MATH V2020 PROBLEM SET 9 DUE NOVEMBER 25, 2008.

INSTRUCTOR: ROBERT LIPSHITZ

Revised. to make problem 3 a bit shorter.

- (1) Prove that for an $n \times n$ matrix A, $e^{\operatorname{tr}(A)} = \operatorname{det}(e^A)$. (Hint: prove it first if A is in JNF. Then deduce the general result.)
- (2) Consider the space $\mathcal{C}^{\infty}[-1,1]$ of smooth functions on [-1,1], with inner product $\langle f,g \rangle =$ $\int_{-1}^{1} f(x)g(x)dx.$
 - (a) Prove that if $n \neq m \in \mathbb{N}$ then $\sin(\pi nx)$ is orthogonal to $\sin(\pi mx)$. Prove that $\sin(\pi nx)$ has length 1. Prove that for any $n, m, \sin(\pi nx)$ is orthogonal to $\cos(\pi mx)$. Prove that all of these functions are orthogonal to $f(x) = \frac{1}{\sqrt{2}}$.

Remark. Of course, it's also true that if $n \neq m \in \mathbb{N}$ then $\cos(\pi nx)$ is orthogonal to $\cos(\pi mx)$, and that $\cos(\pi mx)$ has length one.

Hint. There are some useful trig identities on the next page.

(b) Let $g(x) = |x|^{1}$ Let

$$a_n = \langle g(x), \sin(\pi nx) \rangle$$

$$b_n = \langle g(x), \cos(\pi nx) \rangle$$

$$c = \langle g(x), 1/\sqrt{2} \rangle.$$

Compute a_n , b_n and c. *Hint*. One of the three integrals is obviously zero. For the others, you'll have to split it up into $\int_{-1}^{0} + \int_{0}^{1}$ and use integration by parts. The answer is different for n odd and n even.

(c) The following theorem follows from general results in Fourier analysis:

Theorem 1. For any $x \in [-1, 1]$,

$$g(x) = c/\sqrt{2} + \sum_{n=1}^{\infty} a_n \sin(\pi nx) + \sum_{n=1}^{\infty} b_n \cos(\pi nx).$$

What theorem for inner product spaces is this analogous to?

- (d) What does the theorem say when you plug in x = 0?
- (e) Use the previous part to prove that $\sum_{n \text{ odd}} 1/n^2 = \pi^2/8$. (f) Use the previous part to prove that $\sum_{n=1}^{\infty} 1/n^2 = \pi^2/6$. (Hint: break the sum into the sum over n even and n odd. The sum over n even is equal to 1/4 times the sum over all n.)
- (g) Optional but encouraged: use a computer to plot the sum of the first three terms in the Fourier series for |x|, and the first six terms. Describe what you see. (For example, does the series seem to be converging faster to |x| in some places than others?)

(3) Define an inner product $\langle \cdot, \cdot \rangle$ on $\mathcal{C}^{\infty}([0,1])$ by $\langle f, g \rangle = \int_0^1 f(x)g(x)dx$.

¹See remark on next page.

FIGURE 1. The saw-toothed function obtained by periodizing g.

- (a) Compute $\langle 1, \sin(x) \rangle$ and $\langle x, \sin(x) \rangle$.
- (b) Find the degree one polynomial p(x) which approximates $\sin(x)$ as well as possible on [0, 1], in the sense that $\int_0^1 (p(x) - \sin(x))^2 dx$ is as small as possible. (Suggestion: Project $\sin(x)$ onto the first two of the basis you found in Problem 9 last week. Use your answers from part (3a) and bilinearity of the inner product to avoid computing any new integrals in this part.)
- (c) Optional: find the degree 2 polynomial which best approximates sin(x) in the same sense.
- (4) Let

$$A = \begin{pmatrix} -7 & 24\\ 24 & 7 \end{pmatrix}.$$

Find an orthogonal matrix P so that $P^{-1}AP$ is diagonal.

(5) Let

$$A = \begin{pmatrix} 3 & -i \\ i & 3 \end{pmatrix}.$$

Find a unitary matrix U so that $U^{-1}AU$ is diagonal.

Useful trig identities. Recall that $\sin(a+b) = \sin(a)\cos(b) + \sin(b)\cos(a)$. So,

$$\sin(\pi nx + \pi mx) = \sin(\pi nx)\cos(\pi mx) + \sin(\pi mx)\cos(\pi nx)$$
$$\sin(\pi nx - \pi mx) = \sin(\pi nx)\cos(\pi mx) - \sin(\pi mx)\cos(\pi nx)$$

$$\sin(\pi nx)\cos(\pi mx) = \frac{1}{2}\left(\sin(\pi nx + \pi mx) + \sin(\pi nx - \pi mx)\right).$$

Similarly, $\cos(a+b) = \cos(a)\cos(b) - \sin(a)\sin(b)$ so

$$\cos(pinx + \pi mx) = \cos(\pi nx)\cos(\pi mx) - \sin(\pi nx)\sin(\pi mx)$$
$$\cos(pinx - \pi mx) = \cos(\pi nx)\cos(\pi mx) + \sin(\pi nx)\sin(\pi mx)$$
$$\cos(\pi nx)\cos(\pi mx) = \frac{1}{2}\left(\cos(pinx + \pi mx) + \cos(pinx - \pi mx)\right)$$
$$\sin(\pi nx)\sin(\pi mx) = \frac{1}{2}\left(\cos(pinx - \pi mx) - \cos(pinx + \pi mx)\right).$$

Remark. Regarding problem 2: from the perspective of Fourier series, we should really view the function g as a periodic function on \mathbb{R} of period 2. That is, g is a saw-tooth function, as shown in Figure 1

E-mail address: r12327@columbia.edu