
Algebrai Theory of D-modulesJ. BernsteinLeture 1. D-modules and funtors.x0. Introdution.1. In my leture I will disuss the theory of modules over rings of di�erential operators (for short D-modules). This theory started about 15 years ago and now it is lear that it has very valuable appliationsin many �elds of mathematis.Names: Sato, Kashiwara, Kawai, Bernstein, Roos, Bj�ork, Malgrange, Beilinson.2. I will speak on an interpretation of the theory, given by Beilinson and myself. We restrit ourselvesto purely algebrai theory of D-modules over any algebraially losed �eld k of harateristi 0. Satoand Kashiwara worked for analyti varieties over C , so as usual, our theories are interlapped like this. I should mention from the very beginning, that some of the most important tehnial notions andresults are due to Kashiwara.x1. 1. O-modules.So we �x an algebraially losed �eld k of har 0. One an assume k = C .Let X be an algebrai variety (over k), OX the struture sheaf. Let F be a sheaf of OX -modules. Iall F quasi-oherent sheaf of OX -modules (or OX -module) if it satis�es the ondition:(*) If U � X is open aÆne subset, f � O(U); Uf = fu 2 U ��f(u) 6= 0g, then F (Uf ) = F (U)f def= O(Uf )Oo(U)F .By Serre's theorem this ondition is loal.Let �(OX ) be the ategory of O-modules. Loally, i.e., on an open aÆne subspae, U � X , I willidentify �(OU ) with the ategory of C-modules, where C = O(U).2. Di�erential operators and D-modules.By de�nition, a di�erential operator of order � k on U is a k-linear morphism d : C ! C, suh that[f̂k : : : [f̂1[f̂o; d℄℄℄ = 0 for any fo; : : : ; fk 2 C, where f̂ : C ! C is an operator of multipliation by f .The ring of di�erent operators on U I denote by D(U), O(U) � D(U).Proposition. D(Uf ) = O(Uf ) Oo(U) D(U) = D(U) Oo(U) O(Uf ). Hene U ! D(U) is a quasioherentsheaf of OX-modules. I denote it by DX and all the sheaf of di�erential operators on X.1



2 D-module is by de�nition a sheaf F of left DX -modules whih is quasi-oherent as OX -module. Cat-egory of DX -modules I will denote by �(DX). Loally, on aÆne open set U , �(DU ) �= D(U)-mod.If X is singular, DX an be bad (for instane, it an be not loally noetherian). So from now on Iassume X regular, if I don't say otherwise.Lemma. 1. For eah x 2 X there exist an aÆne neighbourhood U � x funtions x1; : : : ; xn on U andvetor �elds �1; : : : ; �n on U suh that �i(xj) = Æij ; �i generate tangent bundle of X.2. D(U) = O(U)Ok k[�1; : : : ; �n℄.The system (xi; �i) I will all the oordinate system in DX .3. So I introdued main haraters of my story and an begin the play. It is very useful, though formallynot neessary, to have in mind some analyti piture, orresponding to D-modules. Let me desribe it.Analyti piture. Suppose we have a system S of p linear di�erential equations on q funtions f1 : : : fq,S = f qXj=1dijfj = 0, i = 1; : : : ; pg. Then we an assign to S a D-module M given by q generatorse1; : : : ; eq and p-relations M = �D � ej=(+D(P dijej)). In this language, a solution s of the system S insome spae of funtions F is nothing else than a morphism of D-modules �S :M ! F .Having in mind this piture we an start investigation of D-modules.4. Left and right D-modules.Let us denote by �R(DX) the ategory of right D-modules. How is it onneted with �(DX)?Motivation. In analyti piture, the spae of funtions F is a left D-module. But if we onsider thespae of distributions F �, it has a natural struture of a right D-module. Hene systems of di�erentialequations for distributions orrespond to right D-modules.But if we �x a di�erential form w of highest degree, we an identify F and F � by � 2 F 7�! �w 2 F �.Proposition-De�nition. Let 
 = 
X be the OX -module of di�erential forms of highest degree on X.For any DX-module F denote by 
(F ) the right DX -module, given by 
(F ) = 
 OoX Ff(w 
 u) = fw 
 u; �(w 
 u) = �Lie�(w)
 u� w 
 u:Funtor 
 : �(DX)! �R(DX) is an equivalene of ategories.I prefer to use a slightly di�erent desription of 
. Consider the module 
DX = 
(DX) = 
OoX DX .It has two di�erent strutures of a right DX -module { one as 
( ), and another from the endomorphismof left DX -module DX , whih are given by right multipliations. It is easy to hek that there exists aunique involution v of 
DX , whih interhanges these two strutures of right DX -module and is identialon 
 � 
DX . By de�nition, 
(F ) = 
DX ODX F:



3The inverse funtion 
�1 : �R(DX) ! �(DX) is given by multipliation on the module D
X =DX OoX 
�1 = HomDX (
dX ; DX), whih has two strutures of left D-module.We will work with left D-modules but remember that we an go freely to right D-modules and bak.5. Inverse image of D-modules.Let � : Y ! X be a morphism of algebrai varieties.Motivation. We an lift a funtion from X to Y . If they satisfy some system of equations S, then theirimages also would satisfy some system of equations S0. Is it possible to desribe this system?It turns out that we an do some algebrai version of this. Namely, I will desribe a funtor�� : �(DX) �! �(DY ):First do it loally, i.e., suppose X and Y are aÆne, and DX -module is given by a DX = D(X)-moduleM . Then put ��(M) = Oy OoX Mand de�ne the ation of DY on ��(M) by(*) f 0(f 
m) = f 0f 
m; �(f 
m) = �f 
m+ f(Xi �(xi)
 �im);where (xi; �i) is a oordinate system in DX . It is easy to hek that this de�nition is orret. Intuitively,it is a version of the hain rule.Now we an write the general de�nition��(F ) = OY O��(oX) ��(F );where �� is an inverse image in the ategory of sheaves and the ation of DY is given by (*).Again, it is onvenient to rewrite this de�nition slightly. PutDY!X = ��(DX):DY!X is a sheaf on Y , whih is DY � ��(DX)-bimodule. By de�nition��(F ) = DY!X O��(DX) ��(F ):Note that as an OY -module ��(F ) oinides with an inverse image ��(F ), but I would like to savenotation �� for other ase.Lemma. If � : Y ! Z is a morphism we have (��)� = ����.



46. Diret image of D-modules.Motivation. We an integrate funtions on Y (say with ompat support) to get funtions on X . Howdoes this a�et systems of equations they satisfy?First of all, we should realize that there is no natural way of integrating funtions, but there is anatural way of integrating distributions (namely hR E; �i = hE; ��(�)i). Hene we should try to onstruta funtor �+ : �R(DY ) �! �R(DX).First onsider a loal ase. Then we an put �+(N) = NDY 
DY!X , where N is a right DY -module.Or, in terms of sheaves, �+(H) = ��(HDY 
DY!X );where �� is the diret image in the ategory of sheaves.Sine we an freely go from left D-modules to right D-modules and bak, we an rewrite this funtorfor left D-modules. Sine I prefer to work with left D-modules, let us do it.Put DX!Y = 
(��(D
X)) = 
Y ��(oX)

�1X ). This is a sheaf on Y , whih is ��(DX)�DY -bimodule.Now we de�ne the funtor �+ : �(DY ) �! �(DX) by (*)(*) �+(H) = ��(DX YODY H):Now let us try to handle the general ase (X and Y are not aÆne). Then we immediately run intotrouble. The matter is, that formula (*) desribes �+ as a omposition of left exat funtor �� and rightexat funtor DX Y
, and this omposition apparently does not make muh sense (formally, it a�etsthe omposition rule, (��)+ 6= �+�+).De�nition (*) makes some sense for aÆne morphism � [when ��1 (aÆne open subset) is aÆne℄, sinein this ase �� is an exat funtor. But in order to study the general ase, we should work in derivedategories.7. D-omplexes and funtors.Heneforth I assume all algebrai varieties to be quasiprojetive.Proposition. Category �(DX ) has enough injetive and loally projetive objets. It has a �nite homo-logial dimensin (we will see that it is � 2dimX).De�nition. DX -omplex is a bounded omplex of DX-modules. Corresponding derived ategory, whihonsists of DX-omplexes up to quasi-isomorphisms we denote by D(DX ).DX-omplexes I will often denote by _F ; _H; : : : . We de�ne funtors
 : D(DX) ��! DR(DX)



5L�� : D(DX) �! D(DY ), for � : Y ! X, byL��( _F ) = DY!X LO��(DX)��( _F ):�� : D(DY )! D(DX) by ��( _H) = R��(DX Y LODY _H):Proposition. L(� Æ �)� = L�� Æ L�� (��)� = ����:Usually we will deompose � as a produt of a loally losed imbedding and a smooth morphism. Solet us onsider these ases in more detail.8. Case of a losed imbedding i : Y ! X.Let us de�ne funtorsi+ : �(DY ) �! �(DX) by i+ = i�(DX!Y 
DYH)i+ : �(DX) �! �(DY ) by i+(F ) = Homi�DX (DX Y 0 i�(F )).Lemma. i+ is left adjoint to i+; i+ is exat and i+ is left exat.Ri+ = i�0Ri+ = Li�[dim Y � dimX ℄:It turns out that it is quite onvenient to use shifted funtor L��[dim Y � dim X ℄ whih in the aseof imbedding oinides with Ri+. So I put�! = L��[dim Y � dim X ℄ : D(DX) �! D[DY ℄:For any losed subset Z � X I denote by �Z(X) the full subategory of �(X), onsisting of DX -modulesF suh that supp F � Z.Theorem (Kashiwara). Let i : Y ! X be a losed imbedding. Then funtors i+ : �(DY ) ! �Y (DX)and i+ : �Y (DX)! �(DY ) are inverse and de�ne an equivalene of ategories.This simple tehnial statement is very important and very useful.9. D-modules on singular varieites.Let Z be a singular variety. Then the algebra DZ an be very bad, so it does not make sense to studymodules over DZ . But using Kashiwara's theorem we an de�ne ategory of D-modules on Z (whih wedenote by �(DZ) though it is not ategory of DZ-modules) in the following way.



6 Let us realize Z as a losed subvariety of a nonsingular variety X and put by de�nition�(DZ) = �Z(DX):Even if we annot realize Z as a subvariety, we an do it loally. Now, Kashiwara's theorem implies,that at least loally, �(DZ) is orretly de�ned. Glueing piees together we an onstrut �(DZ) globally.We de�ne D(DZ) as derived ategory of �(DZ). If Z is a losed subset of X , one an show thatD(DZ) = DZ(DX) = f _F 2 D(DX)��supp _F � Z; i:e:; _F ��XnZ = 0g:Later I will disuss only nonsingular varieties, but all results an be transferred to the singular ase.10. Proof of Kashiwara's theorem.We should prove that natural morphisms of funtorsId�(DY ) �! i+i+; i+i+ �! Id�Y (DX )are isomorphisms. It is suÆient to hek loally, so I an assume that X is aÆne, Y is given by equationsx1; : : : ; x`. Using indution by ` I an assume that Y is given by one equation x. Loally I an hoose avetor �eld � suh that �(x) = 1, i.e., [�; x℄ = 1.If F 2 �Y (DX), then supp F � Y and sine F is quasioherent, any setion � 2 F is annihilated bylarge powers of x.Consider the operator I = x� and put F i = f�jI� = i�g. Then it is lear that x : F i ! F i+1,� : F i ! F i�1, x� : F i ! F i is an isomorphism for i < 0, �x = x� + 1 is an isomorphism for i < �1.Hene x : F i ! F i+1 and � : F i+1 ! F i are isomorphisms for i < �1. If � 2 F and x� = 0, thenx�� = �x� � � = ��, i.e., � 2 F�1. By indution on k it is easy to prove, that if xk� = 0, then� 2 F�1� : : :�F�k. Hene F = 1Mi=1F�1 = k[�℄Ok F�1 and Ker (x; F ) = F�1. This is the statement ofKashiwara's theorem.



11Leture 2.1. Some appliations of Kashiwara's theorem.a) Struture of O-oherent DX-modules.We say that DX -module F is O-oherent if loally it is a �nitely generated OX -module.Proposition. O-oherent DX-module F is loally free as OX -module.Proof. Let x 2 X , mX orresponding maximal ideal of OX . The spae Fx = F=mxF is alled the �berof F at x. Sine F is oherent as OX -module, it is suÆient to hek that dim Fx is a loally onstantfuntion on X . This we an hek for restrition of F on any nonsingular urve C � X . Hene we anreplae X by C and F by i�C!X(F ), and assume that X is a urve.If F has a torsion at a point x, then F ontains a nonzero subsheaf (ix)+i+x (F ), whih is not O-oherent.Hene F has no torsion, and, sine X is a urve, F is loally free. Q.E.D.Reall that loally free OX -modules F naturally orrespond to the algebrai vetor bundles E on X(F is a sheaf of setions of E). Ation of DX on F de�nes a onnetion on E, by r�(�) = ��. Sine[r� ;r�℄ = r[�;�℄ this onnetion is at.This gives an equivalene of ategoriesf0� oherent DX �modulesg = � algebrai vetor bundles on Xwith at onnetion :b) D-modules on projetive spae.Let V = kn be an aÆne spae over k, V � = V n f0g, X = P(V )-orresponding projetive spae,pr : V � ! P(V ) the natural projetion.Theorem. Funtor of global setions � : �(DX ) ! Vet, F ! �(X;F ) is exat, and eah DX-moduleF is generated by its global setions (i.e., DX 
 �(F )! F is an epimorphism).Remark. Note that �(F ) = Hom�(DX )(DX ; F ). Hene theorem simply means that DX is a projetivemodule and is a generator of ategory �(DX).Proof. For any DX -module F put F� = pr�(F ) 2 �(DV �). This sheaf arries a natural ation of thehomotety group k� and hene the spae of setions �(F�) is a graded spae 1Mn=�1�(F�)n. It is learthat �(F ) = �(F�)0 { zero omponent. If we denote by I 2 DV the Euler operatorPxi�i, whih is anin�nitesimal generator of the group k�, then it de�nes a grading on �(F�), i.e., its ation on �(F�)n ismultipliation by n.Funtor F ! F� is exat, hene all nonexatness an ome only from the funtor �V � . Let usdeompose it as �V � = �V Æ j+ : �(DV �) ! �(DV ) ! Vet, where j : V � ,! V . Sine V is aÆne,funtor �V is exat.



12 Let 0! F1 ! F2 ! F3 ! 0 be an exat sequene of DX-modules. Then the sequene 0! j+(F�1 )!j+(F�2 ) ! j+(F�3 ) ! 0 is exat when restrited to V �, hene its ohomologies are sheaves on V ,onentrated at 0.By Kashiwara's theorem eah sheaf onentrated at 0 is a diret sum of many opies of a standardDV -module � = P Æ 1[�1; : : : ; �k℄Æ, where xiÆ = 0. This implies that eigenvalues of I on �(�) are equal�n;�n� 1;�n� 2; : : :�. Hene the sequene0 �! �(F�1 )o �! �(F�2 )o �! �(F�3 )o �! 0is exat, sine � = �V is an exat funtor and sheaves, onentrated at 0, do not a�et 0-graded part.The statement, that any DX -module is generated by its global setions an be redued, using exatnessof �, to the statement F 6= 0 =) �(F ) 6= 0. This is proved in the same way as exatness of �.2. Case of an open imbedding.Let j : V ! X be an open imbedding. Then j� is an exat funtor of restrition, i.e., j! = j�, andj+ is the usual funtor of diret image in ategory of sheaves. Its derived funtor Rj+ equals j�. Inpartiular ase when j is an aÆne imbedding the funtor j+ is exat, i.e., j� = j+.Funtor j� is left adjoint to j+ and j�j+ = IdU . For arbitrary DX -module F the kernel and okernelof the morphism F ��! j+j�F are supported on the losed subset Z = X n U .Let us onsider the funtor �Z : �(DX) �! �(DX) given by �Z(F ) = f� 2 F jsupp � � Zg. Then wehave an exat sequene 0 �! �Z(F ) �! F ��! j+j�F:If F is an injetive DX -module, � is onto. Hene in derived ategory we always have an exat triangle(*) R�Z( _F ) �! _F �! j�j! _F :We will all this triangle a deomposition of _F with respet to (U;Z).Denote by DZ(DX) the full subategory of D(DX), onsisting of DX -omplexes _F suh that _F jU = 0.Then (*) implies that the natural inlusion D(�Z(DX))! DZ(DX) is an equivalene of ategories.3. Base hange.Theorem. Consider Cartesian square Z ���! Y??y�� ??y�S ��! Xi.e., Z = Y �X S.Then funtors �!�� and ��� ��! : D(DY ) �! D(DS) are naturally isomorphi.



13Corollary. If Z = ;, i.e., �(S) \ �(Y ) = ;, then �!�� = 0.Sketh of the proof. It is suÆient to onsider 2 asesi) � is a projetion T �X ! Xii) � is a losed imbedding.The ase (i) is straightforward. In (ii) let U be a omplement of S,V = ��1(U) = Y n Z; j : U ! X; �j : V ! Y:We have natural exat triangles �����! _H �! _H �! j��j � ! _H���! _F �! _F �! j�j! _F:Put _F = �� _H . Then sine we learly have a base hange for an open subset U , we have ��(j��j � !H) �=j�j! _F . Hene, sine �� is an exat funtor in derived ategories, we have��(��� ��! _H) �= ���! _F :But ����� �= �����, i.e., ��(��� ��!H) �= ��(�!��H). By Kashiwara's theorem we an remove ��, whih givesus the base hange.4. Let S = fX = n[i=0Xig be a smooth strati�ation of X , i.e., eah Xi is a loally losed nonsingularsubvariety, andXo[Xi[: : :[Xj is losed for eah j. For eah i onsider the funtor Si : D(DX )! D(DX),where Si = rI�r!i, ri : Xi ! X . Then eahDX -omplex _F is glued from Si( _F ), i.e., we haveDX -omplexes_Fi and exat triangles_Fi�1 �! _Fi �! Si( _F ) suh that_F�1 = 0; _Fn = _F .We will all fSi( _F )g the strati�ation of _F with aordane to S, and DXi omplexes r!i( _F ) omponentsof the strati�ation.5. Case of smooth (submersive) morphism � : Y ! X.For any smooth variety Y let us denote by DRY the de Rham omplex 
0Y ! 
1Y ! : : : ! 
kYof sheaves on Y . More generally, if H is a DY -module, we an by the same formulae de�ne de Rhamomplex DRY (H) with omponents DRY (H)i = 
iY 
oY H .It is lear that DRY (DY ) is a omplex of right DY -modules. Now, let � : Y ! X be a smoothmorphism. Denote by 
iY=X sheaves of relative i-forms on Y . In the same way as earlier we an de�nethe relative de Rham omplex DRY=X(H) for any DY -module H .



14Lemma. DRY=X(DY )[k℄ = DX Y as a omplex of right DY -modules.Hene we an alulate the diret image funtor �� using this omplex:��(H) = R��(DX Y LODY H) = R��(DRY=X(DY )ODY H)[k℄ = R��(DRY=X (H)[k℄:The only trouble here is that this formula de�nes ��(H) only as a omplex of O-modules. Ation ofvetor �elds in general is desribed by quite unpleasant formulae. In the ase when � is a projetion� : Y = T �X ! X , ation of vetor �elds is given by their ation on H .6. Coherent DX-modules and DX-omplexes.DX-module F is alled oherent if loally it is �nitely generated. We'll see that loally DX is anoetherian ring, hene any submodule of a oherent DX -module F is oherent.Any DX -module F is a union of oherent OX -submodules L�. If we put F� = DXL� we see that Fis a union of oherent DX -submodules F�. It implies:(i) Any oherent DX -module F is generated by a oherent OX -submodule F o.(ii) Extension priniple. If H is a DX -module, U � X an open subset, F � H jU { a oherent DU -submodule, then then exists a oherent DX -submodule H 0 � H suh that H 0jU = F . Category ofoherent DX -modules I denote by �oh(DX).DX-omplex _F is alled oherent if all its homology sheaves H i( _F ) are oherent DX -modules. Thefull subategory of D(DX) onsisting of oherent DX -omplexes I will denote by Doh(DX).Properties of oherent DX -modules implyLemma. The natural morphism D(�oh(DX)) �! Doh(DX) is an equivalene of ategories.7. Diret image of proper morphism.Proposition. Let � : Y ! X be a proper morphism. Then ��Doh(DY ) � Doh(DX).Proof. If � is a losed imbedding, proposition follows from Kashiwara's theorem. So onsider the asewhen � : Y = P�X �! X is a projetion, where P is a projetive spae.We an assume X to be aÆne. Then by 1(b) DY is a generator in �oh(DY ) and hene it is suÆientto prove that ��(DY ) � Doh(DX ). But��(DY ) = R��(DX YODY DY ) = R��(DXOk 
P)= DXOk R��(
P) = DX [�dim P℄ 2 Doh(DX ):



158. Good �ltration and singular support of a D-module.Consider the �ltration D0X � D1X � : : : of DX by order of an operator. Eah DiX is a oherentO-module, D0X = OX and Di �Dj � Di+j .Let � =L1i=0�i; �i = Di=Di�1 be the assoiated graded sheaf of algebras. Then � is ommutativeand naturally isomorphi to the algebra of regular funtions on the otangent bundle T �(X).Let F be a DX -module. A �ltration on F is a �ltration � = fF o � : : : F k � : : : g of F by O-submodules suh that F = [F j , DiF j � F i+j . The assoiated graded module F� = �F i=F i�1 has anatural struture of �-module.We say that �ltration � is good if F� is a oherent �-module. An equivalent ondition is(*) Eah F j is a oherent OX �module and D1F j = F j+1 for large j:It is lear that DX -module F with a good �ltration is oherent. Conversely, if F is a oherent DX -module, then it is generated by a oherent OX -module F o and we an de�ne a good �ltration � on F byF j = DjF o.Let F be a oherent DX -module. Choose a good �ltration � on F and denote by F� the orresponding�-module. As a oherent �-module F� has a support supp(F�) � T �(X) (this support is a losedsubvariety whih is de�ned by the ideal JF � �, equal to the annulator of F� in �).Proposition. Supp(F�) depends only on F and not on a partiular hoie of a �ltration �.We will denote this supp(F�) as S.S.(F ) � T �X and all it the singular support or the harateristivariety of F .Proof. Let �;	 be two good �ltrations of F . We say that � and 	 are neighbour if F i+1� � F i	 � F i� forall i. For neighbour �ltrations onsider the natural morphism F�� �! F�	 and inlude it in the exatsequene 0 �! K �! F�� �! F�	 �! C �! 0:It is easy to hek that �-modules K and C are isomorphi (only the grading is shifted by 1). This provesthe proposition for neighbour �ltrations.If � and 	 are arbitrary good �ltrations, we de�ne the sequene of �ltrations �k by F i�k = F i�+F i+k	 .It is lear that �k and �k+1 are neighbour, �k = � for k � 0 and �k = 	 shifted on k for k � 0. Thisproves the proposition.Remarks. 1. Let F be a DK-module with a good �ltration �, H � F a DX -submodule. Consider indued�ltrations on H and F=H . Then we have an exat sequene 0! H� ! F� ! F=H� ! 0. In partiular,�ltration on H is good, i.e., H is DX -oherent. Also we haveS.S.F = S.S.H [ S.S.(F=H):



16Moreover, let k = dim S.S.F . Then we an assign to eah k-dimensional omponent W of S.S.F somemultipliity (the multipliity of supp F� at W ; the proposition above really proves that this multipliityis well de�ned). Put mk(F ) = sum of multipliities of all k-dimensional omponents of S.S.F . Thenmk(F ) = mk(H) +mk(F=H):2. It is easy to see that DX -module F is O-oherent if and only if S.S.F � X � T �X .9. Singular support and funtors.Usually it is very diÆult to desribe the e�et of funtors �+; �� on singular support. (For instane,these funtors usually do not preserve D-ohereny.) But there are 2 ases when it an be done.a) Let i : Y ! X be a losed imbedding, H 2 �(DY ). Then i+(H) is oherent if and only if H is oherentand S.S.(i+H) = f(x; �)jx 2 Y; (x; PrT�(X)!T�(Y )�) 2 S.S.Hg:b) Let � : Y ! X be a smooth (i.e., submersive) morphism, F 2 �(DX ). Then ��(F ) is oherent if andonly if F is oherent andS.S.(��F ) = f(y; �)j� = d��T�(�y)!T�(y)�; (�(y); �) 2 S.S.Fg:Let us note that in these two ases one important harateristi of S.S. is preserved. Namely, if wede�ne the defet of F as def(F ) = dim S.S.F � dim X , then the defet is preserved.10. Theorem on defet.Theorem. Let F 6= 0 be a oherent DX -module. Then def(F ) � 0, i.e., dim S.S.(F ) � dim X.Proof. Suppose that dim S.S.(F ) < n = dim X . Then F is supported on some proper losed subsetZ � X . Restriting to an appropriate open subset we an assume that Z is not empty and nonsingular. ByKashiwara's theorem F = i+(H), where i : Z ! X , H be a oherent DZ-module. Then d(F ) = d(H) < 0and we have a ontradition by indution on dim X .11. Holonomi D-modules.Coherent DX -module F is alled holonomi if def(F ) � 0, i.e., dim S.S.(F ) � dim X , i.e., F has\minimal possible size". Holonomi modules will play a entral role in our disussion.Example. O-oherent D-modules are holonomi. The full subategory of �oh(DX), onsisting of holo-nomi DX -modules I will denote by Hol(DX).



17Proposition. a) Sub-ategory Hol is losed with respet to subquotients and extensions.b) Eah holonomi DX-module has a �nite length.) If F is a holonomi DX -module, then there exists an open dense subset U � X suh that F jU isO-oherent DU -module.Proof. a) and b) easily follow from Remark 1 in 8. Indeed if n = dim X , then mn(H) is an additiveharateristi on subquotients of F whih is stritly positive by the theorem on defet. Hene F has a�nite length. Another proof is based on the existene of a ontravariant duality D : Hol! Hol, suh thatD2 = idHol, whih will be proved next time. This duality implies that F satis�es together asending anddesending hain onditions, i.e., F has a �nite length.In the proof of ) put S = S.S.(F ) nX . Sine F� is a graded �-module, S is invariant with respet tohomotety in �bers of T �X . It means that projetion p : T �X ! X has at least 1-dimensional �bers onS. Hene dim p(S) < dim S � dim X . After replaing X by a suitable open subset U � X n p(S) we anassume that S = ;, i.e., S.S.F � X , i.e., F is O-oherent.



221. Main theorem A.We all a DX -omplex _F holonomi if all its ohomology sheaves H i( _F ) are holonomi DX -modules.The full subategory of D(DX ) onsisting of holonomi DX-omplexes we denote by Dhol(DX).Remark. I do not know whether the natural inlusion d(Hol(DX )) ! Dhol(DX) is an equivalene ofategories. In a sense, I do not are.Main theorem A. Let � : Y ! X be a morphism of algebrai varieties. Then��Dhol(DY ) � Dhol(DX); �!Dhol(DX) � Dhol(DY ):The proof of the theorem is based on the followingKey lemma. Let i : Y ! X be a loally losed imbedding, _H � Dhol(DY ). Then i�( _H) � Dhol(DX).We will prove the lemma in the subsetion 8.2. Proof of theorem A for �!.It is suÆient to hek 2 asesa) � is a smooth morphism (e.g., � is a projetion � : Y = T �X ! X). In this ase �� is exat and��(Hol) � Hol by 2.9, i.e., �!TDhol(DX) � Dhol(DY ).b) i : Y ! X is a losed imbedding. Let j : U = X n Y ! X be the imbedding of the omplementaryopen set. For _F 2 Dhol(DX) onsider the exat trianglei�(i! _F ) �! _F �! j�( _F jU):By the key lemma ki�( _F jU) is a holonomi DX -omplex. Hene i�(i! _F ) is also holonomi. Now sinethe funtor i� is exat and preserves the defet of a module, we an onlude that i! _F is a holonomiDY -omplex.3. Criteria of holonomiity.Criterion. Let _F be a DX-omplex. Then _F is holonomi i� _F is oherent and for any point x 2 X the�ber (i!x _F ) of F at x is �nite dimensional.Proof. Diretion \only i�" follows from 2. To prove \if" diretion we need some generalLemma. Let F be a oherent DX-module. Then there exists an open dense subset U � X suh that F jUis loally free as OU -module.Proof. We assume X to be aÆne and irreduible. Consider a good �ltration � on F and the assoiated�-module F�. Sine F� is a �nitely generated �-module and � is a �nitely generated algebra over OX ,general results of ommutative algebra imply that we an replaeX by an open dense aÆne subset U � X



23suh that F�jU is free as OU -module (see EGA IV, 6.9.2). Sine F� = �Fn� = �(Fn=Fn�1), all modulesFn� are projetive as OU -module. This proves the lemma.Now let us prove that a oherent DX -omplex _F with �nite dimensional �bers is holonomi.We use indution on dim S = supp _F . Choose an open nonsingular subvariety Y � S suh thatdim(S n Y ) < dim S and put _H = i!Y _F � D(DY ). Then _H is oherent and hene, replaing Y by asuitable open dense subset, I an assume that all ohomology sheaves of _H are loally free as OY -modules.At eah point y 2 Y the �ber i!Y _H = i!Y _F is �nite dimensional. Sine i!y up to a shift is equal to Ri�y ,and all ohomology sheaves of _H are i�y ayli (sine they are O-free), it simply means that �bers of allthese sheaves are �nite dimensional, i.e., these sheaves are O-oherent. Hene _H is holonomi and by thekey lemma i�( _H) is also holonomi.Replaing _F by _F 0 = oone ( _F ! i�( _H)) we see that _F 0 is oherent, sine _F and i�( _H) are, and allits �bres are �nite dimensional (they are 0 outside of S n Y and oinide with �bers of _F on S n Y , sineby base hange i!xi�( _H) = 0 for X =2 Y ). Sine dim supp _F 0 < dim S, we see by indution that _F 0 isholonomi and hene _F is holonomi.Remark. The proof above proves also the followingCriterion. A DX-omplex _F is holonomi if and only if there exists a smooth strati�ation S = fX =UXig of X suh that all omponents (see 2.4) Hi = r!i _F � D(DXi) of the orresponding strati�ation of_F are 0-oherent (i.e., all their ohomology sheaves are 0-oherent).4. Proof of theorem A for ��.Sine the ase of loally losed imbedding is ontained in the key lemma, it is suÆient to onsidermorphism � : Y = T �X ! X , where T is a omplete variety.Let _H 2 Dhol(DY ), _F = ��( _H) 2 D(DX). In order to prove that _F is holonomi we use riterion>from 3. Sine � is proper, _F is oherent by 2.7. For any point x 2 X using base hange we havei!x _F = (�x)�(i!Tx _H); whereTx = ��1(x) ' T; iTx : Tx �! Y and �x : Tx �! xare natural inlusion and projetion. By 2., i!Tx _H is holonomi. Sine �x is proper, it maps this omplexinto a oherent omplex, i.e., i!x _F is oherent, whih means �nite dimensional. QED5. Theoremof J.E. Roos.In order to prove the key lemma and introdue a duality on holonomi modules we need the followingimportant result, due to J.E. Roos, whih gives a onnetion between S.S.F. and homologial propertiesof F .Consider the DX -module D
X , desribed in 1.4, whih has a seond struture of a left DX -module. Forany oherentDX-module F this struture de�nes the struture ofD-module on all sheavesExtiDX (F;D
X ).Note that if F is not oherent, these sheaves are not quasioherent; we will not onsider this ase.



24Theorem. 0. F has a �nite resolution by loally projetive DX -modules.1. odim S.S.(ExtiDX (F;D
X ) � i.2. If odim S.S.F = k, then ExtiDX (F;D
X ) = 0 for i < k:We postpone the proof of the theorem until 3.15.Duality funtor.Let us de�ne duality D : Doh(DX)o �! Doh(DX) byD( _F ) = R HomDX ( _F ;D
X)[dim X ℄:It means that we should replae _F by a omplex _P of loally projetive oherent D-modules _P =f�! P�1 �! P0 �! P1 �! : : : g and put D _F = D _P , given by D _Pi = �(P�dim X�i), where �Pj =HomDX (Pj ; D
X).Sine � � P ' P , we have DD = Id. Also by de�nitionH i(DF ) = Extdim X+iDX (F;D
X) for F 2 �oh(DX):Corollary of J.E. Roos's theorem. Let F be a oherent DX-module. Thena) omplex DF is onentrated in degrees between - dim X and 0, i.e., H i(DF ) = 0 for i =2 [�dim X; 0℄.b) F has a loally projetive resolution of the length � dim X.) F is holonomi i� DF is a module, i.e., H i(DF ) = 0 for i 6= 0.d) D gives an autoduality D : Hol(DX)0 �! Hol(DX), i.e., D is a ontravariant funtor, suh thatDD = IdHol. In partiular, D is exat.Proof.a) Put Ei = ExtiDX (F;D
X ). By Roos's theorem def(Ei) = dim S.S.Ei�dim X = dim X�odim S.S.Eiis negative if i > dim X . Hene by theorem of defet Ei = 0 for these i, and also for i < 0. Thismeans that H i(DF ) = 0 for i > 0 and for i < �dim X .b) We should prove that loally F has a projetive dimension � dim X . So we assume that X is aÆneand F has a �nite projetive resolution _P . Dual omplex D _P onsists of projetive modules and by a)is ayli in degrees i > 0. This means that D _P = _P 0 � _P 00, where _P 0i = 0 for i > 0 and i < �dim Xand _P 00 is ayli. Then D( _P 0) gives a resolution of P of the length � dim X .) If F is holonomi, then H i(DF ) = Extdim X+iDX (F;D
X ) = 0 for i < 0 by Roos's theorem, i.e., DFis a module. Conversely, if F 0 = DF is a module, then F = DF 0 again is a module, i.e., F =Extdim XDX (F 0; D
X) and by Roos's theorem odim S.S.F � dim X , i.e., dim S.S.F � dim X .d) follows from ) and DD = Id.Remark. 1. Property ) was the reason for the normalization [dim X ℄ in the de�nition of duality D.2. It is lear from d) that Dhol(DX)) = Dhol(DX).



257. Extension lemma. Let F 2 DX , U must be an open subset of X and H � F ��U a holonomiDU -module. Then there exists a holonomi DX -submodule F 0 � F , suh that F 0��U = H.Proof. We an assume that F is oherent and F ��U = H (using extension priniple for oherent D-modules). Consider DX -omplex DF . It has ohomologies in dimensions � 0. Put G = H0(DF ),F 0 = DG. By Roos's theorem dim S.S.G � dim X , i.e., G is a holonomi DX -module. Hene F 0 is alsoharmoni.Natural morphism DF ! G de�nes a morphism F 0 = DG into F = DDF (one an hek that thismorphism is an imbedding). It is lear that F ��U = H = F 0��U . Hene F 0 (or image of F 0 in F ) is theholonomi submodule we looked for.8. Proof of the key lemma.Step 1. For losed imbeddings the lemma follows from 2.9. Hene we an assume that i : Y ! X is anopen imbedding. Also we assume that X is aÆne and _H = H is a holonomi D-module, generated byone setion u. Consider a overing of Y by aÆne open subsets Y� and replae H by its �Ceh resolution,onsisting of (i�)+(H��Y�). This trik redues the proof to the ase when Y is aÆne, i.e, Y has a formY = Xf = fxjf(x) 6= 0g for some regular funtion f on X . In this ase i� = i+ is an exat funtor.Step 2. Thus we have an aÆne variety X , a funtion f 2 O(X), an open subset i : Y = Xf ,! X and aholonomi DY -module H , generated by a setion u, and we want to prove that DX -module F = i+(H)is holonomi.The diÆult point is to prove that F is oherent. What does it mean?Sine global setions F (X) and H(Y ) oinide and D(Y ) = S0n=�1D(X)fn, we see that DX -moduleF is generated by setions fnu for all n 2 Z. Hene what we really want to prove is the statement:(*) for all n� 0 fnu 2 D(X)(fn+1u):This follows immediately from the followingLemma on b-funtions. There exists a polynomial in n operator d0 2 D(X)[n℄ and a nonzero polyno-mial b0 2 k[n℄ suh that(**) d0(fn+1u) � b0(n) � (fnu):Step 3. Proof of the lemma.We extend our situation by extension of salars k �! K = k(�) { the �eld of rational funtions. Denoteby bY , bX extended varieties and de�ne DbY -module bH and DbX -module bF bybH = f� � (K 
k H)� and the struture of DbY -module is given by�(f�h) = ��(f)f � f�hh+ f� � �h, � a vetor �eld on Y , bF = i+( bH).



26 The DbY -module bH is holonomi and by extension lemma 7, bF ontains a holonomi DbY -module Esuh that E��bY = bH , i.e., the quotient DbY -module bF=E is onentrated on X n Y .Consider the setion bu = f�u 2 F . Sine its image in bF=E is onentrated on X n Y , it is annihilatedby some power of f , i.e., fn0 � bu 2 E. Moreover, sine E is holonomi, it has a �nite length, that impliesthat for some n there exists d 2 DbX suh that d(fn+1bu) = fneu. In other words, d(fn+1+�u) = fn+�u.Sine we an everywhere replae � by �+ n we have proved the existene of d 2 DeX suh thatd(f�+1u) = f�u:Now we an write d = do=bo, do 2 D(X)[�℄; bo 2 k[�℄. Then do; bo satisfy (**).Step 4. Now, when we know that F is oherent, let us prove that it is holonomi.First of all, lemma on b-funtions implies that eF = E (notations from the step 3), i.e., eF is holonomiand is generated by eu. It means that we an hoose operators d1; : : : ; d` 2 DeX suh that the set� � T �( eX) of ommon zeroes of their symbols �1; : : : ; �` 2 e� has dimension dim � � dim X .For almost any n 2 Z we an substitute n 7�! �, and we obtain operators d(n)i 2 DX , their symbols�(n)i 2 � and the set �(n) 2 T �(X) of their ommon zeroes, suh that dim � � dim X and d(n)i (fnu) = 0.These formulae imply that fnu lies in a holonomi submodule of F . Sine F is generated by fnu for anyn, whih is � 0, it implies that F is holonomi.9. Funtors �!; �� and their properties.For any morphism � : Y ! X we de�ne funtors�! : Dhol(DY ) �! Dhol(DX)�� : Dhol(DX) �! Dhol(DY ) by�! = D��D�� = D�!D:This de�nition makes sense as �� and �! maps holonomi omplexes into holonomi.Let us list some properties of �! and ��.1. There exists the anonial morphism of funtors �! ! �� whih is an isomorphism for proper �.2. The funtor �! is left adjoint to �!.3. The funtor �� is left adjoint to ��.4, If � is smooth, �! = ��[2(dim Y � dim X)℄:Let us omment on these properties. By de�nition 3. follows from 2.Consider in more detail the ase when � = j : Y ! X is an open imbedding. In this ase j� = j! =restrition on Y , i.e., j� is left adjoint to j� and hene j! = Dj�D is left adjoint to j! = Dj�D. Forany _H � Dhol(DY ) the restrition of j!( _H) on Y oinides with _H , that gives a anonial morphismj! _H ! j� _H , idential on Y .



27Thus it remains to prove properties 1 and 2 for proper � and 4 for smooth �. But these propertieshave nothing to do with holonomiity, sine �� for proper � and �! for smooth � map oherent D-modulesinto oherent. We will prove them in reasonable generality.10. The duality theorem for a proper morphism.Theorem. Let � : Y ! X be a proper morphism. Then on the ategory of oherent D-omplexesa) D�� = ��D andb) �� is left adjoint to �!.Proof of the statement a).Case 1 � is a losed imbedding. Let P be a loally projetive DY -module. I laim that ��(P ) andD��D(P ) are DX-modules and they are anonially isomorphi. It is suÆient to hek this loally, sowe an assume that P = DY . In this ase it follows from the formulaR HomDX (DX Y ; DX) = DY!X [dim Y � dim X ℄:Case 2 We all a DY -module P elementary if it has the form P = DY 
OY ��(V ) for some loallyfree OX -module V . Considerations from 2.1b) show that eah DY -module has a resolution, onsistingfrom elementary modules. I laim that for elementary DY -module P DX -omplexes D��(P )[�dim Y ℄and ��(DP )[�dim Y ℄ are sheaves and they are anonially isomorphi.This fat is loal, so I an assume P = DY .The laim follows from the formulaeR HomDY (DY!X) = DX Y [dim X � dim Y ℄DY!X = DX 
k OP; DX Y = DX 
k 
P;R�(OP) = k; R�(
P) = k[�dim P℄:This proves a).11. HomDX and internal Hom.Usually one an write homomorphisms of 2 sheaves as global setions of the sheaf of homomorphism.Let us look, how to set it for D-modules.Of ourse, we have for DX -modules F; F 0 the following formulaHomDX (F; F 0) = �(HomDX (F; F 0))or, in derived ategory,(*) RHomDX ( _F ; _F 0) = R�(RHomDX (F; F 0)):This formula, by the way, implies that(**) Homol. dim HomDX � Homol. dim � + Homol. dim HomDX� Homol. dim of �(OX ) + dim X � 2 dim X:But I want to write down RHom in terms of funtors, suitable for D-modules.



28De�nition. Funtors \!-tensor produt" � : D(DX) �D(DX) �! D(DX ) and \internal Hom" Hom:Doh(DX)o �D(DX) �! D(DX ) are de�ned by_F4� _H = 4!( _F � _H); Hom( _F ; _H) = D _F4� _Hwhere 4 : X �! X �X is the diagonal imbedding, � is the exterior tensor produt over k.Proposition. RHomDX ( _F ; _H) = ZXHom( _F ; _H) where ZX : D(DX ) �! D(Vet) is the diret image ofthe projetion of X onto a point.Proof. If F;H are DX -modules, we de�ne DX-module struture on F 
Ox H by Leibniz rule. It is learthat 4� = L(
OX )[dim X ℄. (Left derived funtor.)Consider the ase when F is oherent and loally projetive. ThenHom(F;H) = HomDX (F;D
X)
OX H = HomDX (F;D
X 
OX H):Let us ompute 
X 
DX Hom(F;H). We have
X 
DX Hom(F;H) = 
X 
DX HomDX (F;D
X 
OX H)HomDX (F;
X 
DX (D
X 
OX H)) = HomDX (F;H):Applying this formula we see thatZX Hom(F;H) = R�(
X 
DX Hom(F;H) = R�(HomDX (F;H)) = RHomDX (F;H):General ase is proved using resolutions.12. Proof of the duality theorem, statement b).Using base hange it is easy to hek the projetion formula��( _H4��! _F ) = ��( _H)4� _F :By duality theorem a) we an replae _H and �� _H on dual omplexes and obtain��(Hom( _H; �! _F )) = Hom(��( _H); _F ):Now, applying integral R , we haveRHomDY ( _H; �! _F ) = RHomDX (��( _H); _F ); QED.



2913. Funtor �� for smooth morphisms.In order to �nish the proof of property 4 in 9 we should hek, that for a smooth morphism � : Y ! Xand a oherent DX -omplex _F one has D�! _F = �!D _F [�2k℄;where k = dim Y � dim X .As in 10. the proof an be redued to the statement, thatRHomDY (DY!X ; DY ) = DX Y [�k℄:This statement is proved by studying the resolution DRY=X(DY ).14. Classi�ation of irreduible holonomi modules.Theorem. Let i : Y ! X be an aÆne imbedding with Y -irreduible, E an irreduible O-oherent DY -module. Put i!�E = Im(i!E �! i�E):a) i!�E is an irreduible holonomi module. It is a unique irreduible submodule of i�E (and uniqueirreduible quotient of i!E). Also it an be haraterized as the unique irreduible subquotient of i�E (ori!E) whih restrition to Y is nonzero.b) Any irreduible holonomi module F has a form i�!E for some aÆne imbedding i : Y ! X withirreduible Y and irreduible O-oherent DY -module E.We will denote this irreduible holonomi module by L(Y;E).) L(Y;E) = L(Y 0; E0) if and only if �Y = �Y 0 and restritions of E and E0 to some subset U � Y \ Y 0,open in Y and in Y 0 are isomorphi.Remark. We also will use notation L(Y;E) for nonaÆne imbeddings i : Y ! X . In this ase we shouldreplae i!E and i�E by their zero omponents Ho(i!E) and Ho(i�E) = i+E, and denote by L(Y;E) theimage of i!E ! i�E.Proof. a) Aording to theorem A, DX -modules i!E and i�E are holonomi, and hene have �nite lengths.Let F be any irreduible submodule of i�E. Then sine Hom(F; i�E) = Hom(i!F;E) 6= 0 and i!Fis irreduible, as well as E, we see that E = i!F . Sine i!i�E = E, there exists only one irreduiblesubquotient F of i�E with the property that i!F 6= 0 and in partiular, only one irreduible submodule.Applying the same arguments to i!E we see that it has a unique irreduible quotient.Further, Hom(i!E; i�E) = Hom(E; i!i�E) = k, and the same is true for Hom(i!E;F ), where F is aunique irreduible submodule of i�E. This shows, that F = Im(i!E ! i�E).



30b) Let F be an irreduible holonomi D-module, Y an open aÆne subset of an irreduible omponent ofSupp F . Then sheaf E = i!(F ) is irreduible holonomi DY -module and, dereasing Y , we an assume itis O-oherent. Sine Hom(F; i�E) 6= 0, F = L(Y;E).) The same proof that in a), b).15. Sketh of the proof of Roos's theorem.Step 1. Let _F = f�! F 1 �! F 2 �! : : : �! F k �!g be a omplex of DX-modules, f�1g good �ltrationson Fi, whih are ompatible with d. Then it indues a omplex of oherent �-modules_F� = f0 �! F 1� �! : : : �! F k� �! 0g:Lemma. H i( _F )� is a subquotient of H i( _F�):In partiular, if _F� is exat then _F is exat. Also S.S.H i( _F ) � Supp H i( _F�).Step 2. The statement of theorem is loal, so I will assume X to be small. Let F be a DX -module, � agood �ltration on F; F� the assoiated graded �-mdoule.Sine T �X is regular of dim T �X = 2n, I an �nd a free resolution _C = f0! C�2n ! : : : Co ! F� !og of �-mdoule F�. Then it is easy to hek that I an lift _C to a omplex of free DX-modules with agood �ltration � _P = f0! P�2n ! : : :! Po ! F ! 0g suh that _P� = _C. Then by step 1, P is a freeresolution of F .Step 3. For any loally projetive DX -module P , I denote by �P the DX-module HomDX (P;D
X ). Byde�nition, Ext(F;D
X) are alulated as homologies of the omplex� _P = f0 �! �P0 �! �P�1 �! : : : �! �P�2ng:If we onsider the natural �ltration on D
X and indued �ltration on � _P , we will get preisely the omplex� _C = fHom�(C�i;�)g. (Here I identify 
X with OX .)Now we should apply the fat, that the statement of the theorem is true for ommutative regular ring�. Applying now step 1 we an dedue from this orresponding statement for DX -modules.



314. Holonomi D-modules with regular singularities (RS-modules).It turns out that lass of holonomi D-modules ontains a natural sublass, invariant with respet toall operations - - sublass of RS-modules.1. RS-modules on a urve.First of all, let us onsider the lassial ase-modules with regular singularities on a urve.Let C be a urve. Choose a nonsingular urve C+, whih ontains C as an open dense subset and apoint  2 C+nC (it plays a role of in�nity for C). Let t be a loal parameter at , � = �=�t, d = t� 2 DC+ .We denote by D�C the subsheaf of subalgebras of DC+ , generated by d and OC+ . It is lear that D�C andelement d in quotient algebra D�=tD� do not depend on the hoie of a loal parameter t.De�nition. a) Let F be an O-oherent DC-module. We say that F has a RS at the point , if its diretimage F+ = (iC!C+)+F is a union of O-oherent D�C-submodules.b) We say that an O-oherent DC-module F is RS, if it has RS at all points on in�nity (i.e., at allpoints  2 bC n C of the nonsingular ompletion bC of the urve C).De�nition. Let F be a holonomi DC-module on a urve C. We say that F is RS if its restrition toan open dense subset U � C is O-oherent RS DC-module.Lemma. Let C;C 0 be irreduible urves � : C ! C 0 a dominant (nononstant) morphism. Then DC0-module F is RS i� �0(F ) is RS; also DC-module H is RS i� ��(H) is RS.2. RS D-modules.De�nition. a) Let F be an O-oherent DX-module. Then F is RS if its restrition to any urve is RS.b) Let ?(Y;E) be an irreduible holonomi DX -module. We say that F is RS if E is RS O-oherentDY -module.) A holonomi DX -module F is RS if all its irreduible subquotients are RS.d) A holonomi DX -omplex _F is RS if all its ohomology sheaves are RS.We denote by RS (DX) the full subategory of Hol(DX), onsisting of RS-modules, and by DRS(DX)the full subategory of D(DX) onsisting of RS DX -omplexes.Proposition. The ategory RS(DX) is losed with respet to subquotients and extensions.Proof. By de�nition.3. Main Theorem B.Main Theorem B.a) Funtors D, ��, �!, �!,�� preserve subategoryDRS(D) � DHol(D):



32b) RS � riterionAn holonomi DX-omplex _F is RS if and only if its restrition i!C _F to any urve C � X is RS.Remark. It would be more natural to take b) as a de�nition of RS DX -omplexes. But then it wouldbe diÆult to prove \subquotient" properties, like lemma in 2. So we prefer the de�nition, whih makesthese properties trivial, and transfers all the diÆulties into the \ohomologial part", where we have anappropriate mahinery to work with.The proof of theorem B ontains two tehnial results both due to P. Deligne. The �rst desribes RSproperty of O-oherent D-modules without referring to urves. The seond proves that �� preserves RSin a simplest ase.4. D-modules with regular singularities along a divisor.Let X be an algebrai variety. A regular extension of X is a nonsingular variety X+, ontaining X asan open subset, suh that X� = X+ nX is the divisor with normal rossings. We denote by J � OX+the ideal of X� ; T � the subsheaf of vetor �elds preserving J and D�X the subalgebra of DX+ , generatedby T � and OX+ .Let F be an O-oherent DX -module F+ = (iX!X+)+F .Proposition (P. Deligne).. The following onditions are equivalent.(i) F+ is a union of O-oherent D�X submodules(ii) For any extended urve� : (C+; C) �! (X+; X) (i.e., � : C+ ! X+, suh that�(C) � X; �() 2 X+ nX) F jC has RS at .(iii) For eah irreduible omponent W of X� there is an extended urve � : (C+; C) �! (X+; X) whihintersets WK transversally at  suh that F jC has RS at .Corollary. Suppose X+ is a omplete regular extension of X, F and O-oherent DX-module. Then Fis RS i� F+ is a union of O-oherent D�X-modules.5. Proof of theorem B.Key lemma. Let �� : Y ! X be a morphism, where Y is a surfae, X is a urve, X;Y are irreduible.Let H be an O-oherent kRS DY -module. Then for some open subsetX0 � X ��(H)jX0 is RS:We will prove this lemma in 6.We also will use the following version of Hironaka's desingularisation theorem.



33Proposition. Let � : Y ! X be a morphism. Then there exists a regular extension i : Y ! Y + and amorphism �+ : Y + ! X suh that � = �+oi and �+ is a proper morphism.We will all the triple (�+; Y +; i) the resolution of the morphism �.Now let us start the proof of theorem B. By de�nition RS is losed with respet to the duality D, andhene DRS is losed with respet to D.Proof of theorem B for ��. We have a morphism � : Y ! X and an RS DY -omplex _H and we wantto prove that ��( _H) is RS. The proof is by indution on the dimension of S = Supp _H. So we assumethat the statement is true for dom S < n. Also we assume that RS-riterion of theorem B is true fordim F < n.Step 1. Let � = i : Y ! Y + be an inlusion into a regular extension of Y , H be an RS O-oherentDY -module. Then i�(H) is RS DY +-module.Sine i is an aÆne morphism i�(H) = i+(H). Without loss of generality we an assume Y + tobe omplete. By Deligne's proposition i+(H) is a union of O-oherent DY -modules. Hene arbitraryirreduible subquotient F of i+(H) has this property.Let AZ+ = Supp F . Then it is easy to hek that Z+ is an irreduible omponent of an intersetionof some omponents of the divisor X� and F = L(Z;E), where Z is an open subset of Z+. It is learthat E+ = iZ!Z+(E) is a union of O-oherent D�Z-modules, sine D�Z is a quotient of the algebra D�Yand E+ is a subquotient of H+. Hene E is RS, i.e., F is RS.6. Sketh of the proof of the key lemma.We have a smooth morphism � : Y ! X with dim Y = 2, dim X = 1. Then, after deleting severalpoints from X , we an �nd a regular omplete extension Y + of Y and a morphism �+ : Y + ! X+, whereX+ is the regular ompletion of X , suh that(i) ��1(X�) � Y � ; where X� = X+ nX; Y � = Y + n Y(ii) ��1(X�) ontains all singularities of Y � .Denote by T �Y and T �X sheaves of vetor �elds on Y + and X+, whih preserve Y � and X� . Conditions(i), (ii) imply that eah loal vetor �eld � 2 T �X an be lifted loally to a vetor �eld �0 2 T �Y . Thismeans that the natural morphism of sheaves on Y +� : T �Y �! (�+)�T �X = OY + O�+�OX+�+ � (T �X)is epimorphi.



34 We denote by T �Y=X the kernel of �. Consider sheaves of algebras D�Y and D�X on Y + and X+,generated by T �Y and by T �X and denote by MR(D�Y ), MR(D�X) orresponding ategories of right D�-modules, and by DR(D�Y ); DR(D�X) derived ategories (here I prefer to work with right D-modules as allformulae are simple).Let us put D�Y!X = OY + O�+�OX+�+ � (D�X). This module is D�Y � �+ � (D�X)-bimodule. Using DY!Xlet us de�ne the funtor ��� : DR(D�Y ) �! DR(D�X) by��� (E) = R(�+) � (E LOD�Y D�Y!X):Statement. (i) Let H be a right DY -module, H+ = (iY )+H 2 MR(DY +). Then, if we onsider H+ asD�Y -module, we have ��� (H+) = ��(H+) as D�X -module:(ii) if E is an O-oherent D�Y -module, then��� (E) is O-oherent D�X-module:This statement implies the key lemma. Indeed, if H is an RS O-oherent (right) DY -module, then H+is an indutive limit of OY +-oherent D�Y -modules and hene ��(H+) = ��� (H+) is an indutive limit ofOX+-oherent D�Y -modules, i.e., it is RS.Proof of statement. (i) is an immediate onsequene of the projetion formula and the fat that D�Y jY =DY , D�Y!X jY = DY!X .(ii) Consider \De Rham" resolution of DY!X0 �! D�Y OOY T �Y=X �! D�Y �! D�Y!X �! 0:Using it we see that as OX+-module��� (E) = R(�+) � (E 
 T �Y=X �! E):Sine �+ is a proper morphism, R�+ maps oherent OY +-modules into oherent OX+-modules, i.e.,��� (E) is O-oherent for O-oherent E.2. The following statement, due to P. Deligne, is a very useful riterion of RS.Criterion. Let X+ be an irreduible omplete normal (maybe singular) variety, X � X+ an opennonsingular subset, E an O-oherent DX-module. Assume that for any omponent W of X� = X+ nX of



35odimension 1 in X+, S is RS along W (i.e., E satis�es onditions (i), (ii), (iii) in 4 along W ). ThenE is RS.Unfortunately, the only proof of this riterion I know is analyti. I would like to have an algebraiproof.8. RS-modules with given exponents.Let us �x some Q-linear subspae � � kK, ontaining 1. Let C be a urve, C+ its regular extension 2 C+ nC, F an RS O-oherent DC-module, F+ = (iC)+F . For any O-oherent D� submodule E � F+we denote by �(E) the set of eigenvalues of the operator d = t� in the �nite-dimensional spae E=tE (tis a loal parameter at , see 1). Now we de�ne �(F ) =[;E�(E) for all O-oherentD�-submodules of F+ and all points  2 C+ n C:The set �(F ) is alled the set of exponents of F . We say that F is RS� if �(F ) � A. We say thatDX -omplex _F is RS� if for any urve C � X all ohomology sheaves of i!C( _F ) are RS�.It is not diÆult to prove that all funtors D; ��; �!; �!; �� preserve DRS�(DX ) { one should repeatproofs in 1-5 with minor modi�ations. Apparently riterion 6 is also true for RS� (for � = Q it isproved by Kashiwara). I would like to have an algebrai proof of it.



365. Riemann-Hilbert orrespondene.In this leture I will work over the �eld k = C of omplex numbers.1. Construtible sheaves and omplexes.LetX be a omplex algebrai variety. We denote byXan the orrespondent analyti variety, onsideredin lassial topology.Let CX be the onstant sheaf of omplex numbers on Xan. We denote by Sh(Xan) the ategory ofsheaves of CX -modules, i.e., the ategory of sheaves of C -vetor spaes. Derived ategory of boundedomplexes of sheaves we denote by D(Xan). I will all sheaves F 2 Sh(Xan) CX -modules and omplexes_F 2 D(Xan) CX -omplexes.I all CX -module F onstrutible if there exists a strati�ationX = UXi ofX by loally losed algebraisubvarieties Xi, suh that F jXanI is �nite dimensional and loally onstant (in lassial topology). Iall CX -omplex _F onstrutible if all its ohomology sheaves are onstrutible CX -modules. The fullsubategory of D(Xan) onsisting of onstrutible omplexes I denote by Don(Xan).Any morphism � : Y ! X of algebrai varieties indues the ontinuous map �an : Y an ! Xan and wean onsider funtors �!; �� : D(Y an) �! D(Xan)��; �! : D(Xan) �! D(Y an)also we will onsider the Verdier duality funtorD;D(Xan) �! D(Xan):Theorem. Funtors ��; �!; ��; �! and Dk preserve subategories Don( ). On this ategories DD = Idand D��D = �!; D��D = �!:2. De Rham funtor.Denote by OanX the struture sheaf of the analyti variety Xan. We will assign to eah OX -module Forresponding \analyti" sheaf of OanX -modules F an, whih loally is given byF an = OanX MOX F:This de�nes an exat funtor an :M(OX) �!M(OanX ):In partiular, sheaf DanX is the sheaf of analyti di�erential operators on Xan, and we have an exatfuntor an :M(DX) �! M(DabX ):Sine this funtor is exat it indues a funtoran : D(DX ) �! D(DanX ):



37De�nition. I de�ne the De Rham funtorDR : D(DX ) �! D(Xan) = D(Sh(Xan)) byDR( _F ) = 
anXMDanX _F an:Remarks. 1. We know that the omplexDR(DX) is a loally projetive resolution of the rightDX -module
X . Hene DR( _F ) = DRX(DanX )MDanX _F anjnj = DRX( _F an)jnj;where n = dim X .In partiular, if F is an O-oherent DX -module, orresponding to bundle with a at onnetion andL = F at the loal system of at setions of F (in lassial topology), then by Poinar�e lemmaDR(F ) = Ljnj:2. Kashiwara usually uses slightly di�erent funtor Sol : Doh(DX )o ! D(Xan),Sol( _F ) = R HomDanX (F an; OanX ):I laim that Sol( _F ) = DR(D _F )j � dim X j. This follows >from the formulaHomDX (P;OX ) = 
XMDX (�P );whih is true for any loally projetive oherent DX -module P , where �P = HomDX (P;D
X ).3. Main Theorem C.a) DR(Dhol(DX)) � Don(Xan) and on the subategoryDhol D ÆDR = DR ÆD .If _F 2 Dhol(DX); _H 2 D(DY ), thenDr( _F � _H) � DR( _F )�DR( _H):b) On the subategory DRS funtor DR ommutes with D; ��; �!; �!; �� and �) DR : DRS(DX)! Don(Xan) is an equivalene of ategories.4. First let us onsider some basi properties of the funtor DR.(i) DR ommutes with restrition to an open subset. For an �etale overing � : Y ! X DR ommuteswith �� and �!.(ii) There exists a natural morphism of funtors � : DR�� ! �� ÆDR whih is an isomorphism for proper�.



38 In order to prove this let us onsider the funtor�an� : D(DanY )! D(DanX ) on the ategories of Dan-omplexes;whih is given by �an� ( _F ) = R�an: (DanX YODanY _F ):I laim that DR�an� = �� ÆDR. Indeed,DR(�an� ( _F ) = 
anX LMDanX R�an: (DanX Y LMDanY _F ) =R�an: (�:(
anX ) LO�:DanX DanX Y LMDanY _F ) = R�an: (
anY LODanY _F );sine �:
X O�:DXDX Y � 
Y as DY -module.Now there exists in general the natural isomorphism of funtorsan ÆR�:( _F ) �! R�an: (an _F ):This funtor is not an isomorphism in general, sine diret image on the left and on the right are takenin di�erent topologies. But aording to Serre's \GAGA" theorem it is an isomorphism for proper �.Combining these 2 observations we obtain (ii).(iii) On the ategory of oherent DX -omplexes there exists a natural morphism of funtors� : DR ÆD( _F ) �! D ÆDR( _F )whih is an isomorphism for O-oherent _F and whih is ompatible with the isomorphism ��DR = DR��for proper �, desribed in (ii).By de�nition of the duality funtor D in the ategory D(Xan)D( _S) = RHomCX ( _S;CX jddimX j):(Here CX j2dimX j is the dualizing sheaf of Xan). Hene in order to onstrut � it is suÆient to onstruta morphism �0 : DR ÆD( _F )
CX DR( _F ) �! lnwhere ln is an injetive resolution of CX j2 dim X j.As we saw, DR ÆD( _F ) is naturally isomorphi to Sol( _F )jdim X j = RHomDanX ( _F an; OanX )jdim X j.Let us realize DR( _F ) as DRX( _F an) and DR ÆD( _F ) as HomDanX ( _F an; lan) where l is an injetiveresolution of kOX jdim X j. Then we have the natural morphism�00 : DR ÆD( _F )
CX DR( _F ) �! DRX (lan):



39Sine DRX(lan) � DRX(OanX )jdim X j = CX j2dim X j, we have a morphism DX(lan) �! ln, whihomposition with �00 gives us �0. It is easy to hek that � is an isomorphism for O-oherent _F . Com-patibility ondition with �� it is suÆient to hek for imbeddings and projetions P�X ! X , where itis straightforward.(iv) There is a natural morphism of funtors : DR(F �H) �! DR(F )�DR(H)whih is an isomorphism for O-oherent F .Morphism  is de�ned by the natural imbedding 
anX �C 
anY �! 
anX�Y . If F is O-oherent and H isloally projetively is an isomorphism by partial Poinar�e lemma. This implies the general statement.(v) There is a natural morphism of funtors Æ : DR Æ �!( _F ) ! �!DR( _F ) whih is an isomorphism forsmooth �.Indeed, for smooth � the isomorphism of these funtors an be onstruted on generators { loallyprojetive modules (for instane if � : Y = T �X ! X is the projetion, then �!( _F ) = OT � _F jdim T j;�!DR( _F ) = CT �DR( _F )j2dim T j = Dr(OT )�DR( _F )jdim T j). Consider the ase of a losed imbeddingi : Y ! X . Using i�, whih ommutes with DR, we will identify sheaves on Y with sheaves on X ,supported on Y . Then i�i! _F = R�jY j _F in both ategories, whih gives the natural morphismÆ : DR Æ i�i!( _F ) = DR(R�jY j _F ) �! R�jY jDR( _F ) = i�i!DR( _F ):5. Proof of Theorem C a) (ase of holonomi omplexes).Let _F be a holonomi DX -omplex. Consider the maximal Zariski open subset U � X suh thatDR( _F )jU is onstrutible. Sine F is O-oherent almost everywhere U is dense in X .Let W be an irreduible omponent of X nU . I want to show that DR( _F ) is loally onstant on somedense Zariski open subset W0 �W .Claim. I an assume thatX = P�W; W = p�W; where p 2 P;U and V = U [W are open in X .Indeed, onsider an �etale morphism of some open subset of W onto an open subset of an aÆne spaeA k and extend it to an �etale morphism of a neighbourhood of W onto an open subset of A n � A k . Byhanging base from A k to W , I an assume that V = U [W is an open subset of X 0 = Pn�k �W . ThenI an extend F to some sheaf of X 0.Now onsider the projetion pr : X = P �W ! W . Sine it is a proper morphism DR(pr�( _F )) =pr�DR( _F ). Sine pr�( _F ) is a holonomiDW -omplex, it is 0-oherent almost everywhere, i.e.,DR(pr�( _F ))is loally onstant almost everywhere.



40 Put _S = DR( _F ) � D(Xan). Replaing W on an open subset, we an assume that pr�( _S) =DR(pr�( _F )) is loally onstant. We have an exat triangle._SV ! _S ! _SXnV ; where _SV = (iV ) : ( _S=V ) is extension by zero.By the hoie of U , _S=V is onstrutible, i.e., _SV is onstrutible. Hene pr�( _SXnV ) is onstrutibleand going to an open subset we an assume it is loally onstant.Now _SXnV is a diret sum of 2 sheaves (iW )! _S=W and something onentrated on X n V nW . Thisimplies that _S=W is a diret summand of the loally onstant sheaf pr�( _SXnV ) and hene itself is loallyonstant. QEDNow let _F be a holonomi omplex. PutErr( _F ) = Cone(DR ÆD( _F )! D ÆDR( _F )):This sheaf vanishes on a dense open subset, where _F is 0-oherent. Also funtion Err ommutes withdiret image for proper morphisms. Repeating the arguments above we see that Err = 0, i.e., DRommutes with D on Dhol(DX).The same arguments show that DR( _F � _H) = DR( _F )�DR( _H) for holonomi _F .Remark. Of ourse this proof is simply a variation of Deligne's proof of \Th�eor�emes de �nitude" in SGA4 1/2.6. Proof of theorem C b) for diret image..Let us prove that the morphism DR Æ ��( _H)! �� ÆDR( _H)is an isomorphism for H 2 DRS(DY ).Case 1. � = i : Y ! X is a regular extension and H is an RS 0-oherent DY -module.In this ase the proof is straightforward, using the de�nition of RS (it was done by P. Deligne). Namely,loally in the neighbourhood of a point x 2 X nY we an hoose oordinates x1; : : : ; xn suh that X n Yis given by x1; : : : ; xk. Now we plae x by an analyti neighbourhood of x. Then H and H+ = i+(H)are determined by monodromy representation of the fundamental group �; (X n Y ). Sine this group isommutative, we an deompose H into 1-dimensional subquotients. Using ommutativity with � wean redue to the ase dim Y = 1. Hene as OY -module H+ is generated by one element e, whih satis�esthe equation x�(e) = �e. Now diret alulations show thatDR(H+) = (i)�DR(H):



41Case 2. H is an RS 0-oherent DY -module.In this ase we deompose � = �+ Æ i, where i : Y ! Y + is a regular extension and �+ : Y + ! X is aproper morphism. DR ommutes with i by ase 1 and with �+ by 4 (ii).General Case. It is suÆient to hek the statement on generators. Hene we an assume that _H = i�(�),where i : Z ! Y is a loally losed imbedding and � an RS 0-oherent DZ-module. ThenDR��( _H) = DR(�i)�(�) ase 2==== (�i)� DR(�) =��(i�DR(�)) ase 2==== ��DR(i�(�)) = ��DR( _H):7. Proof of theorem C b).Funtors D; �� and � were onsidered in 5 and 6.Funtor �!: In 4(v) I have onstruted the morphism Æ : DR�! ! �!DR whih is an isomorphism forsmooth �. Hene it is suÆient to hek that RS DY -omplexes Æ is an isomorphism for the ase of alosed imbedding � = i : Y ! X . Denote by j : V = X n Y ! X the imbedding of the omplementaryopen set. Then we have the morphism of exat trianglesDR(i�i! _F )�!DR( _F )�!DR(j�( _F jV ))???yÆ ???yid ???y�i�i!DR( _F )�!DR( _F )�!j�(DR( _F )jV ):Sine � is an isomorphism by 6, Æ is an isomorphism.Funtors �! and ��. They ommute with DR sine �! = D��D and �� = D�!D.8. Proof of theorem C ).First of all, let us prove that DR gives an equivalene of DRS(DX) with a full subategory ofDoh(Xan). We should prove that for _F ; _R 2 DRS(DX)DR : HomDRS ( _F ; _H) �! HomDoh(DR( _F ); DR( _H))is an isomorphism.It turns out that it is simpler to prove the isomorphism of RHom ( ). We have shown in leture 3that RHom( _F ; _H) = ZX Hom( _F ; _H) = ZX Hom( _F ; _H) = ZX D _F4� _H:Let us prove that in the ategory Doh(Xan) RHom is given by the same formula we haveR Hom( _R;DS:) = RHom( _R;R Hom(S:;Dual)) =R Hom( _R
 S:;Dual) = D(R: 
 S:) = DR:4�DS::



42Hene R Hom( _R;S:) = Z R Hom( _P ; S:) = Z D( _R)4�S::This proves that DR gives an equivalene of the ategoryDRS(DX) with a full subategory of Doh(Xan).Now let us prove that this subategory ontains all isomorphism lasses of Doh(Xab). Sine it is atriangulated full subategory, it is suÆient to hek that it ontains generators. As generators we anhoose CX -omplexes of the form i�(L) where i : Y ! X is an imbedding and L is a loal system onY . Sine DR ommutes with diret images it is suÆient to hek that there exists an RS 0-oherentDY -module � suh that DR(�) � Ljdim Y j, i.e., suh that the sheaf of at setions kof �an is isomorphito L. This is a result by P. Deligne.9. Perverse sheaves, intersetion ohomology and suh.Main theorem C gives us a ditionary whih allows to translate problems, statements and notions fromD-modules to onstrutible sheaves and bak.Consider one partiular example. The ategory DRS(DX) of RS-omplexes ontains the natural fullabelian subategory RS-ategory of RS-modules.How to translate it in the language of onstrutible sheaves.>From the desription of the funtor i! for loally losed imbedding one an immediately get thefollowingCriterion. Let _F be a holonomi DX -omplex. Then _F is onentrated in nonnegative degrees (i.e.,H i( _F ) = 0 for i < 0) if and only if it satis�es the following ondition.(�)RS For any loally losed imbedding i : Y ! X there exists an open dense subset Y0 � Y suh thati!( _F )��Y0 is an 0-oherent DY0-omplex, onentrated in degrees � 0.In terms of onstrutible omplexes this ondition an be written as(�)on For any loally losed imbedding i : Y ! X there exists an open dense subset Y0 � Y suh thati!( _S)��Y is loally onstant and onentrated in degrees � - dim Y .Thus we have proved the following.Criterion. A onstrutible omplex S: lies in the abelian subategoryDR(RS(DX)) i� _S and DS: satisfy (�)on:Now it is easy to reognize this as a de�nition of a perverse sheaf on Xan.Exerise. Let L(Y; �) be an irreduible RS DX -module. Then DR(L(Y; �))j�dim Y j is the intersetionohomology sheaf, assoiated to (Y;Lo. syst. �).Thus intersetion ohomology sheaves just orrespond to irreduible RS d-modules.



4310. Analyti riterion of regularity.For any point x 2 X I denote by Oanx and Oformx algebras of onvergent and formal power series on Xat the point x. For any DX -omplex _F the natural inlusion Oanx ! Oformx indues a morphism�x : R HomDX ( _F ;Oanx ) �! R HomDX ( _F ;OformX ):We say that _F is good at x if �x is an isomorphism.Proposition. Let _F be an RS OX -omplex. Then _F is good at all points.Remark. One an show that onversely, if X is a omplete variety and _F a holonomi DX -omplex goodat all points x 2 X , then _F is RS.proof. For loally projetive DX -module P we haveHomDX (P;Oformx ) = Homk(P=MxP; k) = i�x (P )�:Hene R HomDX ( _F ;Oformx ) = i0x:( _F )�jdim X j. If we put _G = D _F and remember that i�x = Di!xD we seethat R HomDX ( _F ;Oformx ) = i�x( _G)jdim X j:>From the other sideR HomDX ( _F ;Oanx ) = �ber at x of Sol( _F ) = i�xDR( _G)jdim X j:Thus we an reformulate our problem, using the DR funtor.(*) Holonomi DX -omplex _F is good at x i� for _G = D _F the anonial morphism�x : i�xDR( _G) �! DR i�x( _G)is an isomorphism.Hene the proposition is simply a partiular ase of theorem C.The proof of the onverse statement is based on the riterion of RS whih is disussed in 4.Leture 6. D-modules and the proof of the Kazhdan-Lusztig onjeture.I would like to outline main steps of the proof of the Kazhdan-Lusztig onjeture. Only part of it isonneted with D-modules, but somehow it has the same spirit as the theory of D-modules, as I presentedit. The amazing feature of the proof is that it does not try to solve the problem but just keeps translatingit in languages of di�erent areas of mathematis (further and further away from the original problem)until it runs into Deligne's method of weight �ltrations whih is apable to solve it.So, have a seat; it is going to be a long journey.



44Stop 1. g-modules, Verma modules and suh.Let g be a semisimple Lie algebra over C , f � g a Carton subalgebra, � f� root system, �+ thesystem of positive roots and n � g orresponding nilpotent subalgebra. To eah weight � 2 f� we assigng-module M� (it is alled Verma module) whih is a universal g-module, generated by 1 element f� suhthat nfX = 0 and f� is an eigenvetor of f with the eigenharater � � � (here � is the halfsum ofpositive roots). Eah Verma module MX has unique irreduible quotient LX , has �nite length and all itsirreduible subquotients are of the form L for  2 f�. Hene we an write in the Grothendiek groupM� = b� L :Problem. Calulate multipliities b� .It is usually more onvenient to work with the inverse matrix a� , suh that L� = �a� M .Also, using elements of the enter z(g) � U(g) it is easy to show that a� 6= 0 only if � and  lie onone orbit of the Weyl group. The most interesting ase is the W -orbit of (��). So let us put for w 2 W ,Mw =Mw(��); Lw(��) and formulate theProblem A. Calulate matrix aww0 , given byLw = � aww0Mw0 :Stop 2. D-modules, Shubert ells : : : .Now we are going to translate Problem A into the language of D-modules.Let G be an algebrai group orresponding to g, X the ag variety of G, i.e., X = G=B where B is aBorel subgroup of G. The natural ation of G, i.e., X = G=B where B is a Borel subgroup of G. Thenatural ation of G on X de�nes the morphism U(g) ! DX . Hene for eah DX -module F the spae�(F ) = �(X;F ) of global setions of F has the natural struture of g-module. Our translation is basedon the followingTheorem (Beilinson, Bernstein).The funtor � : �(DX) ! �(g); F ! �(F ) gives an equivalene of the ategory �(DX) with theategory ��(g) of g-modules with trivial in�nitesimal harater �. Here � is the harater of the enterZ(g) � U(g), i.e., the homomorphism � : Z(g) �! C , orresponding to the trivial representation of g.We say that g-module M has in�nitesimal harater � if Ker � �M = 0.The proof of the theorem onsists of two parts:1. We show that the funtor � is exat and eah DX -module F is generated by its global setions. Thisimplies that �(DX) is equivalent to the ategory of D(X)-modules, where D(X) = �(X;DX) is thealgebra of global di�erential operators. We already saw that this fat is true for projetive spaes (seeleture 2); though the proof is di�erent, the e�et has the same nature.



452. We show that D(X) = U(g)=Ker � � U(g).This is pure luk. The proof is just a diret alulation, whih uses Kostant's theorem on funtions onnilpotent one.This theorem allows us to translate all the problems of the representation theory, involving modulesin ��(g) into the language of D-modules. Sine Mw; Lw 2 M(g) we an translate our problem. Let usindiate how to do it.It is easy to prove that on any module M =Mw or Lw the nilpotent algebra n ats loally nilpotent.It means that we an exponentiate this ation and de�ne some algebrai ation of the orrespondingnilpotent subgroup N � G. Hene on M we have two ations: ation � of the Lie algebra g, and therepresentation � of the Lie group N . It is lear that M is a (g;N)-module, i.e., it satis�es the followingonditions:(i) Representation � is algebrai, i.e., M is a union of �nite dimensional algebrai representations of thealgebrai group N .(ii) Morphism � : g 
M ! M is N -invariant with respet to the adjoint ation of N on g and ation �of N on M .(iii) On Lie algebra n, g ations � and d� oinide.Translating in DX -modules we see that the DX -module F , orresponding to M is really a (DX ; N)-module, i.e., it is endowed with an ation � of the group N suh that(i) � is algebrai, i.e., F is a union of oherent O-modules with algebrai ation of N (ompatible withthe natural ation of N on X).(ii) Ation � : DX 
 F ! F is N -invariant.(iii) On Lie algebra n of the group N ation �, given by the natural morphism n ! Vet. �elds on X ,DX oinides with d�.In partiular, it means that Supp F is N -invariant. Using Bruhat deomposition we see that N hawsa �nite number of orbits on X . Namely,X = [w2W Yw; where Yw = N(wxN );and xN 2 X is the point, orresponding to N . If Y is an open orbit of N in the Supp F , then i!Y (F ) is an(DY ; N)-module. Now, sine N ats transitively on Y it is not diÆult to desribe all (DY ; N)-modules.They all are diret sums of many opies of the standard (DX ; N)-module OY .Let us put �Y = (iY )!(OY ), IY = (iY )�(OY ), LY = Im(�Y ! IY ). Fortunately in this ase Y is aÆne(it is isomorphi to an aÆne spae), so �Y ; IY are (DX ; N)-modules, not omplexes.Lemma. uw = uYw orresponds to MwLw = LYw orresponds to Lw



46 It is not quite trivial to establish. But if we are interested only in the images ofM;L in the Grothendiekgroup, then it is easy to prove. Indeed, sine eah Lw is selfdual (sine DOY = OY ), in Grothendiekgroup �w ' Iw. Now it is very easy to diretly ompute �(X; Iw) as h-module and to show that itoinides with Mw=h. Sine an element in the Grothendiek group is determined by its restrition to h,this proves that �w �Mw (in Grothendiek group).Now we an reformulate the problem.Problem B. Calulate aww0 given by Lw = �aww0�w0 :Stop 3. Construtible sheaves.Now we an use Hilbert-Riemann orrespondene, I have desribed in leture 5, and translate thewhole problem into the language of onstrutible sheaves.First of all, let us de�ne the Grothendiek group K(DRS) of the ategory DRS(DX) as a group,generated by RS-omplexes and relations [ _F ℄ + [ _H ℄ = _G for any exat triangle _F ! _G ! _H. It is easyto prove that KRS oinides with the Grothendiek group K(RS) of the ategory RS(DX); isomorphismx : K(DRS) ! K(RS) is given by Euler harateristi x([ _F ℄) = �(�1)i[H i( _F )℄. In the same wayK(Don) = K(on). For simpliity we restrit ourselves to the subategories in K(RS) and K(on)generated by sheaves, whih are N -invariant. Funtor DR gives us an isomorphism DR : D(DRS) =K(RS)! K(Don) = K(on). Let us look how to translate �w and Lw.By de�nition �w = (iYw)!(Oy). Hene DR(�w) = iYw)!(1Yw)[dimYw℄, where 1Y is the trivial sheaf onY . If we denote by Tw the element (iYw)!(1Yw) 2 K(on), (extension by zero), we see that DR(�w) =(�1)`(w)Tw, where by de�nition `(w) = dimYw (it is the usual length funtion on the Weyl group). Aswe disussed in leture 5, DR(Lw) = IC(Yw)[dimYw℄, where IC(Y ) is the intersetion ohomology sheafof Y . Let us denote by ICw the element of K(on), orresponding to IC(Yw). Then we an reformulateour problem.Problem C. Find aww0 given by ICw = �aww0(�1)`(w)�`(w0)Tw0 :Fast train. Etale ohomologies, hanging of the �eld, : : : .What we have done so far is the translation of the very diÆult problem A to the not less diÆulttopologial problem C. This problem is essentially the problem of alulating intersetion ohomologiesof the highly singular varieties Y w. The only general method of solving suh problems known so far isbased on algebrai geometry over �nite �elds. So we should go this way.



47Let us �x the strati�ation � = (X = UYw) and denote by D�(Xan) the subategory of D(Xan),onsisting of CX -omplexes, suh that their ohomology sheaves are loally onstant along eah stratumYw (sine Yw is ontratible, they in fat are onstant along Yw). Corresponding Grothendiek group wedenote K�. It is lear that K� = Lw2W ZTw, and we just want to �nd the expression of elements ofICw 2 K in this basis.It turns out that we an replae everywhere lassial topology by etale topology and all properties ofonstrutible omplexes, onstrutible sheaves, whih an be expressed in terms of funtorsD; ��; �!; �!; ��will not hange.Sine etale topology is de�ned purely algebraially, we now an translate the whole situation to arbi-trary �eld.So, we now onsider an algebraially losed �eld k of arbitrary harateristi p, a ag variety X of aredutive group G over k, and � = (X = UYw) the Bruhat strati�ation. We onsider derived ategoryD� of omplexes with ohomologies, onstant along eah stratum Yw. In the Grothendiek group K� ofthis ategory we have a basis Tw and elements ICw, orresponding to IC-sheaves, and we want to �ndan expression of ICw via fTw0g.There are theorems, whih laim that the situation in etale topology over any �eld will be exatly thesame as in lassial topology over C .Remark. In etale topology we are working with `-adi sheaves whose stalks are vetor spaes over thealgebrai losure Q` of the �eld of `-adi numbers, where ` 6= hark. For simpliity we will identify Q`with C .In fat, `-adi sheaves are not quite sheaves and elements of D� are not quite omplexes. But it doesnot matter sine we an work with our funtors D; ��; : : : in the usual way.Stop 4. Weil sheaves, Tate twist, Lefshetz formula.Now suppose we are working over the �eld k whih is the algebrai losure of a �nite �eld Fq . Alsowe assume that our strati�ation � is de�ned over Fq , i.e., eah stratum Yw is given by equations andinequalities with oeÆients in Fq . Denote by Frq the automorphism of the �eld k, given by  7�! q.For any variety Y , de�ned over Fq , Frq indues a bijetion Frq : Y (k)! Y (k), whih turns out to be ahomeomorphism in etale topology.Let us all Weil sheaf an `-adi sheaf F together with the ation of Frq on F . In a similar way wean onsider Weil omplexes of sheaves. Derived ategory of Weil omplexes, whose ohomologies areonstant along strata of strati�ation � we denote DW� , and orresponding Grothendiek group KW� .These de�nitions make sense sine eah stratum Yw is invariant under Frq .Important example. Let us desribe Weil sheaves on the variety pt, onsisting of one point. Then anysheaf F is given by a vetor spae V . Hene Weil sheaf on pt is just a Q `-vetor spae V together with a



48linear transformation Frq : V ! V .De�nition. Tate sheaf L over a point p is de�ned by one-dimensional vetor spae Q ` together with themorphism Frq : Q ` ! Q `, whih is the multipliation by q, i.e., Frq(�) = q�.If � : Y ! X is a morphism of algebrai varieties, whih is de�ned over Fq , it indues funtors��; �! : DW (Y ) ! DW (X), ��; �! : DW (X) ! DW (Y ). Also there is a funtor of Verdier dualityD : DW (X) ! DW (X). All these funtors have the same properties, as we have disussed earlier. Butthere is one important improvement:(*) If X is a nonsingular variety, then D(1X) = L�dimX � 1X [2dimX ℄.Here 1X is the trivial sheaf on X , L we onsider as a sheaf on X { this is the Tate sheaf lifted from thepoint, and L�k means (L�1)
k.If we forget the ation of Fr we have an old formula for dualizing sheaf. So (*) simply means thatthough dualizing sheaf is essentially isomorphi to the onstant sheaf, this isomorphism is not anonial;in partiular, Frq hanges it in qdimX times.Exerise. Over a point D(Lk) = L�k.Digression. Weil sheaves and funtions.For eah variety X , de�ned over Fq denote by X(q) the �nite set, onsisting of points of X , whih arede�ned over Fq (i.e., whih are �xed points of Frq). To eah Weil omplex _F I will assign the funtionfF on the �nite set X(q) given byfF (x) = �(�1)itrFrq(stalkH i( _F )x)(it makes sense sine x is Frq invariant). It is lear that fF depends only on the lass of _F in theGrothendiek group k.Theorem. Let � : Y ! X be a morphism, de�ned over Fq , and � : Y (q)! X(q) the orresponding mapof �nite sets. Then f��( _F ) = ��( _F ); f�!( _H) = Z� f _H ;where _F 2 DW (X); _H 2 DW (Y ) and operations �� and R� on funtions are de�ned by��(f)(y) = f(�(y)) (Z� f)(x) = X�(y)=x f(y):Here the �rst statement is triviality and the seond is a deep generalization of Lefshetz �xed pointstheorem.This theorem laims that all usual operations with funtions on �nite sets we an rewrite on thelevel of Weil sheaves (or at least, their Grothendiek group). The importane of this observation an



49be understood if you realize that starting from one Weil omplex _F we an onstrut the sequene offuntions: to any q0 whih is a power of q we will assign the funtion fq0F on the set X(q0); and any naturaloperation with all these funtions an simultaneously be desribed by one operation with the omplex _F .This notion gives the formal de�nition of the \natural sequene of funtions" on sets X(q0), q0 = qi.Example. Consider the projetion pr : A k ! pt of the aÆne spae into a point. Then the theorem impliesthat pr!(aAk ) = Lk[�2k℄, (i.e., in KW pr!(1) = Lk).Indeed, omparison with the lassial ase shows that dimH i(pr!(aAk )) = Æi;2k0 , and the theoremdesribes the ation of Frq on one-dimensional spae H2k(pr!(aAk )).Stop 5. Weights and purity.Let _F be a Weil omplex over a point p, whih is de�ned over some �eld Fq0 . We say that w( _F ) (weightof _F ) is less or equal to ` (notation w( _F ) � `) if for any i all eigenvalues of Frq0 in the spae Ho( _F ) haveabsolute value � (q0) `+i2 .(Hey, what do you mean? They are supposed to be `-adi numbers.)Well, if you remember, we have identi�ed Q ` with C , so we onsider them as omplex numbers, andabsolute value is the absolute value. Also Deligne proved that in all interesting ases they are algebrainumbers, so it is all not so bad. And in any ase, in what we are going to onsider they will always bepowers of q. So do not worry).It is lear that this notion does not depend on the hoie of q0, i.e., if we hange q0 by q" = (q0)`, itdoes not a�et the ondition.Let now _F be a Weil omplex on X . Any point x 2 S is de�ned over k = Fq0 , i.e., it is de�ned oversome �eld Fq0 . We say that w( _F ) � ` if for any point x 2 X the stalk _Fx = i�x( _F ) has weight � `.We say that W ( _F ) � ` if W (D _F ) � �`. We say that _F is pure of the weight ` ifW ( _F ) � ` and W ( _F ) � `:Deligne's purity theorem. Let � : Y ! X be a morphism, de�ned over Fq . Then �� and �! dereaseweight, �� and �! inrease weight, i.e.,if W ( _F ) � `, then W (�� _F ) � `if W ( _H) � `, then W (�! _H) � `if W ( _H) � `, then W (�� _H) � `if W ( _F ) � `, then W (�! _H) � ` .In partiular, proper morphism preserves purity.Gabber's purity theorem. Let Y be an irreduible algebrai variety, IC(Y ) the intersetion ohomol-ogy Weil sheaf of Y (whih oinides with 1Y on the nonsingular part of Y ). Then IC(Y ) is pure of theweight 0



50Stop 6. Heke algebra.Get bak to ag variety X = UYw. Let us onsider only omplexes, for whih all eigenvalues of allmorphisms Frq are powers of q. In general, this ategory is not invariant with respet to funtors, butin our partiular ase it is.Let A = K(DW (pt)) be the Grothendiek group of the Weil sheaves over a point. Then A = Z[L�1℄,the algebra of Laurent polynomials.Denote by H the Grothendiek group K(DW� (X)) of Weil sheaves onstant along strata of �. Then itis lear that H is a free A-module with the basis fTwg.For any w 2 W the intersetion ohomology sheaf ICw 2 H satis�es the following relations(i) D(ICw) = L�dimYw � ICw(ii) ICw = Tw +�Pw;w0Tw0 ,where Pw;w0 2 A satisfy the ondition(*) Pw;w0 = 0 ifYw0 6� Y w and degPw;w0 < 1=2(`(w)� `(w0)):Indeed, as a sheaf ICw is selfdual, and sine in a neighborhood of Yw it oinides with Tw and in thisneighbourhood DTw = L�dimYw � Tw0 we have (i).In order to prove (ii) let us �x some point x 2 Yw0 . Then by de�nition of ICw stalks of all ohomologysheaves H i(ICw)x equal 0 when i � dimYw�dimYw0 = `(w)� `(w0). By Gabber's theorem w(ICw) � 0,i.e., the ation of Frq onH i(ICw)x has eigenvalues� qi=2. But it is lear that �(�1)iTrFrq(H i(ICw)x) =Pw;w0(L = q). This proves (ii).Relations (i) and (ii) gives a hope that if we are able to desribe the ation of the duality operator Don H , then we would be able to �nd Kazhdan-Lusztig polynomials Pw;w0 . After this we an forget aboutWeil struture (i.e., speialize L! 1) and obtain the formulae for aww0 .In order to desribe the ation of D I will introdue on H the struture of an algebra.The motivation for this ame from omparison with funtions. Informally H is a spae of funtionson X(q) onstant on N(q) orbits. There is the natural identi�ation of N(q) orbits on X(q) withG(q) orbits on X � X(q), so we an onsider elements of H as Q(q)-invariant funtions in 2 variablesf(x; y); x; y 2 X(q). But spae of funtions in 2 variables has the natural operation-onvolution, givenby f � h(x; y) = Z F (x; z)h(z; y)dzor, with more details (f � h)(x; y) = Z f(x; u)h(v; y)substitute u=v=zdz:The disussion on the stop 4 allows us immediately to translate this operation in the derived ategory,or in the Grothendiek group.



51First of all, onsider the strati�ation 	 of X�X by G-orbits and onsider ategory DW	 (X�X) andthe orresponding group KW	 . This group is naturally isomorphi to H = KW	 ; isomorphism is given byrestrition of the sheaves F on X � X to the �ber x0 � X ' X . I will identify H and KW	 using thisisomorphism.Now, let _F ; _H 2 DW	 (X �X). I will de�ne their onvolution � by_F �H = pr!��( _F � _H), where� : X �X �X ! X �X �X �X; �(x; z; y) = (x; z; z; y)pr : X �X �X ! X �X; pr(x; z; y) = (x; y).Proposition. H is an assoiative A-algebra with respet to onvolution � with identity 1 = Te. If`(ww0) = `(w) + `(w0), then Tw � Tw0 = Tww0.The last statement an be heked straightforwardly. Also it follows from the fat that it is true forusual Heke algebras, whih onsist of G(q) invariant funtions on X(q)�X(q).These formulae imply that H as an A-algebra is generated by elements T�0 for simple reetions �.In order to desribe the ation of D on H we use the following trik due to Lusztig.Proposition. Let � 2 W be a simple reetion. Then for any h 2 H we haveD((T� + 1) � h) = L�1(T� + 1) �Dhalso (T� + 1)2 = (L+ 1)(T� + 1).Corollary. D is the automorphism of the algebra H. On generators T� D is given by DT� = L�1T� +(L�1 � 1).Indeed, the proposition shows that D((T� + 1) � h) = D(T� + 1) �Dh for all h. Sine elements T� +1generate H , we have D(f � h) = Df �Dh. The formula D(T� + 1) = L�1(T� + 1) gives the ation of Don T� .The proof of the proposition is based on the following observation. Denote by p� the paraboli subgroupof G, obtained by adding to the Borel subgroup the simple root, orresponding to �, and onsider thealgebrai variety X� = G=P�. The natural G-equivariant projetion p� : X ! X� has �bers, isomorphito the projetive line P0. For instane, if we put x� = p�(x0), then p�1� = Ye [ Y� is the projetive linewith the natural strati�ation. It means that T�+1 orrespond to the sheaf R� whih is the trivial sheafon p�1� (x�), extended by zero. After this it is not diÆult to prove that for any F 2 DW we have(*) R� � F = p��(p�)!F:Now, sine p� is proper, diret image (p�)! = (p�)� ommutes with D. Sine p� is smooth, p!� = L�1p��,i.e., Dp�� = Lp��D (loally X ' X� �P0, so p��(F ) = F � 1P0, i.e., Dp��(F ) = DF �D(1P) = LDF � 1P=Lp��(DF ).



52 Also, it is lear that (p�)!(R�) ' (L + 1)Tx� (in Grothendiek group) and p��(Tx�) = R� . This givesthe seond formula of the proposition.Last stop. Combinatorial problem.Proposition. (simple ombinatoris).(i) There exists an A-algebra H whih is free with basis Tw, suh thatTw � Tw0 = Tww0 if `(w) � `(w0) = `(ww0):(T� + 1)2 = (L+ 1)(T� + 1) for simple reetions � 2W .(ii) There exists a unique automorphism D of the algebra H, suh thatD(L) = L�1D(T� + 1) = L�1(T� + 1) for simple reetions � 2W .(iii) For eah w 2W there exists a unique element Cw 2 H suh thatCw = Tw +Pw0�w pw;w0Tw0 ; where Pww0 2 A has degree< 12 (`(w) � `(w0)) and DCw = L�`(w)Cw.In this ase Pww0 2 Z[L℄.Example. C� = T� + 1.Polynomials Pw;w0 are alled Kazhdan-Lusztig polynomials. Now, if we summarize our disussion, wewill obtain the ombinatorial formula for multipliity matrix aw;w0 .Answer. aww0 = (�1)`(w)�`(w0)Pww0(1):Some questions.Question 1. Where is the solution? How an I �nd these polynomials?In a sense there was no solution. We have just translated our original problem, adding a new parameterL for rigidity, to a ombinatorial problem and proved that this problem has a unique solution. Of ourse,now we an obtain some reursive formulae for alulation of Kazhdan-Lusztig polynomials, but they arequite ompliated.Whether there exist expliit formulae for pww0 , I think not, i.e., I think that some type of ombinatorialomplexity is built into the problem.In some ases one an ge expliit formulae for P . For instane, one an alulate intersetion oho-mology sheaves for Shubert varieties on usual Grassmannians (see Lasoux and Shutzenberger). ButZelevinsky showed that in this ase it is possible to onstrut small resolutions of singularities. I would saythat if you an ompute a polynomial P for intersetion ohomologies in some ase without a omputer,then probably there is a small resolution, whih gives it.Question 2. What is the geometrial meaning of other oeÆients of pww0?



53Kazhdan and Lusztig showed that all stalks of the sheaves ICw are pure. Hene, if we hoose a pointx 2 Yw0 , then dimH i(ICw)x = 0 for odd i= i=2 oeÆient of pww0 for even i:In the proof they used an observation, that transversal setion to Yw0 of the variety Y w is onial, i.e., ithas an ation of k� whih ontrats everything into a point x 2 Yw0 .In general, stalks of IC sheaves are not pure. But there is one more ase, alulated by Vogan andLusztig, namely the strati�ation of the ag variety byorbits of omplexi�ed maximal ompat subgroup,in whih stalks always are pure. I do not know why.Untwisting the situation bak we an onnet H i(ICw) withExti��(g)(Mw0 ; Lw) or, if you want, with H i(n;Lw):Question 3. It is all very nie but is it really neessary to go into all this business with varieties over�nite �elds? How are �nite �elds onneted with g-modules?In fat, it is not neessary. You an obtain the same results using Hodge theory for onstrutiblesheaves or, even better, diretly Hodge theory for D-modules.One small detail { these theories do not exist yet (there is a Hodge theory for loally onstant sheaves{ this is Deligne's theory of variations of Hodge strutures { and it is quite powerful, but it is learly notenough). But at least we know what to think about.


