Modern Algebra I HW 8 Solutions

Theo Coyne

Problem 1:

A homomorphism $\phi : \mathbb{Z} \to \mathbb{Z}_4$ is determined by $\phi(1)$ since $\phi(n) = n \cdot \phi(1)$ for every $n \in \mathbb{Z}$. Also, for any $a \in \mathbb{Z}_4$, we can get a homomorphism $\mathbb{Z} \to \mathbb{Z}_4$ taking 1 to a by sending n to the reduction mod 4 of an. So, there are four homomorphisms $\phi : \mathbb{Z} \to \mathbb{Z}_4$, one for each value in \mathbb{Z}_4 .

If $\phi(1) = 0$, we get the zero map. Its kernel is all of \mathbb{Z} and its image is $\{0\}$.

- If $\phi(1) = 1$, our map is just reduction mod 4, which is clearly surjective; that is, its image is all of \mathbb{Z}_4 . We see that an element is sent to zero if and only if it's a multiple of 4, so ker $(\phi) = 4\mathbb{Z}$.
- If $\phi(1) = 2$, our map takes *n* to the reduction of $2n \mod 4$. The image is generated by 2, which is $\langle 2 \rangle = \{0, 2\}$. The kernel is the set of elements of *n* such that 2n is a multiple of 4. This is the set of even integers, $2\mathbb{Z}$.
- If $\phi(1) = 3$, our map takes *n* to the reduction of $3n \mod 4$. The image is generated by $\phi(1) = 3$ and so is all of \mathbb{Z}_4 (so it's surjective). Since 3n is a multiple of 4 if and only if *n* is a multiple of 4, the kernel is $4\mathbb{Z}$.

Problem 3:

(a) Let $\operatorname{Hom}(\mathbb{Z}_n, G)$ be the set of homomorphisms from \mathbb{Z}_n to \mathbb{Z}_n . Define $ev_1 : \operatorname{Hom}(\mathbb{Z}_n, \mathbb{Z}_m) \to G$ ("evaluation at 1") by $ev_1(\phi) = \phi(1)$ for all $\phi \in \operatorname{Hom}(\mathbb{Z}_n, G)$. For every such ϕ , we notice $\phi(1)^n = \phi(n \cdot 1) = \phi(0) = 1$ So, the image of ev_1 is contained in the subset $G_n \subset G$ consisting of elements of order dividing n, and we can therefore restrict its codomain to get a map $\mathbb{Z}_n \to G_n$. We want to show that this map is now a bijection.

Injective: If ϕ and ψ are homomorphisms as above with $\phi(1) = \psi(1)$, then $\phi(k) = \phi(1)^k = \psi(1)^k = \psi(k)$ for all $k \in \mathbb{Z}_n$, which means $\phi = \psi$.

Surjective: Let g be an arbitrary element of G with $g^n = 1$. There is a well-defined homomorphism $\phi : \mathbb{Z}_n \to G$ given by $\phi(i) = g^i$ because if $a \equiv b \mod n$, say a = b + kn, then $g^a = g^b g^{kn} = g^b$.

(b) By the previous part, the set of homomorphisms $\mathbb{Z}_n \to \mathbb{Z}_m$ is in bijection with the elements of \mathbb{Z}_m with order dividing *n*. But every element of \mathbb{Z}_m also has order dividing m. The only common divisor of m, n is 1 by assumption. The only element of order 1 is 0, and so the only homomorphism $\mathbb{Z}_n \to \mathbb{Z}_m$ is the trivial (zero) one.

Problem 4:

Homomorphisms $\mathbb{Z}_3 \to S_3$: The elements of order dividing 3 in S_3 are 1, (123), (132). By the previous problem, the homomorphisms $\mathbb{Z}_3 \to S_3$ are given by taking 1 to these elements. Explicitly, these homomorphisms $\phi : \mathbb{Z}_3 \to S_3$ are:

$$\phi(n) = 1$$
 for all $n \in \mathbb{Z}_3$

 $\phi(n) = (123)^n$ for $n \in \mathbb{Z}_3$

- $\phi(n) = (132)^n$ for $n \in \mathbb{Z}_3$
- The elements in S_3 with order dividing 4 are just the identity and transpositions. Thus the homomorphisms $\phi : \mathbb{Z}_4 \to S_3$ are defined by:

$$\phi(n) = 1$$

$$\phi(n) = (12)^n$$

$$\phi(n) = (13)^n$$

$$\phi(n) = (23)^n$$

Problem 5:

- (a) Firstly, $6 4 = 2 \in H + N$, so $\langle 2 \rangle \subset H + N$. Since H and K are both subsets of $\langle 2 \rangle$, we also have $H + N \subset \langle 2 \rangle$ too. It follows that $H + N = \langle 2 \rangle = \{0, 2, \dots, 22\}$. By similar arguments, $H \cap N = \langle 12 \rangle = \{0, 12\}$.
- (b) The three elements of $(H + N)/N = \langle 2 \rangle / \langle 6 \rangle$ are

 $N = \{0, 6, 12, 18\}$ 2 + N = {2, 8, 14, 20} 4 + N = {4, 10, 16, 22}.

(c) The $[H: H \cap N] = 6/2 = 3$ cosets in $H/(H \cap N)$ are:

 $H \cap N = \langle 12 \rangle = \{0, 12\}$ 4 + H \circ N = \{4, 16\} 8 + H \circ N = \{8, 20\}

(d) The isomorphism of the second isomorphism theorem is given by taking $h + (H \cap N)$ to h + N. With this, we see:

 $H \cap N$ is taken to N $4 + H \cap N$ is taken to 4 + N. $8 + H \cap N$ is taken to 8 + N = 2 + N. Problem 7:

Let r, s be as in the usual presentation of the dihedral group. We have $srs = r^{-1}$. If D_n were abelian, we would have $srs = s^2r = r$. Since $n \ge 3$, we have $r \ne r^{-1}$ and hence D_n is nonabelian.