Modern Algebra II, Spring 2022

Homework 4, due Wednesday February 16.

1. (10 points) Compute the following sums and intersections of ideals in $\mathbb{Q}[x]$ (first recall the relation between sums and intersections of ideas in F[x] to gcd and lcm of polynomials). Note that all the ideals of $\mathbb{Q}[x]$ are principal. For each ideal, list the monic polynomial which generates the ideal.

$$(x) + (x+2), (x^2) + (2x), (3x^2+2x) + (4x^2+x), (3x^2+x+5) + (0), (x) \cap (2x+1), (2x) \cap (3x^2).$$

2. (10 points) Compute the greatest common divisor of polynomials $x^3 - x^2 - 1$ and $x^2 - x + 1$ in the field $\mathbb{F}_3 = \mathbb{Z}/3$. (Hint: first divide one polynomial by the other with the remainder. Keep repeating this procedure until the remainder is 0.) What is the least common multiple of these polynomials in \mathbb{F}_3 ?

3. (15 points) (a) Find all monic irreducible polynomials of degree 2 in \mathbb{F}_3 . (First think of a way to write down all monic degree 2 polynomials with coefficients in \mathbb{F}_3 . How many are there? Then eliminate the ones with a root.)

(b) Find all irreducible polynomials of degrees 1, 2, 3 in \mathbb{F}_2 . (Note that in \mathbb{F}_2 any nonzero polynomial is monic.)

(c) Which of the following polynomials over \mathbb{F}_5 are irreducible?

$$3x^2 + 1$$
, $x^4 + x$, $x^2 + 2x + 2$

4. (10 points) Consider the ring $R = \mathbb{F}_p[x]/(f(x))$, where f(x) is a polynomial of degree *n*. This ring is the quotient of the ring $\mathbb{F}_p[x]$ of polynomials in *x* with coefficients in \mathbb{F}_p . (Recall that we use two notations, \mathbb{Z}/p and \mathbb{F}_p , for the field of residues modulo a prime *p*.) Show that *R* is a finite ring with p^n elements. (Hint: in class we classified cosets of the ideal $(f(x)) \subset F[x]$, for any field *F*. Count the cosets for the above ideal.)

5. (15 points) (a) Explain how to construct an infinite field of characteristic p. (Hint: start with the ring $\mathbb{F}_p[x]$ of polynomials in x with coefficients in \mathbb{F}_p . What properties does this ring have?)

(b) Explain why $(a + b)^p = a^p + b^p$ for any elements $a, b \in R$ where R is a (commutative, of course) ring in which p = 0 (a ring which contains \mathbb{F}_p as a subring). This was discussed in class; write your proof of this result based on our discussion.