
Modern Algebra I HW 4 Solutions

Theo Coyne

Problem 1.

In general, given a group G and an element g ∈ G of (finite) order n, the order
of gi is n/ gcd(n, i) for every integer i.

(a) Since g generates C10 it must have full order 10. With the above fact in
mind, we immediately have:

g2 has order 10/2 = 5.

g5 has order 10/5 = 2.

g4 has order 10/2 = 5.

g3 has order 10.

All cyclic groups are abelian so C10 is in particular. We saw above that
g3 has order 10, so it is a generator too.

(b) We use the theorem that in a finite cyclic group of order n, there is exactly
one subgroup of each order dividing n and these are all the subgroups.

Order 1 subgroup: the trivial subgroup {1}.
Order 2 subgroup: 〈g5〉 = {1, g5}.
Order 5 subgroup: 〈g2〉 = {1, g2, g4, g6, g8}.
Order 10 subgroup: The full group C10.

Problem 2.

Since a has order 40, the order of ai is 40/ gcd(40, i) for each i. Using this:

• a2 has order 40/2 = 20.

• a12 has order 40/4 = 10.

• a−5 has order 40/5 = 8.

• a11 has order 40.

There is a subgroup of order 8 because 8 divides 40- take the subgroup generated
by a5. There is no subgroup of order 12 because 12 doesn’t divide 40.
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Problem 3.

Recall that a subset H of a group G is a subgroup if it is closed under the group
operation, contains the identity element of G, and all of its elements’ inverses
are also in H.

(a) {1,−1} is closed under multiplication, contains 1, and is closed under
inversion because (−1)−1 = −1. It is a subgroup of C∗.

(b) {i,−i} is not a subgroup of C because it does not contain the identity
element 1. Closure also fails as, for example, i2 = −1 /∈ {i,−i}.

(c) {z ∈ C : |z| = 1} is closed under multiplication because if |z| = |z′| = 1,
then |zz′| = |z|·|z′| = 1 too. Since |1| = 1, it contains the identity element.
For every z ∈ C∗ with |z| = 1, we have |z−1| = |z|−1 = 1, so H is closed
under inversion.

(d) R∗ is clearly closed under multiplication, 1 is a nonzero real, and 1/z exists
and is a nonzero real whenever z is. So R∗ is a subgroup of C∗.

(e) R∗ ∪ iR∗ contains 1 because 1 ∈ R∗. Inverses: let z ∈ R∗ ∪ iR∗. If z ∈ R∗,
then 1/z ∈ R∗, as in the above part. If instead z = ix ∈ iR∗ for x ∈ R∗,
then 1/z = 1/(ix) = −i/x ∈ iR∗. Finally, the product of two elements of
R∗ is in R∗, the product of two elements in iR∗ is in R∗, and the product
of an element of R∗ with an element of iR∗ is in iR∗. This exhausts all
possible cases of products of elements of R∗ ∪ iR∗ and we see that our set
is closed under multiplication and is a subgroup of C∗.

Problem 4.

In general, Z∗n consists of the elements in {0, . . . , n− 1} that are coprime to n.
So,

1. Z∗9 = {1, 2, 4, 5, 7, 8} has 6 elements. The cyclic subgroups generated by
its elements are as follows:

〈1〉 = {1}
〈2〉 = {1, 2, 4, 8, 7, 5}
〈4〉 = {4, 7, 1}
〈5〉 = {1, 5, 7, 8, 4, 2}
〈7〉 = {1, 7, 4}
〈8〉 = {1, 8}

So, 1, 2, 4, 5, 7, 8 have orders 1, 6, 3, 6, 3, 2 respectively.

Since 5 and 2 are generators, the group Z∗9 is cyclic.
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2. Z∗12 = {1, 5, 7, 11} has 4 elements. The cyclic subgroups generated by its
elements are as follows:

〈1〉 = {1}
〈5〉 = {1, 5}
〈7〉 = {1, 7}
〈11〉 = {1, 11}

All of the non-identity elements have order 2 and so none are generators
of Z∗12, hence Z∗12 is not cyclic. It is isomorphic to the Klein four-group
C2 × C2.

3. Z∗11 = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10} has 10 elements. As this group is some-
what larger, I’ll only write down a couple of its cyclic subgroups. The
first several powers of 2 mod 11 are 1, 2, 4, 8, 5, 10, 9, 7, 3, 6, which is all
of Z∗11, so 〈2〉 = Z∗11. The element 5 generates a subgroup with elements
{1, 5, 3, 4, 9}.
So, Z∗11 is cyclic and 2 is a generator.

Remark 1. For any prime p, it’s the case that Z∗p is cyclic.

Problem 5.

(a) We must check associativity, the existence of an identity element, and the
existence of inverses for all elements.

Associativity: Let (gi, hi) for i = 1, 2, 3 be three arbitrary elements
of G×H. We have

((g1, h1) ◦ (g2, h2)) ◦ (g3, h3) = (g1g2, h1h2) ◦ (g3, h3) = ((g1g2)g3, (h1h2)h3)

= (g1(g2g3), h1(h2h3)) = (g1, h1) ◦ (g2g3, h2h3) = (g1, h1) ◦ ((g2, h2) ◦ (g3, h3)) .

To go from the first to the second line, we used the associativity of the
group operations in G and H.

Identity: Let eG be the identity element of G and eH the identity
element of H. Then for any element (g, h) ∈ G×H, we have

(eG, eH) ◦ (g, h) = (eGg, eHh) = (g, h)

and
(g, h) ◦ (eG, eH) = (geG, heH) = (g, h).

Hence (eG, eH) is an identity element for G×H.

Inverses: Let (g, h) be an arbitrary element of G×H. We check that
(g−1, h−1) is an inverse element. We have
(g, h) ◦ (g−1, h−1) = (gg−1, hh−1) = (eG, eH) and
(g−1, h−1) ◦ (g, h) = (g−1g, h−1h) = (eG, eH), as required.
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(b) If G and H are both abelian, then for all (g1, h1) ∈ G×H and (g2, h2) ∈
G×H, we have

(g1, h1) ◦ (g2, h2) = (g1g2, h1h2) = (g2g1, h2h1) = (g2, h2) ◦ (g1, h2).

Hence, G×H is abelian.

Remark 2. The “if” in the problem statement can be strengthened to an
“if and only if”. If G×H is an abelian group under ◦, then for all g, g′ ∈ G
and h, h′ ∈ H, we have

(gg′, hh′) = (g, h) ◦ (g′, h′) = (g′, h′) ◦ (g, h) = (g′g, h′h),

from which the equalities gg′ = g′g and hh′ = h′h follow. This implies
that G and H are both abelian.
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