Modern Algebra I HW 6 Solutions

Theo Coyne

Problem 1.

We will use the identity $(a_1 \dots a_k) = \prod_{i=1}^{k-1} (a_i a_{i+1})$, which immediately gives us the following.

- (a) (15326) = (15)(53)(32)(26)
- (b) (142)(356)(78) = (14)(42)(35)(56)(78)
- (c) (1536)(79428) = (15)(53)(36)(79)(94)(42)(28)

We see that the permutation in item a is even whereas those in b, c are odd because 4, 5, 7 transpositions respectively appear in the above factorizations.

Problem 2.

Recall that the order of a product of disjoint cycles in S_n is the lcm of the orders of the individual cycles. In what follows, products of cycles are assumed to be disjoint.

- (a) The possible cycle types of elements in S_4 are: identity, 2-cycle, 3-cycle, 4-cycle, a product of two 2-cycles. These have orders 1, 2, 3, 4, 2 respectively, so the possible orders of elements in S_4 are 1, 2, 3, 4.
- (b) Of the above orders of elements in S_4 , only 4 is not the order of an element in A_4 . So, the possible orders of elements in A_4 are 1, 2, 3.
- (c) The possible cycle types of elements in S_5 are: identity, 2-cycle, 3-cycle, 4-cycle, 5-cycle, product of two 2-cycles, a product of a 2-cycle with a 3-cycle. These have respective orders 1, 2, 3, 4, 5, 2, 6, so the possible orders of elements in S_5 are 1, 2, 3, 4, 5, 6.
- (d) Examining the above list, we see that only the orders 1, 2, 3, 5 are orders of elements in A_5 .

Problem 3.

The element (1, 2, 3)(4, 5, 6, 7, 8) is in A_{10} because it is the product of a 3-cycle and a 5-cycle, both of which are even. It has order lcm(3, 5) = 15.

Problem 4.

Let n = 2k + 1 be odd (k a nonnegative integer) and let σ be an *n*-cycle, say $\sigma = (a_1 \dots a_n)$. The result is trivial if n = 1, Otherwise, we see $(\sigma^2)^i(a_1) = a_{2i+1}$ for $i \leq k$ and in particular $(\sigma^2)^k(a_1) = a_n$. Since $\sigma^2(a_n) = a_2$, we may argue similarly for even indices and find

$$\sigma^2 = (a_1, a_3, \dots, a_n, a_2, \dots, a_{n-1}).$$

Problem 5.

- (a) Since $a + \langle 5 \rangle = b + \langle 5 \rangle$ if and only if $a \equiv b \mod 5$, a complete list of the distinct cosets of $\langle 5 \rangle$ is given by $\{i + \langle 5 \rangle : i \in \{0, 1, 2, 3, 4\}\}$. Explicitly,
 - $\begin{array}{l} \langle 5 \rangle = \{0,5,10\} \\ 1 + \langle 5 \rangle = \{1,6,11\} \\ 2 + \langle 5 \rangle = \{2,7,12\} \\ 3 + \langle 5 \rangle = \{3,8,13\} \\ 4 + \langle 5 \rangle = \{4,9,14\}. \end{array}$

Since $\mathbb{Z}/15$ is abelian, the left and right cosets agree. Since there are 5 cosets of $\langle 5 \rangle$ in $\mathbb{Z}/15$, its index is 5.

(b) There are a total of $|S_3|/|H| = 6/2 = 3$ left (right) cosets, so once we find 3 distinct left (right) cosets, we'll know that we have them all.

Left cosets:

 $H = \{1, (23)\}$ (12) $H = \{(12), (123)\}$ (13) $H = \{(13), (132)\}$ Right cosets: $H = \{1, (23)\}$

 $H(12) = \{(12), (132)\}$

 $H(13) = \{(13), (123)\}$

We see that neither of the nontrivial left cosets are right cosets.

Problem 6. Let G be a cyclic group of order n with generator g, so $G = \{1, g, \ldots, g^{n-1}\}$. An element of G is a generator if and only if its order is n, and we know that the order of g^i is $n/\gcd(n,i)$ for each i. So g^i is a generator if and only if $n/\gcd(n,i) = n$, which holds if and only if $\gcd(n,i) = 1$. But there are exactly $\phi(n)$ such elements $i \in \{0, 1, \ldots, n-1\}$ by definition.

Problem 7.

(a) Since $|S_3| = 6$, the possible orders of subgroups are 1, 2, 3, 6.

Order 1: Only the trivial subgroup $\{1\}$ has order 1.

Order 2: The order 2 elements of S_3 are 2-cycles, so the order 2 subgroups of S_3 are:

 $\{1, (12)\}\$

 $\{1, (13)\}\$

 $\{1, (23)\}\$

Order 3: These are generated by 3-cycles, which are (123), (132), so the only subgroup of order 3 is $\{1, (123), (132)\}$.

Order 6: The subgroup of order 6 is the full group S_3 .

(b) Since $|A_4| = 12$, the possible orders of subgroups are 1, 2, 3, 4, 6, 12.

Order 1: Only the trivial subgroup $\{1\}$

Order 2: The elements of order 2 in A_4 are products of two disjoint 2-cycles. These give the subgroups

 $\{1, (12)(34)\}\$

 $\{1, (13)(24)\}\$

 $\{1, (14)(23)\}$

Order 3: These must be generated by three cycles, which are (123), (132), (134), (143), (124), (142), (234), (243). These give the subgroups

 $\{1, (123), (132)\}$

- $\{1, (134), (143)\}$
- $\{1, (124), (142)\}$
- $\{1, (234), (243)\}.$

Order 4. If H is a subgroup of order 4, its elements must have order in $\{1, 2, 4\}$. But A_4 doesn't contain any elements of order 4, so Hmust contain only elements of order 1, 2. The only elements of order 2 are (12)(34), (13)(24), and (14)(23) and we see that $\{1, (12)(34), (13)(24), (14)(23)\}$ is indeed a subgroup (of order 4).

Order 6: As noted in the problem statement, A_4 has no subgroups of order 6.

Order 12: The whole group A_4 .

(c) Since $|\mathbb{Z}/3 \times \mathbb{Z}/3| = 9$, the possible orders of subgroups are 1, 3, 9.

Order 1: Trivial subgroup $\{(0,0)\}$.

Order 3: These are cyclic of order 3, and every nontrivial element of $\mathbb{Z}/3 \times \mathbb{Z}/3$ generates such a subgroup. So, the subgroups of order 3 are:

 $\{(0,0), (1,1), (2,2)\}\$ $\{(0,0), (1,0), (2,0)\}\$ $\begin{aligned} &\{(0,0),(0,1),(0,2)\} \\ &\{(0,0),(1,2),(2,1)\} \end{aligned}$ Order 9: The full group $\mathbb{Z}/3\times\mathbb{Z}/3.$