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1. Since the identity in SX is the permutation which sends each element of X to itself, we have idSX
(x) = x

for all x ∈ X. Therefore to find the kernel of π we must find the elements of g such that gx = x for
all x ∈ X. The statement that gx = x is equivalent to g ∈ Gx, so we have g ∈ Gx for all x ∈ X, or
equivalently g ∈ ∩x∈XGx. Putting this together we have g ∈ kerπ ⇔ g ∈

⋂
x∈X Gx, or

kerπ =
⋂
x∈X

Gx

2.

a

b

c

d

Point Size of Orbit Stabilizer Size of Stabilizer
a 1 D4 8
b 4

〈
sr
〉

2
c 4

〈
s
〉

2
d 8 {1} 1

The rotation subgroup C4 cannot be realized as the stabilizer of a point on the square, since an
individual rotation r fixes only one point (labeled a in the diagram above), but the stabilizer of that
point is all of D4.

3. (a) In S4, conjugate elements are permutations with the same cycle structure. Therefore we may split
up according to cycle structure:

i. e

ii. (12), (13), (14), (23), (24), (34)

iii. (123), (132), (124), (142), (134), (143), (234), (342)

iv. (12)(34), (13)(24), (14)(23)

v. (1234), (1243), (1324), (1342), (1423), (1432)

Counting the number of elements in each conjugacy class we have the class equation:

|S4| = 24 = 1 + 6 + 8 + 3 + 6

(b) For a generic element of D5 we may take sarb, where a ∈ Z2 and b ∈ Z5.

In the case that a = 1 we may conjugate by r2:

r2(srb)r−2 = r2srb−2 = sr−2rb−2 = srb−4 = srb+1
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Where in the last step we have used −4 = 1 mod (5) to simplify. This results shows that all
element of the type srb are of the same conjugacy class, as they may all be reached by repeatedly
conjugating by r2.

In the case that a = 0 we may conjugate by a generic sαrβ :

sαrβ(rb)r−βs−α = sαrβ+b−βs−α = sαrbs−α

sαrbs−α =

{
rb α = 0

r−b α = 1

Therefore two elements rb1 , rb2 ∈ D5 are conjugate if and only if b1 = ±b2 mod (5). This gives
three conjugacy classes: r and r4, r2 and r3, and 1.

Putting all this together we have 4 conjugacy classes:

i. 1

ii. r, r4

iii. r2, 43

iv. s, sr, sr2, sr3, sr4

Counting the number of elements in each conjugacy class we have the class equation:

|D5| = 10 = 1 + 2 + 2 + 5

(c) Since Z6 is abelian, every element is its own conjugacy class:

i. 0

ii. 1

iii. 2

iv. 3

v. 4

vi. 5

This gives the class equation:

|Z6| = 6 = 1 + 1 + 1 + 1 + 1 + 1

(d) From earlier work we see that ji(−j) = ki(−k) = −i, so {i,−i} is a conjugacy class. Similarly
{j,−j} and {k,−k} are conjugacy classes as well. Meanwhile 1 and −1 are in the center of Q8,
so they are within their own conjugacy classes. Putting this together we have:

i. 1

ii. -1

iii. i, -i

iv. j, -j

v. k, -k

And for the class equation we have

|Q8| = 8 = 2 + 2 + 2 + 1 + 1

4. (a) The orbits of the action may be uniquely identified by the element r of the orbit is in [0, 1). The
orbit associated with a particular r is r + Z = {r + n | n ∈ Z}.
For every x ∈ R, the stabilizer Zx is the set of elements n such that x+n = x, or n = 0. Therefore
we have Zx = {0} for all x ∈ R.
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(b) The orbit of a given element z ∈ C is given by the circle in the complex plane centered about
0 with radius |z|. Any other element w of equal magnitude separated by angle θ from z can
be obtained by multiplying by eiθ

′ ∈ T, where θ′ = θ mod (2π). Therefore all orbits consist of
concentric circles about the origin in the complex plane.

The stabilizer of 0 is all of T, since 0eiψ = 0 for all ψ.

For an arbitrary z ∈ C, z 6= 0, we may describe the stabilizer of z as the set of elements eiψ such
that zeiψ = z, or equivalently, eiψ = 1. This occurs when ψ = 2πn, n ∈ N, which corresponds
only to the element 1 ∈ T. Therefore the stabilizer for any element other that 0 in C is {1}.

5. For any orbit, we know the order of the orbit must divide the order of the group. Therefore the number
of elements in the orbit must divide |Cp| = p. Since p is prime, this means there must either be 1 or p
elements in the orbit.

6. (a) To check that this operation is a group action, we must check that e(i, j) = (i, j) for all i, j, and
associativity, i.e. that (στ)(i, j) = σ(τ(i, j)).

For identity we have
e(i, j) = (e(i), e(j)) = (i, j)

For associativity we have

(στ)(i, j) = ((στ)(i), (στ)(j)) = (σ(τ(i)), σ(τ(j))) = σ(τ(i, j))

where we have used the associativity of function composition.

(b) The two orbits are O0 = {(i, j) ∈ J × J | i = j} and O1 = {(i, j) ∈ J × J | i 6= j}. To see
that these are disjoint note that by the injectivity of σ ∈ Sn we have σ(i) = σ(j)⇔ i = j, so no
application of the group action can move between the sets.

To see that these are complete orbits (i.e. they aren’t composed of smaller orbits), we must take
two arbitrary elements in each orbit and map one to the other.

For O0 we take (i, i) ∈ J × J , which we must map to (j, j) ∈ J × J . We see that the permutation
σ = (ij) does the trick, so (i, i) and (j, j) are in the same orbit.

For O1, by symmetry of components we need only show that we may arbitrarily set one of the
components. Therefore we take (i, j) ∈ O1 and (i, k) ∈ O1 and must find σ which sends (i, j) to
(j, k). Taking the permutation σ = (jk), we see that since i 6= j and i 6= k there will be no effect
on i. Meanwhile j and k will swap (or do nothing if j = k), so σ will exactly send (i, j) to (j, k)
and vice versa.

(c) For O0, we select the element p = (1, 1). The stabilizer for p is the set of all permutations in Sn
which fix 1, which isomorphic to Sn−1.

For O1, we select the element p = (1, 2). The stabilizer for p is the set of all permutations which
fix 1 and 2, which is isomorphic to Sn−2.

7. To check that this is an action we must check the action of the identity and associativity.

For identity we have 1A = {1a | a ∈ A} = {a | a ∈ A} = A, so the identity checks out.

For associativity we may apply associativity of the underlying group action:

(gh)A = {(gh)a | a ∈ A} = {g(ha) | a ∈ A} = g{ha | a ∈ A} = g(hA)

The stabilizer of the empty set is the whole group, since acting on the empty set will always produce
the empty set.

The stabilizer of an singleton {x} is the same as the stabilizer of x under the original group action.
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