Topology, fall 2015

Homework 11, due Wednesday December 9 before class.

Read §70 – 73 (in §71 you can read up to and including Theorem 71.3, the rest of §71 is optional reading).

I. Exercise 3ab on page 433.

II. Give an example where the Seifert-van Kampen theorem fails if one does not assume that \(U \cap V \) is path-connected.

III. (a) What is the relation between punctured \(\mathbb{R}P^2 \) (that is, \(\mathbb{R}P^2 \) with a point deleted) and the Möbius band?
 (b) Remove two points from \(\mathbb{R}P^2 \) to get a space \(X = \mathbb{R}P^2 \setminus \{p, q\} \).
 Determine the fundamental group of \(X \). (Hint: if you solve (a) first, you’ll be able make a picture of \(X \). Then look for a homotopy retract of \(X \) with the fundamental group easy to determine).

IV. Find fundamental groups of the following spaces:
 (a) Wedge \(\mathbb{R}P^2 \vee \mathbb{R}P^2 \) of two projective planes.
 (b) Wedge \(\mathbb{R}P^2 \vee S^1 \vee S^2 \).
 (c) Once punctured Klein bottle \(KB \setminus \{p\} \).
 (d) Twice punctured Klein bottle \(KB \setminus \{p, q\} \).
 (e) Once punctured oriented surface \(M \) of genus 2.
 (f) Two-sphere with a disc \(B^2 \) attached along the equator.
 (g) Take two two-dimensional tori \(T^2_1 \) and \(T^2_2 \) and identify a longitudinal circle of the first tori with a meridianal circle of the second tori. Determine \(\pi_1 \) of the resulting space.

V. Take a solid torus \(B^2 \times S^1 \), a Hausdorff space \(Y \), and a continuous map \(\psi : T^2 \to Y \) from the boundary surface \(T^2 = S^1 \times S^1 \) of the solid torus. Glue the solid torus and \(Y \) via this map (by identifying point \(s \in T^2 \) with its image in \(Y \) for all \(s \)) and denote the resulting space \(X \). Explain the relation between the fundamental groups of \(Y \) and \(X \) by analogy with the Theorem 72.1 (also discussed in class).