Homework 9 Solutions

Sam Mundy

Exercise 1. Write down a proof that, for a group G and an abelian group H, the set of all homomorphisms Hom(G, H) from G to H is an abelian group.

Solution. Let $f, g \in \text{Hom}(G, H)$. Define their product fg by

$$(fg)(x) = f(x)g(x), \quad x \in G$$

Let us show that fg is a homomorphism. Let $x, y \in G$. Then

$$(fg)(xy) = f(xy)g(xy)$$

= $f(x)f(y)g(x)g(y)$
= $f(x)g(x)f(y)g(y)$
= $(fg)(x)(fg)(y),$

hence fg is a homomorphism. This shows Hom(G, H) is closed under this product.

Next we show associativity of this product. Let $h \in \text{Hom}(G, H)$ be another homomorphism. We need to check $f \cdot (gh) = (fg) \cdot h$. We check this on elements. Let $x \in G$. Then

$$\begin{aligned} (f \cdot (gh))(x) &= f(x)((gh)(x)) = f(x)(g(x)h(x)) \\ &= (f(x)g(x))h(x) = ((fg)(x))h(x) = ((fg) \cdot h)(x). \end{aligned}$$

Thus our product is associative.

Now define $1 \in \text{Hom}(G, H)$ to be the homomorphism such that 1(x) = e for all $x \in G$, where e is the identity of H. Then 1 is a homomorphism and for any $f \in \text{Hom}(G, H)$,

$$(1f)(x) = 1(x)f(x) = ef(x) = f(x).$$

Thus 1 is an identity element for our product. (We only need to check it is a one-sided identity because we will show the product is commutative at the end.)

Next, for $f \in \text{Hom}(G, H)$, define $f^{-1} \in \text{Hom}(G, H)$ by $f^{-1}(x) = f(x)^{-1}$. This is a homomorphism because H is abelian. We have

$$(ff^{-1})(x) = f(x)f^{-1}(x) = f(x)f(x)^{-1} = e = 1(x).$$

Thus our product has (right) inverses.

Finally, we show our product is commutative. We have, for $f, g \in \text{Hom}(G, H)$,

$$(fg)(x) = f(x)g(x) = g(x)f(x) = (gf)(x)$$

because H is abelian. Thus we have finished showing Hom(G, H) is an abelian group.

Exercise 2 (a). Write down the character table of the cyclic group C_3 , denoting a generator of C_3 by h, $C_3 = \{1, h, h^2\}$. Label the characters ψ_0, ψ_1, \ldots , with ψ_0 being the trivial character.

Solution. Let $\omega \in \mathbb{T}$ be a third root of unity. The character table for C_3 is

	1	h	h^2
ψ_0	1	1	1
ψ_1	1	ω	ω^2
ψ_1	1	ω^2	ω

Exercise 4. Write down the character table of the group $C_2 \times C_2$.

Solution. Write $C_2 = \{1, h\}$. The character table for $C_2 \times C_2$ is

	(1,1)	(h,1)	(1,h)	(h,h)
ψ_0	1	1	1	1
ψ_1	1	1	-1	-1
ψ_1	1	-1	1	-1
ψ_1	1	-1	-1	1

Exercise 5 (a). Write down proofs that the center of the quaternion group Q_8 is $\{1, -1\}$ and the center of the symmetric group S_n is trivial for $n \ge 3$. What is the center of S_2 ?

Solution. We have by definition that $1, -1 \in Z(Q_8)$. We check

$$ij = k, \quad ji = -k,$$

so i and j do not commute. Similarly,

$$k(-i) = -j, \quad (-i)k = j$$

and

$$(-j)(-k) = i, \quad (-k)(-j) = -i,$$

so no other elements are in $Z(Q_8)$ besides ± 1 . Thus $Z(Q_8) = \{1, -1\}$.

As for S_n , let $n \ge 3$. Let $\sigma \in S_n$ be a nonidentity permutation. Then there is an $i \in \{1, \ldots, n\}$ such that $\sigma(i) \ne i$. Write $j = \sigma(i)$, and let $k \in \{1, \ldots, n\}$ with $k \ne i, j$. This is possible since $n \ge 3$. Consider the 2-cycle $\tau = (jk)$. Then $(\sigma\tau)(i) = \sigma(\tau(i)) = \sigma(i) = j$ while $(\tau\sigma)(i) = \tau(\sigma(i)) = \tau(j) = k$. Since $j \ne k$, we must have $\sigma\tau \ne \tau\sigma$. Since $\sigma \ne id$ was arbitrary, we see that $Z(S_n)$ is trivial if $n \ge 3$.

If n = 2, then one easily checks that S_2 is commutative. Thus $Z(S_2) = S_2$.

Exercise 6. Look at the groups Q_8 and D_4 . These are both nonabelian groups of order 8. Can you show that these groups are nonisomorphic?

Solution. It is easy to see that -1 is the only element of order 2 in Q_8 (all other nontrivial elements in Q_8 square to -1.) However, there are two distinct elements in D_4 which have order 2, for instance r^2 and s (and in fact there are three others.) Thus Q_8 and D_4 cannot be isomorphic (and, unlike on HW7, I will not check implications like this one in detail here.)