Modern Algebra II, spring 2022

Homework 5, due Wednesday March 2.

1. (20 points) Starting with the axioms of a vector space V over a field F prove (a) $a\underline{0} = \underline{0}$, where $a \in F$ and $\underline{0}$ is the zero vector in V (that is, $\underline{0} + v = v$ for all $v \in V$). In class, we denoted $\underline{0}$ by 0.

(b) $0v = \underline{0}$, for $v \in V$ and the zero element 0 of F.

(c) av = 0 iff a = 0 or v = 0 (where $a \in F$ and $v \in V$).

(d) av = aw iff a = 0 or v = w, for $a \in F$ and $v, w \in V$.

Here we denote the zero element of F by 0 and the zero vector of V by $\underline{0}$ to distinguish the two.

2. (10 points) Suppose a ring R contains a field \mathbb{F} as a subring. Check that R is naturally an \mathbb{F} -vector space. Next, suppose I is an ideal of R. Prove that I is an \mathbb{F} -vector subspace of R. Note that the implication does not work the other way, most vector subspaces of R are not ideals in R. Can you give an example of \mathbb{F} and R as above and an F-subspace V of R which is not an ideal in R?

3. (10 points) Pick irreducible polynomials f(x) and g(x) over \mathbb{F}_3 of degrees 2 and 3, respectively, and use them to define fields with 9 and 27 elements, respectively. Call these fields \mathbb{F}_9 and \mathbb{F}_{27} . Explain why \mathbb{F}_9 is not isomorphic to a subfield of \mathbb{F}_{27} . What can you say about multiplicative groups \mathbb{F}_9^* and \mathbb{F}_{27}^* ?

4. (20 points) (a) Consider the field $F = \mathbb{F}_2[\alpha]/(\alpha^3 + \alpha + 1)$. From the theorem proved in class we know that $B = (1, \alpha, \alpha^2)$ is a basis of F over \mathbb{F}_2 . Take $\beta = \alpha + 1$. Write down powers $1, \beta, \beta^2$ in the basis B and check that they are linearly independent over \mathbb{F}_2 . Then compute β^3 and find a linear dependence between $1, \beta, \beta^2, \beta^3$. Write this linear dependence between powers of β as the equation $g(\beta) = 0$, where g is a degree 3 polynomial with coefficients in \mathbb{F}_2 . Your polynomial g(x) should be different from the polynomial $f(x) = x^3 + x + 1$ that we use to define F. Use these observations to conclude that the field $F = \mathbb{F}_2[\alpha]/(f(\alpha))$ is isomorphic to the field $\mathbb{F}_2[\beta]/(g(\beta))$. (How do you set up such an isomorphism?)

5. (20 points) (a) Take the field $\mathbb{F}_8 = \mathbb{F}_2[\alpha]/(\alpha^3 + \alpha + 1)$. Write down how the Frobenius endomorphism Fr (also denoted σ_2) acts on each element of \mathbb{F}_8 . (Recall that $\sigma_2(a) = a^2$ for all $a \in \mathbb{F}_8$.) Check that σ_2 is bijective and conclude that it is an automorphism of the field \mathbb{F}_8 . Find the order of σ_2 .

(b) Recall and write down the details of the proof of the theorem, mentioned in class, that the Frobenius endomorphism σ_p is bijective on any finite field F of characteristic p (that is, F that contain \mathbb{F}_p). Conclude that σ_p is an automorphism of F. (When F has characteristic p but is not finite, σ_p may not be an automorphism; σ_p is always injective but not always surjective.) 6. (10 points) Find the inverse of the matrix

$$\left(\begin{array}{cc} \alpha & 1+\alpha \\ 1+\alpha & \alpha^2 \end{array}\right)$$

with coefficients in the field $\mathbb{F}_4 = \mathbb{F}_2[\alpha]/(\alpha^2 + \alpha + 1)$. Use both methods for computing the inverse discussed in class, and check your answer by direct multiplication with the original matrix.