Please keep track of how long this problem set takes you: I’m going to ask, for calibration purposes.

(1) Cromwell Exercise 3.4.
(2) Cromwell Exercise 3.5. (Hint: this is easy from 3.4.)
(3) Cromwell Exercise 3.17.
(4) In Section 2.11, Cromwell gives a rigorous definition of a graph: a set V and a set E of unordered pairs of elements of V.
 (a) Give a rigorous definition of a planar graph (i.e., a graph embedded in the plane; see page 47 in Cromwell). (Your definition should start something like “A planar graph is a graph (V,E), for each element $v \in V$ a point $f(v) \in \mathbb{R}^2$, and for each pair $\{v_1,v_2\} \in E$. . .”.)
 (b) Building on the previous part, give a rigorous definition of a knot diagram. (Suggestion: a knot diagram is a planar graph together with some extra data.)
(5) A knot diagram is n-colorable if there is a labeling of the strands in the diagram by elements of \mathbb{Z}/n so that at each crossing, if the over-strand is labeled a and the two under-strands are labeled b and c then
 \[2a \equiv b + c \pmod{n} \]
 (and not all strands are colored by the same number).
 (a) Verify that n-colorability depends only on the knot type, not the particular diagram, by checking it’s unchanged by Reidemeister moves.
 (b) Explain that the unknot is not n-colorable for any $n > 1$. (Hint: this is trivial.)
 (c) Show that the Figure 8 knot is 5-colorable. (So, the Figure 8 knot is not the unknot.)
 (This exercise is similar to Lickorish’s Exercise 9 in Chapter 1.)
(6) Let K be a knot in \mathbb{R}^3. Recall that S^3 is the one-point compactification of \mathbb{R}^3, so we can view K as sitting in S^3. Prove that $\pi_1(\mathbb{R}^3 \setminus K) \cong \pi_1(S^3 \setminus K)$.
(7) Generalize our computation of the fundamental group of the trefoil complement to compute $\pi_1(\mathbb{R}^3 \setminus T_{p,q})$ where $T_{p,q}$ is the (p,q)-torus knot.

Also, read through the rest of the exercises in Cromwell, Chapter 3.

E-mail address: rl2327@columbia.edu