Homework 3 Solutions

Sam Mundy

Exercise (I). Write down the Cayley table for the group $\mathbb{Z}/5$. Remember that the group operation is addition. Is your table symmetric?

Solution. The Cayley table for $\mathbb{Z}/5$ is

+	0	1	2	3	4
0	0	1	2	3	4
1	1	2	3	4	0
2	2	3	4	0	1
3	3	4	0	1	2
4	4	0	1	2	3

The table is symmetric across the diagonal because $\mathbb{Z}/5$ is abelian.

Exercise (Judson, Chapter 3, Exercise 7). Let $S = \mathbb{R} \setminus \{-1\}$ and define a binary operation on S by a * b = a + b + ab. Prove that (S, *) is an abelian group.

Solution. The very first thing to check is that this set S is really closed under the operation *. We know that given $a, b \in S$ then a * b is always a real number, but we need to see that $a * b \neq -1$. To see this, let us simply write down what it means for $a, b \in S$ to have a * b = -1. This means

$$a+b+ab = -1,$$

or equivalently

$$ab + a + b + 1 = 0.$$

But ab + a + b + 1 = (a + 1)(b + 1), so if this is zero, then one of a + 1 or b + 1 is zero. This is impossible since $a, b \in S$ so neither are -1. Thus S is really closed under *.

Now let us check that * is associative. Let $a, b, c \in S$. We have

$$(a * b) * c = (a + b + ab) * c = a + b + ab + c + (a + b + ab)c = a + b + ab + c + ac + bc + abc.$$

We also have

$$a * (b * c) = a * (b + c + bc) = a + b + c + bc + a(b + c + bc) = a + b + c + bc + ab + ac + abc.$$

After rearranging, we see that both expressions are equal. So * is associative.

Now we need to find an identity element. I claim that 0 is an identity element for (S, *). To see this, let $a \in S$. We compute

$$0 * a = 0 + a + 0a = a$$

$$a * 0 = a + 0 + a0 = a,$$

so 0 is an identity element.

Next we check for the existence of inverses. This means for every $a \in S$, we need to find an a' such that a * a' = a' * a = 0. The formula for a' is $a' = \frac{-a}{a+1}$ which can be derived by solving the equation a + a' + aa' = 0. We compute

$$\frac{-a}{a+1} * a = \frac{-a}{a+1} + a - \frac{a^2}{a+1} = a - \frac{a^2 + a}{a+1} = a - a = 0.$$

Similarly, one can compute that a * a' = 0 (though, strictly speaking, we do not need to do this since we are about to check that * is commutative!) This completes the verification that (S, *) is a group.

Finally, we check that (S, *) is abelian. Let $a, b \in S$. Then we compute

$$a \ast b = a + b + ab = b + a + ba = b \ast a,$$

which shows that (S, *) is abelian. So we are done.

Exercise (Judson, Chapter 3, Exercise 45). Prove that the intersection of two subgroups of a group G is also a subgroup of G.

Solution. Let H, K be two subgroups of G. Let e denote the identity of G. We need to check that $e \in H \cap K$, that $H \cap K$ is closed under the group operation, and that $H \cap K$ has inverses. To see that $e \in H \cap K$, we note that since H and K are subgroups of $G, e \in H$ and $e \in K$. So $e \in H \cap K$.

Now let $g, h \in H \cap K$. Then $g, h \in H$ and $g, h \in K$. Since H and K are subgroups, $gh \in H$ and $gh \in K$. Thus $gh \in H \cap K$. Similarly if $g \in H \cap K$, then $g \in H$ and $g \in K$. Thus $g^{-1} \in H$ and $g^{-1} \in K$, and so $g^{-1} \in H \cap K$. Thus $H \cap K$ is a subgroup of G.

Exercise (Judson, Chapter 3, Exercise 49). Let a and b be elements of a group G. If $a^4b = ba$ and $a^3 = e$, prove that ab = ba.

Solution. We substitute the second relation into the first: we have $ba = a^4b = a^3ab = ab = ab$, which solves the exercise.

Exercise (III). Find all subgroups of the Klein four group V_4 . (Don't forget the trivial subgroup and V_4 itself.)

Solution. Recall that $V_4 = \{e, a, b, c\}$ where the elements e, a, b, c are multiplied according to the following Cayley table:

	e	a	b	c
e	e	a	b	С
a	a	e	С	b
b	b	С	e	a
c	c	b	a	e

Since every subgroup must contain the identity element e, there are eight sets that may be subgroups:

$$\{e\},\ \{e,a\},\ \{e,b\},\ \{e,c\},\ \{e,a,b\},\ \{e,a,c\},\ \{e,b,c\},\ \{e,a,b,c\}.$$

We know that $\{e\}$ and $\{e, a, b, c\}$ are subgroups, but so are the three subsets in the second row. For instance, since aa = e = ee, this shows that $\{a, e\}$ has inverses, and since ee = e = aa and ae = ea = e, it is also closed. So it is a subgroup, and a similar verification shows $\{e, b\}$ and $\{e, c\}$ are subgroups.

The sets with three element in the third row are not subgroups. Actually, this follows from a theorem we will see later in the course, attributed to Lagrange, that says if H is a subgroup of a finite group G, then the order of H divides the order of G. 3 does not divide 4, so these cannot be subgroups. But this can also be checked directly: a + b = c shows that $\{e, a, b\}$ is not closed, a + c = b shows that $\{e, a, c\}$ is not closed, and b + c = a shows that $\{e, b, c\}$ is not closed. Thus there are five subgroups, namely

$$\{e\}, \{e,a\}, \{e,b\}, \{e,c\}, \{e,a,b,c\}.$$