MATH V2020 PROBLEM SET 3 DUE SEPTEMBER 23, 2008.

INSTRUCTOR: ROBERT LIPSHITZ

This is the first problem set where you'll write proofs of interesting results on your own. I've given sketches, but it still may be a bit of a struggle. Don't forget that help is available.

(1) Compute the following matrix arithmetic:

(a)

$$\begin{pmatrix} -1 & 0\\ 1 & 2 \end{pmatrix} \begin{pmatrix} 1 & 3 & 5\\ 2 & 4 & 6 \end{pmatrix}$$
$$\begin{pmatrix} 6 & -2\\ 18 & -6 \end{pmatrix}^2$$

(b)

- (2) Some abstract computations with matrix multiplication. (The answers and a little justification is enough; you don't have to give proofs or detailed arguments.)
 - (a) Let $E_{i,j}$ denote the $n \times n$ matrix with a 1 in the $(i, j)^{th}$ position and 0's everywhere else. What is the product $E_{i,j}E_{k,l}$ in terms of i, j, k and l? (Suggestion: do a couple of 2×2 or 3×3 examples.)
 - (b) Let $M = \begin{pmatrix} 1 & 0 & 0 \\ 0 & \lambda & 0 \\ 0 & 0 & 1 \end{pmatrix}$, and let A be a 3×3 matrix. What is the effect of left multi-

plying A by M (i.e., MA)? What about right multiplying (i.e., AM)? (Suggestion: do an example.)

(c) Let $N = \begin{pmatrix} 1 & 0 & 3 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$, and let A be a 3×3 matrix. What is the effect of left multiplying A by N? Right multiplying A by N? (d) Let $P = \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix}$, and let A be a 3×3 matrix. What is the effect of left multiplying A by P? Right multiplying $A = 3 \times 3$ matrix.

A by P? Right multiplying A by P?

- (e) What are the inverses of M, N and P? (Guess the answer by thinking about your answers from the first three parts, not by computing directly. Check that they're correct.)
- (3) Let $A = \begin{pmatrix} 1 & 3 \\ 2 & 7 \end{pmatrix}$. Find the inverse *B* of *A*. (Hint: *B* is a 2×2 matrix. Write $B = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$. Then, the condition that B be the inverse of A boils down to a system of linear equations. Solve them.)

(You might already have learned some tricks for inverting matrices somewhere. Please don't use them unless you can explain why they work.)

- (4) Prove that the matrix $A = \begin{pmatrix} 1 & 2 \\ -2 & -4 \end{pmatrix}$ has no inverse, two ways:
 - (a) Write down the condition for B to be the inverse of A, in terms of linear equations, and check that they are not satisfied.
 - (b) Consider the linear map induced by A, and show that it has no inverse. (Hint: is it bijective?)

(Both parts should be quite short; if you're having trouble writing them, talk to someone (e.g., me, Evan).)

- (5) Let $F: \mathbb{F}^n \to \mathbb{F}^m$ be a linear transformation.
 - (a) Prove that if n < m then F is not surjective. (Hint: take a basis for \mathbb{F}^n , apply F to it. Explain why the resulting vectors can't span W. Explain why this implies F is not surjective.)
 - (b) Let $F: \mathbb{F}^n \to \mathbb{F}^m$ be a linear transformation. Prove that if n > m then F is not injective. (Hint: take a basis for V, apply F to it. Explain why the resulting vectors can't be linearly independent. Explain why this implies F is not injective.)
 - (c) Use the first two parts to prove that if A is an $m \times n$ matrix and $m \neq n$ then A is not invertible.
- (6) Last week you found a matrix for the linear transformation $\mathbb{R}^2 \to \mathbb{R}^2$ given by reflection across the line making an angle θ with the x-axis. Let R_{θ} denote this linear transformation. Find a matrix for the composition $R_{\theta} \circ R_{\eta}$ in two different ways:
 - (a) Directly, by geometric arguments similar to those you used last week.
 - (b) By multiplying the matrices for R_{θ} and R_{η} .

Check that your answers agree.

- (7) Let $F: \mathbb{R}^2 \to \mathbb{R}^2$ be given by $F(x, y)^T = (x + y, x y)^T$.
 - (a) Find the matrix for F with respect to the standard basis \mathcal{B} for \mathbb{R}^2 .
 - (b) Find the change of basis matrix from \mathcal{B} to $\mathcal{B}' = [(1,2)^T, (3,7)^T]$. Find it's inverse (hint: you've already done that in this problem set).
 - (c) Use the first two parts to compute the matrix for F with respect to \mathcal{B}' . (This is not rigged to have a particularly nice answer.)
- (8) Let $F: \mathcal{P}_{\leq 1} \to \mathcal{P}_{\leq 1}$ be given by F(p(x)) = xp(1) + p'(x).
 - (a) Find the matrix for F with respect to the basis $\mathcal{B} = [1, x]$.
 - (b) Find the change of basis matrix from \mathcal{B} to $\mathcal{B}' = [1, 2 + x]$ and its inverse. (Hint: you figured out how to invert the relevant matrix in Problem 2.)
 - (c) Use parts 8a and 8b to compute the matrix for F with respect to the basis \mathcal{B}' .
 - (d) Check your answer by computing the matrix for F with respect to \mathcal{B}' directly.
- (9) Find two 2×2 matrices which are not similar. Prove that they're not similar. (This can be easy, if you choose the right matrices.)

Note: we'll do some more change of basis problems next week, but you still might like to find some more to practice on your own this week.

E-mail address: r12327@columbia.edu