BORDERED FLOER HOMOLOGY HOMEWORK 3

ROBERT LIPSHITZ

(1) After today’s lecture, we (hopefully) have enough background for Problems 1, 3 and 4 from Homework 2.

(2) Show that if \(Z_1 \) and \(Z_2 \) are pointed matched circles so that \(F(Z_1) \) and \(F(Z_2) \) are homeomorphic then \(\mathcal{A}(Z_1) \) is derived (Morita) equivalent to \(\mathcal{A}(Z_2) \). (Hint: recall that if \(I_Z \) denotes the mapping cylinder of the identity map of \(F(Z) \) then \(\hat{CFDA}(I_Z) \simeq \mathcal{A}(Z) \) as an \(\mathcal{A}(Z) \)-bimodule. See also [1, Corollary 8.1].)

(3) Define the \(0 \)-framed split handlebody of genus \(g \), \(\text{HB}_g^0 \), to be the boundary connect sum of \(g \) 0-framed solid tori. Compute \(\hat{CFD}(\text{HB}_g^0) \).

References