
Homework 9 Solutions

Sam Mundy

Exercise 1. Write down a proof that, for a group G and an abelian group H, the set of
all homomorphisms Hom(G,H) from G to H is an abelian group.

Solution. Let f, g ∈ Hom(G,H). Define their product fg by

(fg)(x) = f(x)g(x), x ∈ G.

Let us show that fg is a homomorphism. Let x, y ∈ G. Then

(fg)(xy) = f(xy)g(xy)

= f(x)f(y)g(x)g(y)

= f(x)g(x)f(y)g(y)

= (fg)(x)(fg)(y),

hence fg is a homomorphism. This shows Hom(G,H) is closed under this product.
Next we show associativity of this product. Let h ∈ Hom(G,H) be another homomor-

phism. We need to check f · (gh) = (fg) · h. We check this on elements. Let x ∈ G.
Then

(f · (gh))(x) = f(x)((gh)(x)) = f(x)(g(x)h(x))

= (f(x)g(x))h(x) = ((fg)(x))h(x) = ((fg) · h)(x).

Thus our product is associative.
Now define 1 ∈ Hom(G,H) to be the homomorphism such that 1(x) = e for all x ∈ G,

where e is the identity of H. Then 1 is a homomorphism and for any f ∈ Hom(G,H),

(1f)(x) = 1(x)f(x) = ef(x) = f(x).

Thus 1 is an identity element for our product. (We only need to check it is a one-sided
identity because we will show the product is commutative at the end.)

Next, for f ∈ Hom(G,H), define f−1 ∈ Hom(G,H) by f−1(x) = f(x)−1. This is a
homomorphism because H is abelian. We have

(ff−1)(x) = f(x)f−1(x) = f(x)f(x)−1 = e = 1(x).

Thus our product has (right) inverses.
Finally, we show our product is commutative. We have, for f, g ∈ Hom(G,H),

(fg)(x) = f(x)g(x) = g(x)f(x) = (gf)(x)

because H is abelian. Thus we have finished showing Hom(G,H) is an abelian group.
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Exercise 2 (a). Write down the character table of the cyclic group C3, denoting a generator
of C3 by h, C3 = {1, h, h2}. Label the characters ψ0, ψ1, . . . , with ψ0 being the trivial
character.

Solution. Let ω ∈ T be a third root of unity. The character table for C3 is

1 h h2

ψ0 1 1 1

ψ1 1 ω ω2

ψ1 1 ω2 ω

Exercise 4. Write down the character table of the group C2 × C2.

Solution. Write C2 = {1, h}. The character table for C2 × C2 is

(1, 1) (h, 1) (1, h) (h, h)

ψ0 1 1 1 1

ψ1 1 1 −1 −1

ψ1 1 −1 1 −1

ψ1 1 −1 −1 1

Exercise 5 (a). Write down proofs that the center of the quaternion group Q8 is {1,−1}
and the center of the symmetric group Sn is trivial for n ≥ 3. What is the center of S2?

Solution. We have by definition that 1,−1 ∈ Z(Q8). We check

ij = k, ji = −k,

so i and j do not commute. Similarly,

k(−i) = −j, (−i)k = j

and
(−j)(−k) = i, (−k)(−j) = −i,

so no other elements are in Z(Q8) besides ±1. Thus Z(Q8) = {1,−1}.
As for Sn, let n ≥ 3. Let σ ∈ Sn be a nonidentity permutation. Then there is an

i ∈ {1, . . . , n} such that σ(i) 6= i. Write j = σ(i), and let k ∈ {1, . . . , n} with k 6= i, j. This
is possible since n ≥ 3. Consider the 2-cycle τ = (jk). Then (στ)(i) = σ(τ(i)) = σ(i) = j
while (τσ)(i) = τ(σ(i)) = τ(j) = k. Since j 6= k, we must have στ 6= τσ. Since σ 6= id was
arbitrary, we see that Z(Sn) is trivial if n ≥ 3.

If n = 2, then one easily checks that S2 is commutative. Thus Z(S2) = S2.

Exercise 6. Look at the groups Q8 and D4. These are both nonabelian groups of order 8.
Can you show that these groups are nonisomorphic?

Solution. It is easy to see that −1 is the only element of order 2 in Q8 (all other nontrivial
elements in Q8 square to −1.) However, there are two distinct elements in D4 which have
order 2, for instance r2 and s (and in fact there are three others.) Thus Q8 and D4 cannot
be isomorphic (and, unlike on HW7, I will not check implications like this one in detail
here.)
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