
Homework 7 Solutions

Sam Mundy

Exercise 1. A homomorphism f : G→ H of groups is a map such that f(ab) = f(a)f(b)
for any a, b ∈ G. Prove that f takes the unit element of G to the unit element of H and
that f(a−1) = f(a)−1.

Solution. Let eG, eH be the unit elements of G and H, respectively. Then

eHf(eG) = f(eG) = f(eG · eG) = f(eG)f(eG).

Cancelling, we obtain
eH = f(eG).

As for inverses, we have

f(a)f(a−1) = f(a · a−1) = f(eG) = eH .

Thus, multiplying both sides on the left by f(a)−1 gives

f(a)−1f(a)f(a−1) = f(a)−1eH .

The left hand side is eHf(a−1) = f(a−1) and the right hand side is f(a)−1. So we are done.

Exercise 2. Collect the following groups into isomorphism classes:
(a) C4, (b) Z6, (c) Z4, (d) Z3 × Z2, (e) Z2 × Z2, (f) Z∗

5, (g) Z∗
8.

Solution. C4, Z4 and Z∗
5 are cyclic of order 4 (the classes of 2 and 3 in Z∗

5 generate that
group). Thus they are isomorphic. Also, Z∗

8
∼= Z2×Z2. You can check that an isomorphism

is given by f : Z∗
8 → Z2×Z2 where f is defined by f(1) = (0, 0), f(3) = (1, 0), f(5) = (0, 1),

an f(7) = (1, 1). We also note that Z3 × Z2
∼= Z6 because both are cyclic of order 6 ((1, 1)

generates Z3 × Z2).
Finally we check that there are no more isomorphisms besides the ones listed. We note

that Z4 � Z6 because these groups have different orders, and Z2 × Z2 � Z6 for the same
reason. Also, Z4 � Z2 × Z2 because the latter group is not cyclic.

Exercise 3. Show that the groups Z8, Z4×Z2, Z2×Z2×Z2 are pairwise non-isomorphic.

Solution. You can check that the maximal order of an element in Z8 is 8, the maximal
order of an element in Z4 × Z2 is 4, and the maximal order of an element in Z2 × Z2 × Z2

is 2. So it suffices to prove the following lemma (which is maybe pretty obvious, but the
proof is not completely trivial to write down. And you should still see a proof of a lemma
like this at least once in your life).
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Lemma. Let G and H be groups, and assume G ∼= H. Then the maximal order of an
element in G is equal to the maximal order of an element in H.

Proof. Let n be the maximal order of an element of G and let m be the maximal order
of an element of H. Let f : G → H be an isomorphism. Let g ∈ G be an element of
maximal order n. Then f(g)n = f(gn) = f(eG) = eH by Exercise 1. Also, if 0 < k < n,
then gk 6= eG, and since f is a bijection, f(g)k = f(gk) 6= f(eG) = eH . This shows that
f(g) also has order n. Thus H also has an element of order n, and so the maximal order
of an element in G is at least the maximal order of an element in H, i.e., n ≤ m. But this
situation is symmetric: The same reasoning in the other direction shows that m ≤ n. Thus
n = m, which is what we wanted to show.

Exercise 6. If a group G has exactly one subgroup H of order k, prove that H is normal
in G.

Solution. We need to show that for any g ∈ G, gHg−1 = H. But if g ∈ G, you can check
that gHg−1 is a subgroup of G. Furthermore, h 7→ ghg−1 defines a bijection (in fact, an
isomorphism) between H and gHg−1. So therefore gHg−1 also has order k, and is thus
equal to H by hypothesis. This completes the proof.

Exercise 7. (a) Let H = {id, (12)(34), (13)(24), (14)(23)}. Check that H is a subgroup of
S4. Prove that H is normal in S4 using that two permutations are conjugate in Sn iff they
have the same cycle type (proved in class).
(b) Show that the subgroup H generated by the 4-cycle (1234) is not normal in S4.

Solution. (a) It is not hard to multiply each element of H by each other element in H and
see that the result is still in H. (You can even simplify this computation by noting that
multiplication by the identity leaves each element stable, so it suffices to multiply each pair
of non-identity elements). I will omit the computation, but I will note that it shows that
each element in H squares to the identity, and hence each element is its own inverse. So H
is closed under multiplication, inversion, and contains the identity, and is thus a subgroup.

There are no other products of disjoint 2-cycles other than those in H. So by the fact
stated in the exercise, for any σ ∈ S4, and for any h ∈ H which is a product of two disjoint
2-cycles, σhσ−1 is still a product of two disjoint 2-cycles, hence is in H. Since obviously
σ(id)σ−1 = id, this proves that H is normal in S4.

(b) Now H is the subgroup {id, (1234), (13)(24), (1432)}. Let us conjugate (1234) by
(12). We get

(12)(1234)(12)−1 = (12)(1234)(12) = (12)(134) = (1342).

This element is not in H, so H is not normal.
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