(1) Find all solutions to the following systems of equations by row reduction. Identify the pivot variables and free variables.
(a)
\[
\begin{align*}
2x + 3y + z &= 0 \\
x + y + z &= 0 \\
3x + 4y + 2z &= 0 \\
y + z &= 0
\end{align*}
\]
(b)
\[
\begin{align*}
3x + y - 3z &= 14 \\
2x + y - 3z &= 9 \\
-2x - y + 4z &= -8
\end{align*}
\]
(c)
\[
\begin{align*}
x + y + 3z &= 5 \\
-2x - 2y - 6z &= -20
\end{align*}
\]
(2) Define \(F : \mathbb{R}^3 \to \mathbb{R}^2 \) by
\[
F \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} x + y + 3z \\ -2x - 2y - 6z \end{pmatrix}.
\]
Find a basis for the kernel of \(F \). Find a basis for the image of \(F \).
(3) All of the entries in the row-reduced echelon forms of the matrices in problem (1) were integers (hopefully).
(a) Explain why this was not obvious \textit{a priori} (i.e., beforehand). (One or two sentences should be enough.)
(b) Explain how to cook up complicated-looking examples whose row-reduced echelon forms have all entries integers. Illustrate your algorithm with a couple of examples.
(4) Use the row-reduction technique from class to compute the inverse of the matrix
\[
\begin{pmatrix} 5 & 3 \\ 3 & 2 \end{pmatrix}.
\]
(5) Prove that a matrix \(A \) is invertible if and only if the row-reduced echelon form of \(A \) is the identity map. (There are two directions. The “only if” part is easier; for the other direction use elementary matrices in a similar way to what we did in class.)
(6) The matrix \[\begin{pmatrix} a & b \\ c & d \end{pmatrix} \] is invertible if and only if \(ad - bc \neq 0 \). Use problem (5) to prove this. (There are several cases here, depending on whether, say, \(a = 0 \), so the proof is a bit annoying.)

(7) Let \(P \) be the plane in \(\mathbb{R}^3 \) given by the equation \(y = x \). Let \(F: \mathbb{R}^3 \to P \) denote projection onto \(P \).
 (a) Find a basis \(B_P \) for \(P \).
 (b) Find a basis \(B' \) for \(\mathbb{R}^3 \) so that the matrix for \(F \) with respect to \(B', B_P \) is
 \[\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix} . \]
 (Hint: you found two useful basis vectors already.)
 (c) Find the change of basis matrix from \(B' \) to the standard basis \(B \) for \(\mathbb{R}^3 \). Find its inverse.
 (d) Find the matrix for \(F \) with respect to \(B \) and \(B_P \).

(8) Let \(F: \mathbb{R}^3 \to \mathbb{R}^2 \) be defined by
 \[F \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} x + 2y + 3z \\ 2x + 4y + 6z \end{pmatrix} . \]
 (a) Find bases \(B_3 \) and \(B_2 \) for \(\mathbb{R}^3 \) and \(\mathbb{R}^2 \) so that the matrix for \(F \) with respect to \(B_3 \) and \(B_2 \) is
 \[\begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \]
 by examining the second (direct) proof of the rank theorem from class.
 (b) **Optional:** Do the same thing, but by using row and column operations instead, and keeping track of the elementary matrices you use. (This is more work, but should solidify some concepts.)

E-mail address: rl2327@columbia.edu