
Modern Algebra I HW 6 Solutions

Theo Coyne

Problem 1.

We will use the identity (a1 . . . ak) =
∏k−1

i=1 (aiai+1), which immediately gives us
the following.

(a) (15326) = (15)(53)(32)(26)

(b) (142)(356)(78) = (14)(42)(35)(56)(78)

(c) (1536)(79428) = (15)(53)(36)(79)(94)(42)(28)

We see that the permutation in item a is even whereas those in b, c are odd
because 4, 5, 7 transpositions respectively appear in the above factorizations.

Problem 2.

Recall that the order of a product of disjoint cycles in Sn is the lcm of the orders
of the individual cycles. In what follows, products of cycles are assumed to be
disjoint.

(a) The possible cycle types of elements in S4 are: identity, 2-cycle, 3-cycle, 4-
cycle, a product of two 2-cycles. These have orders 1, 2, 3, 4, 2 respectively,
so the possible orders of elements in S4 are 1, 2, 3, 4.

(b) Of the above orders of elements in S4, only 4 is not the order of an element
in A4. So, the possible orders of elements in A4 are 1, 2, 3.

(c) The possible cycle types of elements in S5 are: identity, 2-cycle, 3-cycle,
4-cycle, 5-cycle, product of two 2-cycles, a product of a 2-cycle with a 3-
cycle. These have respective orders 1, 2, 3, 4, 5, 2, 6, so the possible orders
of elements in S5 are 1, 2, 3, 4, 5, 6.

(d) Examining the above list, we see that only the orders 1, 2, 3, 5 are orders
of elements in A5.

Problem 3.

The element (1, 2, 3)(4, 5, 6, 7, 8) is in A10 because it is the product of a 3-cycle
and a 5-cycle, both of which are even. It has order lcm(3, 5) = 15.
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Problem 4.

Let n = 2k + 1 be odd (k a nonnegative integer) and let σ be an n-cycle, say
σ = (a1 . . . an). The result is trivial if n = 1, Otherwise, we see (σ2)i(a1) = a2i+1

for i ≤ k and in particular (σ2)k(a1) = an. Since σ2(an) = a2, we may argue
similarly for even indices and find

σ2 = (a1, a3, . . . , an, a2, . . . , an−1).

Problem 5.

(a) Since a+ 〈5〉 = b+ 〈5〉 if and only if a ≡ b mod 5, a complete list of the
distinct cosets of 〈5〉 is given by {i+ 〈5〉 : i ∈ {0, 1, 2, 3, 4}}. Explicitly,

〈5〉 = {0, 5, 10}
1 + 〈5〉 = {1, 6, 11}
2 + 〈5〉 = {2, 7, 12}
3 + 〈5〉 = {3, 8, 13}
4 + 〈5〉 = {4, 9, 14}.

Since Z/15 is abelian, the left and right cosets agree. Since there are 5
cosets of 〈5〉 in Z/15, its index is 5.

(b) There are a total of |S3|/|H| = 6/2 = 3 left (right) cosets, so once we find
3 distinct left (right) cosets, we’ll know that we have them all.

Left cosets:

H = {1, (23)}
(12)H = {(12), (123)}
(13)H = {(13), (132)}

Right cosets:

H = {1, (23)}
H(12) = {(12), (132)}
H(13) = {(13), (123)

We see that neither of the nontrivial left cosets are right cosets.

Problem 6. Let G be a cyclic group of order n with generator g, so G =
{1, g, . . . , gn−1}. An element of G is a generator if and only if its order is n, and
we know that the order of gi is n/ gcd(n, i) for each i. So gi is a generator if
and only if n/ gcd(n, i) = n, which holds if and only if gcd(n, i) = 1. But there
are exactly φ(n) such elements i ∈ {0, 1, . . . , n− 1} by definition.

Problem 7.
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(a) Since |S3| = 6, the possible orders of subgroups are 1, 2, 3, 6.

Order 1: Only the trivial subgroup {1} has order 1.

Order 2: The order 2 elements of S3 are 2-cycles, so the order 2
subgroups of S3 are:

{1, (12)}
{1, (13)}
{1, (23)}

Order 3: These are generated by 3-cycles, which are (123), (132), so
the only subgroup of order 3 is {1, (123), (132)}.

Order 6: The subgroup of order 6 is the full group S3.

(b) Since |A4| = 12, the possible orders of subgroups are 1, 2, 3, 4, 6, 12.

Order 1: Only the trivial subgroup {1}
Order 2: The elements of order 2 in A4 are products of two disjoint

2-cycles. These give the subgroups

{1, (12)(34)}
{1, (13)(24)}
{1, (14)(23)}

Order 3: These must be generated by three cycles, which are
(123), (132), (134), (143), (124), (142), (234), (243). These give the subgroups

{1, (123), (132)}
{1, (134), (143)}
{1, (124), (142)}
{1, (234), (243)}.

Order 4. If H is a subgroup of order 4, its elements must have or-
der in {1, 2, 4}. But A4 doesn’t contain any elements of order 4, so H
must contain only elements of order 1, 2. The only elements of order 2 are
(12)(34), (13)(24), and (14)(23) and we see that {1, (12)(34), (13)(24), (14)(23)}
is indeed a subgroup (of order 4).

Order 6: As noted in the problem statement, A4 has no subgroups of
order 6.

Order 12: The whole group A4.

(c) Since |Z/3× Z/3| = 9, the possible orders of subgroups are 1, 3, 9.

Order 1: Trivial subgroup {(0, 0)}.
Order 3: These are cyclic of order 3, and every nontrivial element of

Z/3× Z/3 generates such a subgroup. So, the subgroups of order 3 are:

{(0, 0), (1, 1), (2, 2)}
{(0, 0), (1, 0), (2, 0)}
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{(0, 0), (0, 1), (0, 2)}
{(0, 0), (1, 2), (2, 1)}

Order 9: The full group Z/3× Z/3.
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