Modern algebra I, spring 2017. Quiz 3 Solutions

Check the boxes that are followed by correct statements.

 $\Box \quad \text{If } \psi: G \longrightarrow H \text{ is a homomorphism and } K \subset G \text{ a subgroup, then } \psi(K) \text{ is a subgroup of } H.$

True: The image of a subgroup of G under a homomorphism is a subgroup of H.

 \square Any subgroup H of \mathbb{T} , the group of unit complex numbers under multiplication, is normal in \mathbb{T} .

True: \mathbb{T} is an abelian group, and any subgroup of an abelian group is normal.

 \Box Any subgroup of the symmetric group S_3 is normal in S_3 .

False: For instance, subgroup $\{id, (12)\}$ is not normal in S_3 .

 \Box For any two subgroups H, K of a group G, the set

$$HK = \{hk : h \in H, k \in K\}$$

is a subgroup of G.

False. This is false, in general. For instance, take $H = \{id, (12)\}$ and $K = \{id, (13)\}$, both subgroups of S_3 . You can check that HK is a 4-element set, and cannot be a subgroup of S_3 , which is a group of order 6. If either H of K is normal in G then HK is a subgroup of G (this is part of the Second Isomorphism theorem).

 \Box Any subgroup H of a group G is the kernel of a homomorphism from G to some group K.

False: If H is not normal, it cannot be the kernel of a homomorphism into any group. True for normal subgroups.

 \square Any homomorphism from \mathbb{Z} to \mathbb{Z}_6 is surjective.

False: For instance, the trivial homomorphism $\mathbb{Z} \longrightarrow \mathbb{Z}_6$ is not surjective. There are three other homomorphisms from \mathbb{Z} to \mathbb{Z}_6 that are not surjective, can you find them all?