Modern Algebra I HW 4 Solutions

Theo Coyne

Problem 1.

In general, given a group G and an element g € G of (finite) order n, the order
of g* is n/ ged(n, i) for every integer i.

(a) Since g generates C1g it must have full order 10. With the above fact in
mind, we immediately have:
g* has order 10/2 = 5.
g° has order 10/5 = 2.
g* has order 10/2 = 5.
¢> has order 10.

All cyclic groups are abelian so Cyg is in particular. We saw above that
g> has order 10, so it is a generator too.

(b) We use the theorem that in a finite cyclic group of order n, there is exactly
one subgroup of each order dividing n and these are all the subgroups.

Order 1 subgroup: the trivial subgroup {1}.
Order 2 subgroup: (g°) = {1,¢°}.

Order 5 subgroup: {¢%) = {1, 42, ¢* ¢% ¢°}.
Order 10 subgroup: The full group Cig.

Problem 2.
Since a has order 40, the order of a’ is 40/ ged(40, i) for each i. Using this:

e a? has order 40/2 = 20.
e a'? has order 40/4 = 10.
e a~° has order 40/5 = 8.

e a'l has order 40.

There is a subgroup of order 8 because 8 divides 40- take the subgroup generated
by a®. There is no subgroup of order 12 because 12 doesn’t divide 40.



Problem 3.

Recall that a subset H of a group G is a subgroup if it is closed under the group
operation, contains the identity element of G, and all of its elements’ inverses
are also in H.

(a)

(b)

(c)

{1,—-1} is closed under multiplication, contains 1, and is closed under
inversion because (—1)~! = —1. It is a subgroup of C*.

{i,—i} is not a subgroup of C because it does not contain the identity
element 1. Closure also fails as, for example, i = —1 ¢ {i, —i}.

{z € C:|z| = 1} is closed under multiplication because if |z| = || = 1,
then |zz'| = |2|-|2’| = 1 too. Since |1| = 1, it contains the identity element.
For every z € C* with |z| = 1, we have |27} = |2|7! = 1, so H is closed
under inversion.

R* is clearly closed under multiplication, 1 is a nonzero real, and 1/z exists
and is a nonzero real whenever z is. So R* is a subgroup of C*.

R* U4R* contains 1 because 1 € R*. Inverses: let z € R* UiR*. If z € R*,
then 1/z € R*, as in the above part. If instead z = iz € iR* for z € R*,
then 1/z = 1/(iz) = —i/x € iR*. Finally, the product of two elements of
R* is in R*, the product of two elements in iR* is in R*, and the product
of an element of R* with an element of {R* is in {R*. This exhausts all
possible cases of products of elements of R* U{R* and we see that our set
is closed under multiplication and is a subgroup of C*.

Problem 4.
In general, Z; consists of the elements in {0,...,n — 1} that are coprime to n.
So,

1. 2§ = {1,2,4,5,7,8} has 6 elements. The cyclic subgroups generated by

its elements are as follows:

1 ={1}

(2) = {1,2,4,8,7,5}
4 ={47,1}

(5) = {1,5,7,8,4,2}
(1) ={1,7,4}

(8) = {1,8}

So, 1,2,4,5,7,8 have orders 1,6, 3,6, 3, 2 respectively.

Since 5 and 2 are generators, the group Zg§ is cyclic.



2. Z3, = {1,5,7,11} has 4 elements. The cyclic subgroups generated by its
elements are as follows:

(1) ={1}

(5) ={1,5}
(1) = {177}
(11) = {1,11}

All of the non-identity elements have order 2 and so none are generators
of Z7,, hence Z7, is not cyclic. It is isomorphic to the Klein four-group
Cz X CQ.

3. Z7; = {1,2,3,4,5,6,7,8,9,10} has 10 elements. As this group is some-
what larger, I'll only write down a couple of its cyclic subgroups. The
first several powers of 2 mod 11 are 1,2,4,8,5,10,9,7,3,6, which is all

of Z3,, so (2) = Z3,. The element 5 generates a subgroup with elements
{1,5,3,4,9}.

So, Z7, is cyclic and 2 is a generator.
Remark 1. For any prime p, it’s the case that Z,, is cyclic.
Problem 5.

(a) We must check associativity, the existence of an identity element, and the
existence of inverses for all elements.

Associativity: Let (g;, h;) for ¢ = 1,2,3 be three arbitrary elements
of G x H. We have

((g1,h1) © (92, h2)) © (g3, h3) = (9192, h1h2) o (g3, h3) = ((9192)g3, (h1h2)h3)

= (91(9293), h1(h2h3)) = (g1, k1) © (9293, hahz) = (g1, h1) © ((g2, h2) © (g3, h3)) -

To go from the first to the second line, we used the associativity of the
group operations in G and H.

Identity: Let eg be the identity element of G and ey the identity
element of H. Then for any element (g,h) € G x H, we have

(ereH) o (gvh) = (eGgaeHh) = (g7h)

and
(g’h) © (6G’6H) = (gerhBH) = (gvh)'

Hence (eq, err) is an identity element for G x H.

Inverses: Let (g, h) be an arbitrary element of G x H. We check that
(g7 1, h71) is an inverse element. We have
(g’h) © (g_lvh_1> = (gg_la hh_l) = (€G76H) and
(975 h Y o(g,h) = (97g,h th) = (eg,en), as required.



(b) If G and H are both abelian, then for all (g1,h1) € G x H and (g2, he) €
G x H, we have

(91, h1) © (g2, h2) = (9192, hih2) = (9291, hah1) = (g2, h2) © (91, h2).
Hence, G x H is abelian.
Remark 2. The “if” in the problem statement can be strengthened to an

“f and only if”. If G x H is an abelian group under o, then for all g, g’ € G
and h,h' € H, we have

(99',hh') = (g,h) o (9", 1) = (¢, 1) o (9,h) = (¢'g,h"h),

from which the equalities g¢' = ¢'g and hh' = h'h follow. This implies
that G and H are both abelian.



