maximal. O

Corollary 3.2. Let f € F[z]|. Then F[z]/(f) is a field <= f is irreducible.
O

Remark 3.3. While the above corollary may seem very surprising, one way
to think about it is as follows: if f is irreducible, and given a nonzero coset
g+ (f) € Flx]/(f), we must find a multiplicative inverse for g + (f). Now,
assuming that f is irreducible, g + (f) is not the zero coset <= f does
not divide g <= f and g are relatively prime, by Proposition 2.11 <=
there exist r, s € F[x] such that 1 = rf 4 sg. In this case, the coset s + (f)
is a multiplicative inverse for the coset g + (f), since then

(s+ (Nlg+(H) = 59+ ()
—1—rf+ () =1+ ().

Thus, the Euclidean algorithm for polynomials gives an effective way to find
inverses.

Given a field F' and a nonconstant polynomial f € F[z], we now use the
above to construct a possibly larger field E containing a subfield isomorphic
to F' such that f has a root in E. Here, and in the following discussion, if
p: F — FE is an isomorphism from F' to a subfield p(F') of E, we use p to
identify F[z] with p(F)[z] < Elx].

Theorem 3.4. Let f € F[z] be a nonconstant polynomial. Then there exists
a field E containing a subfield isomorphic to F' such that f has a root in E.

Proof. Let p be an irreducible factor of f. It suffices to find a field F
containing a subfield isomorphic to F' such that p has a root « in F, for
then f = pg for some g € Fx] and f(«a) = p(a)g(a) = 0. The quotient ring
E = F[z]/(p) is a field by Corollary 3.2, the homomorphism p(a) = a + (p)
is an injective homomorphism from F' to E, and the coset a = x + (p) is a
root of f in FE. O

Corollary 3.5. Let f € Flx| be a nonconstant polynomial. Then there
erists a field E containing a subfield isomorphic to F such that f factors
into linear factors in Elz|. In other words, every irreducible factor of f in
E[z] is linear.
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Proof. The proof is by induction on n = deg f and the case n = 1 is obvi-
ous. Suppose that the corollary has been proved for all fields F' and for all
polynomials in F[z] of degree n — 1. If deg f = n, by Corollary 3.4 there
exists a field E7 containing a subfield isomorphic to F' and a root « of f in
Ey. Thus, in Eq[z], f = (r—a)g, where g € F1[z] and degg = n—1. By the
inductive hypothesis applied to the field F; and the polynomial g € E[z],
there exists a field E containing a subfield isomorphic to F; such that g
factors into linear factors in E[z]. Since E contains a subfield isomorphic
to F1 and E7 contains a subfield isomorphic to F', the composition of the
two isomorphisms gives an isomorphism from F' to a subfield of . Then,
in E[x], f is a product of z — a and a product of linear factors, and is thus
a product of linear factors. This completes the inductive step. ]
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