Sample Final
Math UN1101: Calculus I, Section 10
Instructor: Linh Truong
Fall 2017

Name: ________________________________
UNI: _________________________________

Instructions:

- Print your name in the space above.
- Show your reasoning and intermediate computations.
- You have 2 hours and 50 minutes.
- No notes, books, calculators or any other electronic devices are allowed.
- Write answers in the space provided. If you need extra space, use the backs of pages and clearly label your work.

<table>
<thead>
<tr>
<th>Question</th>
<th>Points</th>
<th>Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>Total:</td>
<td>80</td>
<td></td>
</tr>
</tbody>
</table>
1. (10 points) Mark True or False (1 point each). No justification is needed.

(a) \[\boxed{T}\] If \(f(x) \) is increasing at \(x = 3 \), then \(f''(3) > 0 \).

(b) \[\boxed{T}\] The function \(f(x) = \tan(x) \) is continuous at \(x = \pi \).

(c) \[\boxed{F}\] The derivative of \(f(x) = e^{e^x} \) is \(f'(x) = e^{e^x} \).

(d) \[\boxed{F}\] The derivative of \(f(x) = 1/(1 + x^2) \) is \(f'(x) = \arctan(x) \).

(e) \[\boxed{F}\] \(\int_{\frac{1}{2}}^1 \ln x \, dx \) is positive.

(f) \[\boxed{F}\] \(\int_a^b f(x)g(x) \, dx = (\int_a^b f(x) \, dx) \cdot (\int_a^b g(x) \, dx) \)

(g) \[\boxed{F}\] If \(\int_0^2 f(x) \, dx = 2 \) and \(\int_3^5 f(x) \, dx = 6 \), then \(\int_0^5 f(x) \, dx = 8 \).

(h) \[\boxed{T}\] The function \(f(x) = \int_0^x (1 - t)e^{t^2} \) is decreasing when \(x > 1 \).

(i) \[\boxed{F}\] The fundamental theorem of calculus ensures that \[
\frac{d}{dx} \int_2^3 f'(t) \, dt = f(3) - f(2).\]

(j) \[\boxed{F}\] The substitution rule ensures that \(\int f(u) \, du = \int f(x^2) \, dx \) if \(u = x^2 \).
2. (4 points) Compute \(\lim_{x \to 4} \frac{x - 4}{x^2 - 9x + 20} \).

\[
= \lim_{x \to 4} \frac{x - 4}{(x - 4)(x - 5)}
\]

\[
= \lim_{x \to 4} \frac{1}{x - 5}
\]

\[
= \frac{1}{4 - 5} = \frac{1}{-1} = -1
\]
3. (3 points) \[\lim_{x \to -\infty} \frac{x^5 + 5x + 2}{2x^4 - 3} \]

\[
= \lim_{x \to -\infty} \frac{x^5 + 5x + 2}{2x^4 - 3} \cdot \frac{1/x^4}{1/x^4}
\]

\[
= \lim_{x \to -\infty} \frac{x + 5/x^3 + 2/x^4}{2 - 3/x^4}
\]

Since \(x + 5/x^3 + 2/x^4 \to -\infty \) as \(x \to -\infty \)

and \(2 - 3/x^4 \to 2 \) as \(x \to -\infty \)

\[\lim_{x \to -\infty} \frac{x^5 + 5x + 2}{2x^4 - 3} = -\infty \]
4. (4 points) Compute \(\lim_{x \to 0} \left(\frac{1}{e^x - 1} - \frac{1}{x} \right) \).

\[
= \lim_{x \to 0} \left(\frac{x}{(e^x - 1) x} - \frac{e^x - 1}{x (e^x - 1)} \right)
\]

\[
= \lim_{x \to 0} \left(\frac{x - e^x + 1}{x (e^x - 1)} \right) \quad \text{type } \frac{0}{0}
\]

\[
= \lim_{x \to 0} \left(\frac{1 - e^x}{e^x - 1 + xe^x} \right) \quad \text{by L'Hôpital's Rule}
\]

\[
= \lim_{x \to 0} \left(\frac{-e^x}{e^x + e^x + xe^x} \right) \quad \text{by L'Hôpital's Rule}
\]

\[
= \frac{-e^0}{e^0 + e^0 + 0e^0} = \frac{-1}{2}
\]
5. (4 points) Is the function \(f(x) \) continuous at \(x = 0 \)? Explain.

\[
f(x) = \begin{cases}
x^4 \sin \left(\frac{1}{x} \right) & x > 0 \\
e^{-x} - 1 & x \leq 0
\end{cases}
\]

- To be continuous at \(x = 0 \) means
 \[
 \lim_{x \to 0} f(x) \text{ exists}
 \]
 and
 \[
 f(0) = \lim_{x \to 0} f(x).
 \]

- \(f(0) = e^0 - 1 = 0 \).

- \(\lim_{x \to 0^{-}} f(x) = e^0 - 1 = 0 \).

- \(\lim_{x \to 0^{+}} f(x) = \lim_{x \to 0^{+}} x^4 \sin \left(\frac{1}{x} \right) \)

- \(-1 \leq \sin \left(\frac{1}{x} \right) \leq 1 \)

- \(-x^4 \leq x^4 \sin \left(\frac{1}{x} \right) \leq x^4 \)

and \(\lim_{x \to 0^{-}} (-x^4) = \lim_{x \to 0^{+}} x^4 = 0 \).

By the Squeeze Theorem, \(\lim_{x \to 0^{+}} x^4 \sin \left(\frac{1}{x} \right) = 0 \).

So \(f(x) \) is continuous at \(x = 0 \).

Since \(f(0) = \lim_{x \to 0} f(x) \).
6. (4 points) Find $f'(x)$ if

$$f(x) = (\cos x)(\ln(6x + 1)).$$

By the Product Rule,

$$f'(x) = (-\sin x)(\ln(6x + 1)) + \cos x \cdot \frac{d}{dx} \ln(6x + 1).$$

To find $\frac{d}{dx} \ln(6x + 1)$, use the chain rule with $u = 6x + 1$.

$$\frac{d}{dx} \ln(6x + 1) = \frac{d}{du} (\ln u) \cdot \frac{du}{dx} = \frac{1}{u} \cdot 6 = \frac{6}{6x + 1}$$

Finally,

$$f'(x) = (-\sin x)(\ln(6x + 1)) + \frac{6 \cos x}{6x + 1}.$$
7. (5 points) Find the tangent line of \(y = \frac{e^x}{x^{1/3} + 1} \) at \(x = 1 \).

Need to find \(\frac{dy}{dx} \) at \(x = 1 \). By the Quotient Rule,

\[
\frac{dy}{dx} = \frac{e^x \left(x^{1/3} + 1 \right) - e^x \left(\frac{1}{3} x^{-2/3} \right)}{(x^{1/3} + 1)^2}
\]

\[
\left. \frac{dy}{dx} \right|_{x=1} = \frac{e^1 (1+1) - e^1 \left(\frac{1}{3} \cdot 1 \right)}{(1+1)^2}
\]

\[
= \frac{2e - \frac{1}{3}e}{4} = \frac{5}{12}e
\]

So the slope of the tangent line is \(m = \frac{5}{12}e \).

The equation of the tangent line is

\[y = \frac{5}{12}e + b \]

We need to find \(b \):

At \(x = 1 \), \(y = \frac{e}{2} \). So,

\[
\frac{e}{2} = \frac{5}{12}e + b \Rightarrow b = \frac{1}{12}e
\]

\[y = \frac{5}{12}e \cdot x + \frac{1}{12}e \]
8. (5 points) Let \(f(x) = x - 2 \arctan x \). Find the absolute maximum and absolute minimum of \(f(x) \) on the interval \([0, 4]\).

Hint: \(\arctan(4) \) is about equal to 1.3.

\[
f'(x) = 1 - \frac{2}{1 + x^2}
\]

The critical points of \(f(x) \) occur at
\[
f'(x) = 0 \quad \text{(and where } f'(x) \text{ DNE, but } f'(x) \text{ exists everywhere)}
\]

\[
1 - \frac{2}{1 + x^2} = 0
\]

\[
1 + x^2 = 2
\]

\[
x^2 = 1
\]

\[
x = 1 \text{ or } x = -1.
\]

So the only critical point in the interval \([0, 4]\) is \(x = 1 \).

To find the absolute max and min values of \(f(x) \), evaluate \(f(x) \) at \(x = 1 \) and \(x = 0 \) and \(x = 4 \).

\[
x = 0: \quad f(0) = 0 - 2 \arctan(0) = 0
\]

\[
\leftarrow \text{MIN}
\]

\[
x = 1: \quad f(1) = 1 - 2 \arctan(1) = 1 - 2 \cdot \frac{\pi}{4} = 1 - \frac{\pi}{2} < 0
\]

\[
x = 4: \quad f(4) = 4 - 2 \arctan(4) \approx 4 - 2(1.3)
\]

\[
= 4 - 2.6 = 1.4 > 0. \quad \text{MAX}
\]
9. (4 points) A particle moves along the curve \(3x^2 + y^2 = 13\). At the point \((2, 1)\), the \(x\)-coordinate is increasing at a rate of 5 in/sec; in other words \(\frac{dx}{dt} = 5\) in/sec. Find the rate of change of the \(y\)-coordinate at the point \((2, 1)\).

Take the derivative with respect to \(t\) of the equation:

\[
\frac{d}{dt} (3x^2 + y^2) = \frac{d}{dt} (13)
\]

\[
6x \frac{dx}{dt} + 2y \frac{dy}{dt} = 0
\]

At \((2, 1)\), \(x = 2\), \(y = 1\), and \(\frac{dx}{dt} = 5\).

So:

\[
6(2) \cdot 5 + 2(1) \cdot \frac{dy}{dt} = 0
\]

\[
60 + 2 \frac{dy}{dt} = 0
\]

\[
\frac{dy}{dt} = -30 \text{ in/sec}
\]
10. (4 points) Evaluate the limit:

\[\lim_{n \to \infty} \sum_{i=1}^{n} 4e^{-2x_i} \Delta x, \]

where \(x_i = 1 + i \Delta x \) and \(\Delta x = \frac{3}{n} \).

Recall \(\int_{a}^{b} f(x) \, dx = \lim_{n \to \infty} \sum_{i=1}^{n} f(x_i) \Delta x \)

where \(x_i = a + i \Delta x \) and \(\Delta x = \frac{b-a}{n} \).

Here, \(a = 1 \), and \(b-a = 3 \Rightarrow b = 4 \).

\[\lim_{n \to \infty} \sum_{i=1}^{n} 4e^{-2x_i} \Delta x = \int_{1}^{4} 4e^{-2x} \, dx \]

Using a substitution \(u = -2x \), \(du = -2 \, dx \),

\[\int_{1}^{4} 4e^{-2x} \, dx = \int_{-2}^{-8} 4e^{u} \cdot \left(-\frac{1}{2} \right) \, du \]

\[= -\frac{1}{2} \cdot 4 \left. e^{u} \right|_{-2}^{-8} \]

\[= -2(e^{-8} - e^{-2}) \]

\[= 2(e^{-2} - e^{-8}) \]
11. (4 points) \[\int_0^1 \sqrt{1+7x} \, dx. \]

Use a substitution.

\[u = 1 + 7x \quad \text{with} \quad \begin{align*}
 x = 0 & \Rightarrow u = 1 \\
 x = 1 & \Rightarrow u = 8
\end{align*} \]

\[
\int_0^1 \sqrt{1+7x} \, dx = \int_1^8 u^{1/3} \frac{du}{7}
\]

\[
= \frac{1}{7} \cdot \frac{3}{4} u^{4/3} \bigg|_1^8
\]

\[
= \frac{3}{28} \left(8^{4/3} - 1^{4/3} \right)
\]

\[
= \frac{3}{28} \left(2^4 - 1 \right)
\]

\[
= \frac{45}{28}
\]
12. (4 points) \(\int_{-3}^{0} (1 + \sqrt{9 - x^2}) \, dx \). Hint: Interpret the integral as the area of a region.

\[
y = 1 + \sqrt{9 - x^2}
\]
is the equation for the top half of a circle of radius 3 with center (0,1).

\[
\int_{-3}^{0} 1 + \sqrt{9 - x^2} \, dx = \frac{9}{4} \pi + 3
\]

The area of the region that is \(\frac{1}{4} \) of a circle is \(\frac{1}{4} \pi \cdot 3^2 = \frac{9}{4} \pi \).

The area of the rectangle is \(3 \cdot 1 = 3 \).

Page 13
13. (5 points) Find $f''(\sqrt{\pi})$ if $f(x) = \int_0^{x^2} \cos t \, dt$

Let $u = x^2$.

$$f'(x) = \frac{d}{dx} \int_0^u \cos t \, dt$$

$$= \left(\frac{d}{du} \int_0^u \cos t \, dt \right) \frac{du}{dx}$$

(by the chain rule)

$$= \cos(u) \cdot 2x$$

(by FTC I)

$$= \cos(x^2) \cdot 2x$$

Plug in $x = \sqrt{\pi}$ to get:

$$f'(\sqrt{\pi}) = \cos(\pi) \cdot 2\sqrt{\pi}$$

$$= -2\sqrt{\pi}$$
14. (5 points) Find the indefinite integral \(\int \sec^2 x \tan^4 x \, dx \).

Let \(u = \tan x \).
\[
du = \sec^2 x \, dx.
\]

\[
\int \sec^2 x \tan^4 x \, dx = \int u^4 \sec^2 x \, dx
\]
\[
= \int u^4 \, du
\]
\[
= \frac{u^5}{5} + C
\]
\[
= \left(\tan x \right)^5 + C
\]
15. Consider the function
\[f(x) = \int_1^x (t^2 - 4t - 5) \, dt \]

(a) (3 points) Find the intervals on which \(f(x) \) is increasing or decreasing.

(b) (2 points) Find the intervals on which \(f(x) \) is concave up or concave down.

(a) \(f'(x) = x^2 - 4x - 5 \) by FTC I.

\[f'(x) = 0 \text{ when } 0 = x^2 - 4x - 5 \]
\[0 = (x - 5)(x + 1) \]

critical points: \(x = 5 \) or \(x = -1 \).

\[
\begin{array}{c|c|c}
(-\infty, -1) & (-1, 5) & (5, \infty) \\
\text{sign } f''(x) & + & - & + \\
f''(x) & \text{increase} & \text{decrease} & \text{increase} \\
\end{array}
\]

(b) \(f''(x) = 2x - 4 \)

\[f''(x) = 0 \text{ when } 2x - 4 = 0 \]
\[2x = 4 \]
\[x = 2 \]

\[
\begin{array}{c|c|c}
(-\infty, 2) & (2, \infty) \\
\text{sign } f''(x) & - & + \\
f''(x) & \text{concave down} & \text{concave up} \\
\end{array}
\]
16. A function \(f(t) \) satisfies \(f''(t) = t + 5 \) and \(f'(0) = 4 \).

(a) (2 points) Find \(f'(t) \).

(b) (3 points) Find \(\int_0^8 f'(t) \, dt \).

(a) The most general antiderivative of \(f''(t) \) is

\[
\int f''(t) \, dt = \int (t + 5) \, dt = \frac{t^2}{2} + 5t + C.
\]

So \(f'(t) = \frac{t^2}{2} + 5t + C \)

\[
f'(0) = \frac{0^2}{2} + 5 \cdot 0 + C = 4 \quad \Rightarrow \quad C = 4.
\]

\[
f'(t) = \frac{t^2}{2} + 5t + 4
\]

(b) \(\int_0^8 \frac{t^2}{2} + 5t + 4 \, dt \)

\[
= \frac{t^3}{6} + \frac{5t^2}{2} + 4t \bigg|_0^8
\]

\[
= \frac{8^3}{6} + \frac{5 \cdot 8^2}{2} + 4 \cdot 8 - 0
\]

\[
= \frac{512}{6} + \frac{320}{2} + 32 - 0
\]

\[
= \frac{832}{3} \quad \text{simplified}
\]

Unsimplified answer okay here.
17. (5 points) Find the area of the region enclosed by the curves $4x + y^2 = 12$ and $x = y$.

This is a parabola that opens sideways with vertex $(3, 0)$.

Points of Intersection:

\[4x + x^2 = 12\]
\[x^2 + 4x - 12 = 0\]
\[(x + 6)(x - 2) = 0\]
\[x = -6 \quad \text{or} \quad x = 2\]

\[y = -6 \quad \text{or} \quad y = 2\]

Area = \[
\int_{-6}^{2} \left(3 - \frac{y^2}{4} - y\right) dy
\]

\[= 3y - \frac{y^3}{12} - \frac{y^2}{2}\bigg|_{-6}^{2}
\]

\[= \left(3 \cdot 2 - \frac{2^3}{12} - \frac{2^2}{2}\right) - \left(3 \cdot (-6) - \frac{(-6)^3}{12} - \frac{(-6)^2}{2}\right)
\]

\[= \left(6 - \frac{8}{3} - 2\right) + (18 - 18 + 18) = 22 - \frac{2}{3} = \frac{64}{3}
\]