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NEW GEOMETRICAL CONSTRUCTIONS

IN LOW -DIMENSIONAL TOPOLOGY

1. NEW LINK DIAGRAM

5
We recall that a link in R is a smooth embedding of
finite number of dlb}Olﬂt circles. If we choose some general

projection m: R -a»R ,then the image ef @ ink - 15
called it’s diagram. The fig.1 transformations of diagrams
called Reidemeister moves. It s easy to see that two diagrams
correspond to the same link if and only if thpy are “OﬁneCth
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by a number of Reidemeister moves . Another type of diagram

can be obtained by closing the braid . Braids are formed then
n points on a horizontal plane are connected by n strings
to n points on another horizontal plane directly below the
first n points. The strings are not allowed to go back
upwards at any point in their travel . The isotopy classes
of braids constitute the group B(n) with generations
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and the following relations:

éb.& - g‘g‘- T
Lk g Ae wil e
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Closing the braid one can obtain a 1link [ Tig< )

FIG 2
Here are two classical theorems on this matter

1) Every link can be obtained from some braid .

2) Markov’s theorem: if two links are isotopical, then
corresponding braids can be obtained from each other by a
sequence of . elementary transformations (called Markov’s

moves) (fig.3) DZe——a.,ZZti (L€ B(l’l))
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I propose to consider another type of diagram
a symmetrical giagram of a link. Let (oL,js)GES(n)XiS(n).
Here S(n) is a symmetrical group (group of transformations).
Then we consider two nonintersecting straight lines P and Q
in Fig and choose n ordered points on them
on P: Ai,AZ,...,A.n 1
on Q: 81,32,.,.,Bn
Then we join the points A ; and By (;),B [ and A B(£)(fig.4)

by straight segments for every i . As a result we get a link .
B,

L
B: L
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We will call this diagram the symmetrical diagram of
a link . It’s convenient to represent this diagram in a
slightly different way. Let U be a vertical 1ine,A',A2,...,Ah—
s, having U as a boundary.
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Let < g,‘p:>€ S(n)X S(n) . Then we join point A,/ with -
A j(;)by a curve,belonging to a halfplanéjjéu)(fig.ﬁ) for every i
The following theorem is obvious:

THEOREM 1. Every 1link possesses a symmetrical diagram

One can ask a Qestion:

Which diagrams correspond to isotopical 1link ?

It’s obvious that the fig.6 transformations preserve the
isotopical type of a link. The theorem is valid

THEOREM 2. Two symmetrical diagrams define isotopical links

if and only if they can be obtained from each other by a
sequence of transformations of fig.6 .

FIG. 6
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The Markov’s theorem follows easy from Theorem 2 if we
assosiate the braid with the symmetrical diagram such as on

T 7
5 =~ - \C°>
FiG. ¥
Also it’s easy to verify, that each 5-diagram <a ,e >

S
is the unit of group S(n)) gives positive 1link and
e link has the diagram <a ,e » for certain a.
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THEOREM 3. Let d be a sublink in f.Then each S-diagram for d
can be extended to S-diagram for f.

CB

REMARK We can define a partial order on S(oo Stz

£ 5363 @
<~——-> Yy e S(@) Jy'eS(w)
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2. TRIPLE IN BRAID THEORY

Fenn and Taylor {1} introduced the conception of doodle.
My definition of dooodle differs from theirs. I consider that
the doodle is a set of disjoint circles on s Z without triple

points of intersection (fig.8)

The isotopy of configuration and fig.9 moves preserve the
doodle. The transformation over double point (fig.10) is
forbiden.
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Now, suppose that n+l points on horizontal 1line are
connected by n+l strings with ntl points on another horizontal
line directly below the first n+l points . The strings can’t
have the triple points of intersection, but, perhaps,they have
double points of intersection (fig.11)

FiG. 11
The defiinition of’ the multiplication of such
configurations is the same as in braids. Then we’ll get a
group with generations | o 4;,... v B (see fig.12)
and relations Lt
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Let us call this group TWIN-group (TW (n+1) ) and each
e C‘OO(;“ S
element a twin . The closure of the twin iéXﬁﬁ%Eét(fig.iz).
THEOREM 4. Each doodle is a closure of a certain twin .
A question arises:when do two twins give the equal
doodles? It’s easy to see that operations
k<h o ¢ Tw (v

ol &= ol gn gp-y eor &Cﬂ ZK, gm,,_, 2,,1 /
o é_;vL/ Z (w»ogn’ﬂ Zl«f://ﬂi/“‘ g ), NS TW(") ﬁ)c %/(\fl
‘ | Tw(n) = Tw(n#)

glé~9g&g-l %ﬁéﬁTW{n>

preserve the correspondent  doodle. I would try to prove
Markov’s theorem for twins with the help of right analogue of
symmetrical diagrams for 1link ( see theorem 2 ). It should
be noted that the structure of doodles is more simple than the
link structure. So, the theorem is valid

THEOREM 5. Each doodle has a unique diagram with the minimal
number of intersection’s points (fig.13) . This diagram can
be constructed from any other doodle’s diagram with the help
of finite number of moves which decrease the number of
intersection’s points on 1 or 2 (fig. 14).

s

FIG. 1o FIG 14
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After the finding of right analogue of Markov’'s theorem
for twins, the hypotetic construction of doodles polynomials
would probably used a right quantalization of Yang-Baxter

equation:
é[-ﬂ gc‘ gc\ﬂ = q g[ 4}( g[ =+ (I“’?) 4‘.;./

REMARK There is a subgroup of pure twins TWg(n) .It’s
evident that

TWo(m) = 72y ( R™\L x; =%; =X ,1743,17ék,3%k L,d,ki/-,
X«ER I = ... .0 | Rn= (9. . . n)x.eR =1,

|I

Now 1 recall the famous coset representation of the
symmetrical group

g52==1 i=1,..... 8 1
&5 =g“ g[ by el i
b:dx, & - émé S o (3)
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Relations (2) and (3) define braid group .

Relations (1) and (2) define twin group .

And what is the geometrical meaning of the group with the
following coset representation:

é? 2. i=l... . .0
Z g( | L ZL-\“( o) 024,' i=1,...,n-1

ANSWER: Suppose n+l points on horizontal line are
connected by n+l strings to n+l points on another horizontal
line directly below the first n+l points. The strings may

have the double and triple points of intersection, but without
the four points of intersection and all intersection’s points
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are situated on different horizontal 1lines (fig.15) (the

btruotqre ?f the trivial flow)
‘-L

a4

Q4

Obviously, these objects constitute the group. We will
call this group -the triplet group. The theory of this group
is similar to the theory of twins and braids (we will only

complete the trivial flow on RZ by the flow on 32 with two
singular points) .

f?i 61+( éﬂ; é;l e éi,t|

FiG 1o

Summing up , we come up with an interesting triple:
braids, twing, triplets.We may say that the braid group is the
space object, but other two groups are the plane objects . Can
we define the doodles and triplets in space ? Yes, we can .

Let us examine the example of doodles . The braid
consists of n nonintersecting strings . Now suppose that
these strings have the double points of intersections and
these new objects are equivalent under the fig. 16 moves .
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This twin-braids will form the group with the following
coset representation :

g g,,-e( Z th\ g gﬂ"/ b.i n_ P' Pd jﬁJF
= - = s>i = (- ’> ry Y?’\
Zc‘ gd . A (« ‘t d (} d )d
PLz;i ; l\;(,uew)n_ Z(,-\*l Pl ('ﬂ -g P‘ﬂ g
&l s . o .17~ : =2
Pi gc = Zi P‘ e Z Pf % : é Fe /l\}]i>i, f,d‘:b--.,n-}
We also may construct the braid-triplet group and

twin-triplet group. In the last group the following relations
between twins and triplets are valid (fig.17)

—

p -twin

. : < — ) - g -triplet
€7L41 /C>6 j;Z+| 52; //:i*’ ?74
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¥ FIG. 18
Surely, there exist a braid-twin-triplet group .
The braids are most free from these three types of objects,
because braids may pass throught twins and triplets, and
triplets are more free than twins (fig.17) .

REMARK I think that it 1is interesting to find the
connections between the closure braid-twin (fig.18) and
3-manifolds. We must, probably, cut out the neighbourhood of
knot-twin and paste something back .

REMARK The twin and triplet groups are the reflection
groups in lobachevskii space HP

g\;‘ gt - gizzf
TW (n+1) { g~-ZZ <—~> { (,Z(‘ZJ')Z:f /(g_dfbj
it~d\> o
TR (n+1) { . . gﬁ:/
Z g(*lg g(\“ /(' 4\'(// (gc‘gc\uf:[
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8, SPIN-BRAIDS
We take braid group and represent each generation as the

compObltlon of two oonflguratlonb (fig.19) ¢ ot |
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L; isa merging of two strings with the left string
being the main one. R {is a merging of two strings with the
right string being the main one (the other string is
becondarv }-. W8 will gall the Ffinite production of
L r( R" (i€ N) a spin-braid (the word spin were suggested by
my adV1ser prof. Yu.P.Soloviov ). 1 sugpest Lhat Fig. d0's
moves give the equal spin-braids .
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It’s obvious that spin-braids form the group . We will
call it spin-braid group (SPINB) . By definition, SPINE group
has the following generations and relations: = ,

«. = . « _( = —
L\ L Ldﬂb déw (J>0 R“l (’H«A & A LiRe : éwf
1,: R(\ -R"HL‘ /dé/Nl<&>L R[ﬂ ZJC’:, /L?IL(K)C 4 ’ZJ“ R /e;+

o >l e

P\ L:(\ A ; Ldém;d L‘ ~itG/)\/ - ( *)’
Rt RA J-HR(_LJé/N ()>L el R(\f; L(’K’(‘ AL:, - ‘RC.L‘:/LC;/
Z—'C\ﬂ k{f( R K)(‘L[ ‘-’K’L‘L(‘\[ Ries

REMARK There is a natural inclusion: Bleco) —> SPINB

¥ ieN o> W EER]
REMARK There is a pure spin-braid group (SPINBg )-the
subgroup of SPINB group . The geometrical meaning of pure

spin-braids is that each substring of each string must return
to her original place. For instance, the spin-braid in fig. 21
is not pure spin-braid .

PG gl

The pure spin-braid group is, obviously, normal in SPINB .
Therefore, we can define spin-symmetrical group (SPINS)-the
group SPINB/SPINBg .

There is a short exact sequence

{1 —» SPINB, — SPINE —S5PINS— 1
SPINS is a group of "quasiautomorphisms™ f:N — N .
That is, each element of N  has the image consisting of
finite number of elements, and the elements of prototype of
each element have a specific order (this is for first n, and
n 4 elepents of B ;for other element:>ﬁf1n > n, f(m)=

{m+( nz-rlﬂ} Nk ¥ on, f(H {k%—(n‘ nz%).
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The coset representation of  SPINS is  the coset
representation of spin-braid group with the supplementary
relation (fig.22) ) | =2
(RgLg)=1 (> (RyL;)=l ¥YieN)

/
\ ~ z-l)?- =

i é'(Ll’o\t,
s
FlG 22
There is a natural inslusion: 00
S(ea) —» SPINS (S = U S0
; = -1
& € Slee) — R L:R;

And there is a map from one short exact sequence to other

short exact sequence:
1 —» Blea)—> B(ee) —=» 3(er) — 1

i —= SPINE, —> SPINE —sPING—> 1

The elements which belong to SPINS of finite order are not
only the elements of S(e=) (fig.23 for example)

S
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It’s easy Lo give a nesessary and sufficient condition,
he element of SPINS has a finite degree

REMARK We may also define the spin-twin and spin-triplet
groups and spin-braid-twin-triplet group .

REMARK You may see from (% ) that Lg,L4 T
are expressed throught L, ,L, ’RJ :

JEMARK We may construct a link as a closure of a braid
Vo, we may  construct a spin-link from a

spin-braid(fig. 24) . —
////5;//?i

QUESTION Construct the theory of spin-links (Dehn
spin-surgery , Markov’s theorem , Jones polynomial and so on ).

The author is grateful to A Radul and E.Cheporova for
translation this text to English . The author is also grateful
to I.A Bass for the help in the design of this article

{1} R.Fenn, P.Taylor Introduction in doodles Lect. Notes.

F
in Mth Y22 D 3745 .



