Modern algebra I, spring 2017. Quiz 2 Solutions

Check the boxes that are followed by correct statements.

 \Box Permutation (12)(34) has order 4.

False: This permutation has order 2.

In a cyclic group C_{40} generated by a, element a^5 has order 8.

True: $(a^5)^8 = a^{40} = 1$, and any smaller positive power of a^5 is not 1. In general, if a is a generator of cyclic group of order n then the order of a^k is $\frac{n}{\gcd(n,k)}$. In our case, n = 40 and k = 5, so we get $\frac{40}{\gcd(40,5)} = 8$.

If a group G is commutative and H is a subgroup of G, then H is commutative.

True

 \Box The set {id, (123)} is a subgroup of S_3 .

False. This set is not closed under multiplication. (123)(123) = (132), not in the set. Alternatively, the inverse of (123) is not in the set. Either way, it does not satisfy the axioms of a subgroup.

The set $\{0, 2, 4\}$ is a subgroup of $\mathbb{Z}/6$. (The group operation on $\mathbb{Z}/6$ is addition.)

True. This subset is closed under the group operation, contains the unit element 0, and contains the additive inverse of each element.

For a subgroup H of a group G, any two left cosets g_1H and g_2H are either disjoint or equal.

True. This is a proposition we proved in class.