
DIAGRAMMATICS FOR EXT-ENHANCED SOERGEL

BIMODULES IN TYPE A1

SHOTARO MAKISUMI

Abstract. This unfinished note gives a diagrammatic presentation for the

monoidal category of “Ext-enhanced” Soergel bimodules in type A1.

1. Introduction

1.1. About this document. Most of this note was written in Fall 2018 while I
was preparing for the joint work [HM] with M. Hogancamp. Since that paper ended
up only using the GL2-realization, where most of the necessary calculations were
already available in [GH, §3.5], the generality explored in the present note was not
needed, and I never returned to it. I am making it available in that half-finished
state in 2022 only for ease of reference.

In its current state, this note was never meant to be seen by anyone beyond
interested collaborators. I have not always clearly defined the setup, terms, or
notation used. I expect that anyone who is interested in this material in the first
place will have the necessary background and context to be able to read this note,
but I apologize in advance for these omissions.

1.2. What is done here. Recall the usual setting of the theory of Soergel bi-
modules. Let h be a realization of a Coxeter system W , and let R = Sym(h∗)
be the symmetric algebra with the grading deg h∗ = 2. Then the associated cate-
gory of Soergel bimodules SBim(h,W ) is a full subcategory of the abelian category
R-gmod-R of graded R-bimodules.

Now, consider the bounded derived category Db(R-gmod-R), which is monoidal
under the derived tensor product ⊗LR. We view SBim(h,W ) as a full subcategory
of Db(R-gmod-R) of complexes supported in cohomological degree 0.

Definition 1.1. The category of Ext-enhanced Soergel bimodules SBimExt(h,W )
is the smallest strictly full monoidal additive subcategory of Db(R-gmod-R) con-
taining SBim and closed under [m], m ∈ Z.

In other words, objects of SBimExt(h,W ) are finite direct sums of objects of the
form B[m], where B is a Soergel bimodule and m ∈ Z. For two such objects,

HomSBimExt(h,W )(B[m], B′[m′]) = Extm
′−m

R-gmod-R(B,B′).

The goal of this document is to give a monoidal presentation for SBimExt(h,W )
in the case that W = S2, extending the monoidal presentation for SBim(h,W ) by
Elias–Khovanov.

As in Elias–Khovanov [EK], we will actually give a monoidal presentation for

a Bott–Samelson category BSBimExt(h,W ), whose morphism spaces are bigraded
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(by cohomological grading and bimodule grading), from which SBimExt(h,W ) can
be recovered up to equivalence in a formal way. For this Bott–Samelson category,
we need some care in handling the interaction between the cohomological grading
and the monoidal structure. In fact, BSBimExt(h,W ) will not be a monoidal cat-
egory, but rather “supermonoidal” in the cohomological grading. This is carefully
explained in §3.

Correspondingly, in §4, starting with an arbitrary realization (h,W ) of W =
S2 satisfying Demazure surjectivity, we will define DExt(h,W ) as a strict super-
monoidal category with an additional grading via a diagrammatic presentation.
Under certain assumptions, we will define a supermonoidal functor DExt(h,W )→
BSBimExt(h,W ) that is an equivalence when (h,W ) is a Soergel realization.

1.3. Motivation and relation to previous work. In the case of the GL2 real-
ization, the Ext-enhanced diagrammatic category was introduced in [HM] and used
to provide evidence for a triply-graded version of the so-called monoidal Koszul du-
ality. See the introduction to that paper for the motivation to study Ext-enhanced
Soergel bimodules. One may also speculate that this triply-graded Koszul duality
is connected to a duality for character sheaves.

1.4. Contents. §2 contains some algebraic preliminaries. In §3, we will assume in
addition that k is a field and study the algebraic category of Ext-enhanced Bott–
Samelson bimodules. In §4, we define a diagrammatic version of this category (now
for k a domain). In §5, we assume that k is a field, and we prove our main result,
that the diagrammatic category is equivalent to the bimodule category.

1.5. Acknowledgements. Initial computations for this work were done while the
author was in residence at the Mathematical Sciences Research Institute during
Spring 2018, supported by NSF grant DMS-1440140.

2. Algebraic preliminary

The following data will be fixed throughout this paper. Let (W,S) be a Coxeter
system. Let k be a domain [some arguments in this section currently assume that
k is a field], and let

h = (V, {α∨s }s∈S ⊂ V, {αs}s∈S ⊂ V ∗)
be a realization of (W,S) over k, in the sense of [EW]. We assume throughout that
h is balanced and satisfies Demazure surjectivity.

2.1. Some bigraded algebras and dgg modules. All our algebras and modules
will be bigraded with cohomological grading and Soergel grading. The shifts [1] and
(1) shift the cohomological grading and the Soergel grading, respectively, down by
1. It will be useful to introduce the combine shift J1K := [1](−2).

Define the following bigraded k-algebras.

R := Sym•(V ∗(−2)),

Λ := Λ•(V ∗J1K),

Λ∨ := Λ•(V J−1K).

We will frequently write Re = R⊗R.
Let s ∈ S. Define

(2.1) Λs := Λ•((V ∗)sJ1K) ↪→ Λ,
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and dually,

(2.2) Λ∨ � Λ∨s := Λ•((V/kα∨s )J−1K).

The inclusion (V ∗)s ↪→ V ∗ dualizes to the surjection V ∼= (V ∗)∗ � ((V ∗)s)∗

sending v 7→ 〈v,−〉|(V ∗)s . Since 〈α∨s ,−〉 is 0 on (V ∗)s, we obtain a canonical
isomorphism

(2.3) V/kα∨s
∼→ ((V ∗)s)∗.

2.2. Derivations on exterior algebras. See [AMRW, §3.3]. Define

(−) _́ (−) : V J−1K⊗ Λ→ Λ

by

v _́ (r1 ∧ · · · ∧ rk) =

k∑
i=1

(−1)i+1ri(v)r1 ∧ · · · ∧ r̂i ∧ · · · ∧ rk.

This induces

(2.4) (−) _́ (−) : Λ∨ ⊗ Λ→ Λ.

Similarly, define

(−) _́ (−) : Λ⊗ Λ∨ → Λ∨.

It is straightforward to check that

s(r) = r − αs ∧ (α∨s _́ r),(2.5)

s(x) = x− α∨s ∧ (αs _́ x).(2.6)

for all s ∈ S, r ∈ Λ, x ∈ Λ∨.

Lemma 2.1. Assume Demazure surjectivity. Then the map α∨s _́ (−) : Λ→ ΛJ1K
has kernel Λs and image ΛsJ1K.

Proof. Let ker and im be the kernel and the image. It follows from (2.5) that
Λs ⊂ ker. By Demazure surjectivity, there exists ρs ∈ V ∗ such that 〈α∨s , ρs〉 = 1.
If r ∈ Λs, then

α∨s _́ (ρs ∧ r) = 〈α∨s , ρs〉r − ρs ∧ (α∨s _́ r) = r.

Thus ΛsJ1K ⊂ im. Now,(
r

k

)
= dim ΛkV ∗ = dim(ker) + dim(im)

≥ dim Λk(V ∗)s + dim Λk−1(V ∗)s =

(
r − 1

k

)
+

(
r − 1

k − 1

)
=

(
r

k

)
,

so we must have equality throughout. Since k is a field, we are done. �

Thus we obtain a short exact sequence

(2.7) 0 Λs Λ ΛsJ1K 0.
α∨s _́(−)
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2.3. Demazure operators on exterior algebras. Let s ∈ S. Define the exterior
Demazure operator

∂s : Λ∨ → Λ∨s J−1K

as the composition

Λ∨
αs_́(−)−−−−−→ Λ∨J−1K � Λ∨s J−1K,

where the second arrow is the canonical surjection (2.2). Then ∂s is the unique
k-linear endomorphism of Λ∨ satisfying the following two properties:

∂s(v) = αs(v) for all v ∈ V,(2.8)

∂s(x ∧ y) = ∂s(x) ∧ y + (−1)|x|s(x) ∧ ∂s(y) for all x, y ∈ Λ∨.(2.9)

We refer to (2.9) as the twisted Leibniz rule. Uniqueness is clear, as is (2.8). For
(2.9), note that αs _́ (−) is a derivation hence satisfies the graded Leibniz rule, and
x− s(x) = 0 in the quotient Λ∨s by (2.6).

Remark 2.2. Recall that, if k is a field of characteristic not equal to 2, then the
classical Demazure (or divided difference) operator ∂s : R→ R(−2) may be defined
as1

(2.10) ∂s(f) =
f − s(f)

αs
.

Equation (2.6) says that the exterior Demazure operator may be thought of as
being given by a formula analogous to (2.10). Since α∨s ∧ (−) kills kα∨s , we should
only expect ∂s(x) to be defined modulo kα∨s .

Remark 2.3. There is no map ∂s : Λ∨ → Λ∨J−1K satisfying (2.8) and (2.9). Indeed,
these properties force

∂s(r1 ∧ · · · ∧ rk) =

k∑
i=1

(−1)i+1αs(ri)s(r1) ∧ · · · ∧ s(ri−1) ∧ r̂i ∧ ri+1 ∧ · · · ∧ rk,

for all k ≥ 1 and r1, . . . , rk ∈ V ∗, but already for k = 3, it is easy to check that the
right hand side is not alternating, so that ∂s is not well-defined.

The exterior Demazure operators will be used in the exterior forcing relation
(4.7).

Assume Demazure surjectivity, and choose ρ∨s such that αs(ρ
∨
s ) = 1.

Lemma 2.4. We have

Λ∨ = (Λ∨)s ⊕ (ρ∨s ∧ (Λ∨)s).

That is, any x ∈ Λ∨ can be uniquely written as

x = y + ρ∨s ∧ z,

where y, z ∈ (Λ∨)s.

Proof. Existence is clear because V = V s⊕kρ∨s . For uniqueness, observe that given
such an expression for x, we have z = αs _́ x and y = x− ρ∨s ∧ z. �

1See [EW, §3.3] for a definition in our generality (assuming only Demazure surjectivity).
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3. Ext-enhanced Soergel bimodules

Let k be a commutative ring. Throughout, undecorated tensor products are over
k. Let V be a free k-module of finite rank. Let V ∗ = Homk(V,k), and

R = Symk(V ∗)

graded with deg V ∗ = 2.
Let R-gmod-R be the category of graded R-bimodules and R-bimodule maps of

degree 0.

3.1. Complexes of graded R-bimodules. We view a complex in R-gmod-R as
a pair (M,dM ), where M and dM are equipped with a Z-grading

M =
⊕
i

M j , dM =
⊕
j

djM : M →M,

and each M j is a graded R-bimodule, and djM : M j → M j+1 is an R-bimodule
map of degree 0. For m ∈M j , we write |m| = j and say that m is homogeneous of
cohomological degree j.

Given two complexes M,N in R-gmod-R, define the bigraded k-module

Hom(M,N) =
⊕
i,j

Homi,j(M,N) =
⊕
i,j

∏
p

HomR-gmod-R(Mp, Np+j(i)).

If f ∈ Homi,j(M,N), we write deg f = (i, j) and say that f is homogeneous of
degree (i, j). We also write |f | = j and say that f has cohomological degree j.
Equip Hom(M,N) with the differential dHom(M,N) of degree (0, 1) by

dHom(M,N)(f) = dM ◦ f − (−1)|f |f ◦ dN .

It can be checked that dHom(M,N) ◦ dHom(M,N) = 0. Define the total cohomology

Hom(M,N) = H•,•(Hom(M,N), dHom(M,N)).

Given three complexes L,M,N in R-gmod-R, define the bigraded composition

(3.1) − ◦ − : Hom(M,N)⊗Hom(L,M)→ Hom(L,N)

in the obvious way (involving no sign). This composition is associative in the
obvious sense. Moreover, for f ∈ Hom(M,N) and g ∈ Hom(L,M), one checks
directly that

(3.2) d(f ◦ g) = d(f) ◦ g + (−1)|f |f ◦ d(g).

It follows from (3.2) that the composition (3.1) induces a bigraded associative com-
position on total cohomology:

(3.3) − ◦ − : Hom(M,N)⊗Hom(L,M)→ Hom(L,N).

Definition 3.1. The category Kb,bigr(R-gmod-R) is defined as follows. Its objects
are bounded complexes in R-gmod-R, i.e. complexes M in R-gmod-R such that
M i = 0 for all but finitely many i. Given two bounded complexes, the morphism
space is the bigraded total cohomology with composition the induced composition
(3.3).

Note thatKb(R-gmod-R) can be identified with the subcategory ofKb,bigr(R-gmod-R)
consisting of morphisms of degree (0, 0).
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3.2. Complexes of projective modules. The category R-gmod-R is abelian.
Let Proj(R-gmod-R) be the full subcategory of projective objects. Then the natural
functor

(3.4) Kb(R-gmod-R)
∼→ Db(R-gmod-R)

is a triangulated equivalence.
Let Kb,bigr(Proj(R-gmod-R)) be the full subcategory of Kb,bigr(R-gmod-R) con-

sisting of complexes in Proj(R-gmod-R). The subcategory ofKb,bigr(Proj(R-gmod-R))
of degree (0, 0) morphisms can be identified with Kb(Proj(R-gmod-R)).

Let B1, B2 be in R-gmod-R, and fix projective resolutions εi : Ki → Bi, i ∈
{1, 2}. We may view Bi as a complex supported in cohomological degree 0, and εi
as chain maps in Hom0,0(Ki, Bi).

Consider a morphism fbim : B1 → B2(i) in R-gmod-R, where i ∈ Z. By the gen-

eral theory of projective resolutions, there exists a chain map f̃ in Homi,0(K1,K2)
lifting fbim. That is, viewing fbim as an element of Homi,0(B1, B2), we have

(3.5) ε2 ◦ f̃ = fbim ◦ ε1 ∈ Homi,0(K1, B2).

Moreover, all such f̃ are homotopic, hence induce a well-defined morphism f :
K1 → K2 in Kb,bigr(Proj(R-gmod-R)) of degree (i, 0).

3.3. Monoidal structure on complexes. Given two complexesM,M ′ inR-gmod-R,
define the tensor product complex (M ⊗R N, dM⊗RN ) by

(M⊗RN)i =
⊕
i=p+q

(Mp⊗Nq), dM⊗RN (m⊗n) = dM (m)⊗n+(−1)mm⊗dN (n).

Let M,M ′, N,N ′ be complexes in R-gmod-R, and let f ∈ Hom(M,M ′) and h ∈
Hom(N,N ′). Define the bigraded tensor product

(3.6) −⊗− : Hom(M,M ′)⊗Hom(N,N ′)→ Hom(M ⊗R N,M ′ ⊗R N ′)
by

(f ⊗ h)(m⊗ n) = (−1)|h||m|f(m)⊗ h(n).

One checks directly that

(3.7) d(f ⊗ h) = d(f)⊗ h+ (−1)|f |f ⊗ d(h).

It follows from (3.7) that the tensor product (3.6) induces a bigraded tensor product
on total cohomology:

(3.8) −⊗− : Hom(M,M ′)⊗Hom(N,N ′)→ Hom(M ⊗R N,M ′ ⊗R N ′).
Let L,L′,M,M ′, N,N ′ be complexes in R-gmod-R, and let f ∈ Hom(M,N),

g ∈ Hom(L,M), h ∈ Hom(M ′, N ′), k ∈ Hom(L′,M ′). One may directly check the
following “super” interchange law:

(3.9) (f ⊗ h) ◦ (g ⊗ k) = (−1)|h||g|(f ◦ g)⊗ (h ◦ k).

Passing to total cohomology, (3.9) continues to hold for the induced composition
(3.3) and tensor (3.8).

Recall that a monoidal category (C,⊗,1, α, λ, ρ) is a category C together with
a bifunctor − ⊗ − : C × C → C, identity object 1, and associator α and unitors
λ, ρ satisfying certain axioms. Part of the bifunctoriality of ⊗ is the statement that
morphisms in C satisfy the interchange law

(f ⊗ h) ◦ (g ⊗ k) = (f ◦ g)⊗ (h ◦ k).
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On Kb,bigr(R-gmod-R), we have an operation ⊗R given on objects by ⊗R and
on morphisms by the induced tensor (3.8). Let 1 = R, viewed as a complex
concentrated in cohomological degree 0. Natural isomorphisms α and λ, ρ can also
be defined in the usual way. However, because of the sign in the super interchange
law (3.9), these structures make Kb,bigr(R-gmod-R) into not a monoidal category,
but rather a structure that we call a supermonoidal category with an additional
grading. That is, the morphisms spaces are bigraded, and morphisms satisfy the
super interchange law for the first grading, as in (3.9). Moreover, there is an identity
object 1 and associator α and unitors λ, ρ satisfy certain natural axioms we will
not write down.

3.4. Monoidal structure on complexes of projectives. To give a similar super
monoidal structure on Kb,bigr(Proj(R-gmod-R)), the monoidal identity R needs to
be replaced by a projective resolution.

Define the complex K∅ by

(3.10) K∅ := ΛJ1K⊗Re

as a bigraded k-module and with differential determined by

d(r ⊗ (1⊗ 1)) = 1⊗ (r ⊗ 1− 1⊗ r) for all r ∈ V ∗J1K.

and the graded Leibniz rule (as usual with Koszul sign rule using the cohomological
degree). Concretely,

d((r1∧· · ·∧rk)⊗f1⊗f2) =

k∑
i=1

(−1)i+1(r1∧· · ·∧ r̂i∧· · · rk)⊗ (rif1⊗f2−f1⊗rif2)

for r1, . . . , rk ∈ V ∗J1K and f1, f2 ∈ R. In fact, this makes K∅ into a dgga (a
dga with an additional grading). This is just the Koszul resolution written in a
basis-free way. In particular, the natural quotient map

εK∅ : K∅
∼→ R

is a quasi-isomorphism.
For any complex M in Proj(R-gmod-R), define degree (0, 0) chain maps

λ̃M : K∅ ⊗RM
εK∅⊗idM

−−−−−−→ R⊗RM
mult−−−→M,(3.11)

ρ̃M : M ⊗R K∅
idM⊗εK∅−−−−−−→M ⊗R R

mult−−−→M,(3.12)

where mult is multiplication, and let λM , ρM be the induced maps on total coho-
mology. Since εK∅ is a quasi-isomorphism, the equivalence (3.4) shows that λM , ρM
are isomorphisms in Kb(Proj(R-gmod-R)), hence also in Kb,bigr(Proj(R-gmod-R)).
Since λM , ρM are functorial in M , they define natural isomorphisms K∅ ⊗R − ∼=
id ∼= − ⊗R K∅ of functors in Kb,bigr(Proj(R-gmod-R)). Together with the obvi-
ous associator isomorphism, one checks that Kb,bigr(Proj(R-gmod-R)) becomes a
supermonoidal category with an additional grading, with identity object K∅.

FINISH By fixing a projective resolution for each M ∈ Db(R-gmod-R), this gives
a monoidal structure on Db(R-gmod-R) extending that on R-gmod-R. The unitors
for R-gmod-R are the natural isomorphisms

(3.13) λbim
B : R⊗R B

∼→ B, ρbim
B : B ⊗R R

∼→ B
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given by multiplication. By the general consideration in §3.2, we obtain natural
isomorphisms

(3.14) λK : K∅ ⊗R K → K, ρK : K ⊗R K∅ → K

of degree (0, 0) for every projective resolution K.

3.5. Bott–Samelson complexes. For the rest of this section, return to the set-up
of §2. Let BSBim(h,W ) (resp. SBim(h,W )) be the associated category of Bott–
Samelson (resp. Soergel) bimodules. We assume further that SBim(h,W ) satisfies
the Soergel categorification theorem.

We have already defined a canonical resolution εK∅ : K∅ → R in (3.10). Fix
s ∈ S. By Demazure surjectivity, we may choose an element ρs ∈ V ∗ satisfying
〈α∨s , ρs〉 = 1. We will now define a resolution εKs : Ks → Bs that is canonical once
we fix this choice of ρs. We need the following preliminary lemma.

Lemma 3.2. The ring of s-invariants Rs is generated as a k-algebra by (V ∗)s and
ρss(ρs).

Proof. It is easy to see that V = (V ∗)s ⊕ kρs, so

R = Sym•(V ∗) = Sym•((V ∗)s)[ρs].

Given such a polynomial in ρs, we can repeatedly use the identity

ρ2
s = ρs(ρs + s(ρs))− ρss(ρs),

where ρs + s(ρs) ∈ (V ∗)s, to replace it with a polynomial in ρs of degree at most
1. Hence

R = k〈(V ∗)s, ρss(ρs)〉+ ρs · k〈(V ∗)s, ρss(ρs)〉.
Using this equality together with the containment k〈(V ∗)s, ρss(ρs)〉 ⊂ Rs, one
quickly sees that k〈(V ∗)s, ρss(ρs)〉 = Rs. �

It follows that the kernel of the structure map R⊗R(1) � Bs is the ideal

({r ⊗ 1− 1⊗ r}r∈(V ∗)s , ρss(ρs)⊗ 1− 1⊗ ρss(ρs)).
Moreover, if we choose a k-basis e1, . . . , er−1 of (V ∗)s, then

(e1 ⊗ 1− 1⊗ e1, . . . , er−1 ⊗ 1− 1⊗ er−1, ρss(ρs)⊗ 1− 1⊗ ρss(ρs))
is a regular sequence in R⊗R. Hence the associated Koszul complex is a resolution
of Bs as a graded R⊗R-module.

To express this more canonically, let

(3.15) ξs = ρss(ρs)⊗ 1− 1⊗ ρss(ρs),
and define

(3.16) Ks := Λ•
(
(V ∗)sJ1K⊕ kξsJ1K(−2)

)
⊗Re(1),

with differential determined by

d(r ⊗ 1⊗ 1) = 1⊗ (r ⊗ 1− 1⊗ r) for all r ∈ (V ∗)sJ1K⊕ kξsJ1K(−2)

and the graded Leibniz rule.
Given an expression (s1, . . . , sm), the corresponding Bott–Samelson complex is

the complex
BSExt(s1, . . . , sm) := Ks1 ⊗R · · · ⊗R Ksm .

By convention, BSExt(∅) := K∅.
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Definition 3.3. The category BSBimExt(h,W ) is the full subcategory ofKb,bigr(Proj(R-gmod-R))
consisting of complexes isomorphic to Bott–Samelson complexes. This is a full su-
permonoidal subcategory of Kb,bigr(Proj(R-gmod-R)).

3.6. Ext-enhanced Soergel bimodules. FINISH: explain how to recover SBimExt(h,W )

from BSBimExt(h,W ). This involves three steps:

(1) view BSBimExt(h,W ) instead as a monoidal category with two compatible
grading shifts. (this involves adding signs carefully to define the tensor
product so that you get a genuine monoidal category)

(2) take additive envelope
(3) take Karoubi envelope

Let (C,⊗,1, α, λ, ρ) be a supermonoidal category. Define a category Csh as fol-
lows. The objects of Csh are formal shifts X[i], where X is an object of C and i ∈ Z.
Given two objects X[n] and X ′[n′], define

HomCsh(X[n], X ′[n′]) := Homn′−n
C (X,X),

and write (f)n
′

n for the morphism corresponding to a degree n′ − n morphism f in
C. Composition in Csh is induced from C in the obvious way (involving no sign).

Next, we define ⊗ on Csh. On objects,

X[n]⊗ Y [m] := X ⊗ Y [n+m].

On morphisms,

(f)ba ⊗ (g)dc := (−1)a|g|(f ⊗ g)b+da+c

(coming from the Koszul sign rule (f ⊗g)(x⊗y) = (−1)|g||x|f(x)⊗g(y)). One then
checks that ⊗ satisfies the interchange law, without any sign.

3.7. Some morphisms and relations in BSBimExt(h,W ). In preparation for

the diagrammatics, we will define some morphisms in SBimExt(h,W ) and find some
relations between them.

3.7.1. Ordinary generating morphisms. Consider the graded bimodule homomor-
phisms

εbim
s : Bs → R(1), f ⊗ g 7→ fg

ηbim
s : R→ Bs(1), f 7→ f ·∆

mbim
s : Bs ⊗R Bs → Bs(−1), f ⊗ g ⊗ h 7→ ∂s(g) · f ⊗ h

cbim
s : Bs → Bs ⊗R Bs(−1), f ⊗ g 7→ f ⊗ 1⊗ g

m(f)bim : R→ R(deg f), g 7→ fg, for f ∈ R homogeneous.

Here,

(3.17) ∆ = ρs ⊗ 1− 1⊗ s(ρs) ∈ Bs

is the canonical product-coproduct element coming from a Frobenius extension
structure on Rs ⊂ R. The morphisms above are part of the generating morphisms
of BSBim(h,W ) in the diagrammatic presentations of Elias–Khovanov–Williamson,
and in fact are all of them for W = S2.
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By the general consideration in §3.2, we obtain corresponding morphisms in
BSBimExt(h,W ):

εs : Ks → K∅(1),

ηs : K∅ → Ks(1),

ms : Ks ⊗R Ks → Ks(−1),

cs : Ks → Ks ⊗R Ks(−1),

mf : K∅ → K∅(deg f),

Moreover, since the cohomological degree 0 part of BSBimExt(h,W ) is monoidally
equivalent to BSBim(h,W ), these morphisms satisfy all the relations satisfied by
corresponding bimodule homomorphisms.

It is of course possible to choose explicit chain maps representing each of the
morphisms in BSBimExt(h,W ) above, but we will only do this as necessary. For
now, let us define a chain map

(3.18) ε̃s ∈ Hom1,0(Ks,K∅)

representing εs.
First, recall that both Ks(−1) and K∅ are dgga, and define a chain map

ε̃ ′s ∈ Hom0,0(Ks(−1),K∅)

by

ε̃ ′s(r ⊗ (1⊗ 1)) = r ⊗ (1⊗ 1),

ε̃ ′s(ξs ⊗ (1⊗ 1)) = ρs ⊗ (s(ρs)⊗ 1) + s(ρs)⊗ (1⊗ ρs),

and extending multiplicatively. Then to check that ε̃ ′s is a chain map, it suffices to
check it on these multiplicative generators. This is clear for r ⊗ (1⊗ 1), and

d(ε̃ ′s(ξs)) = ρss(ρs)⊗ 1− 1⊗ ρss(ρs) = ε̃ ′s(d(ξs)).

Now, the chain map ε̃s is defined to be the image of the chain map ε̃ ′s under the
obvious identification (involving no sign)

Hom0,0(Ks(−1),K∅)
∼→ Hom1,0(Ks,K∅).

Moreover, it is clear from the definition that ε̃s represents εs.

3.7.2. Endomorphisms of K∅. The derivation (2.4) induces a chain map Λ∨⊗K∅ →
K∅. Let

ι̃ : Λ∨ → End(K∅)

be the associated bigraded k-algebra map, and let ιx be the class of the chain map
ι̃x = x _́ (−).

Lemma 3.4. The bigraded k-algebra map

RExt → End(K∅)

determined by

f ⊗ x 7→ mf ◦ ιx = ιx ◦mf

is an isomorphism.

Proof. FINISH �



DIAGRAMMATICS FOR EXT-ENHANCED SOERGEL BIMODULES IN TYPE A1 11

This makes every morphism space in Kb,bigr(Proj(R-gmod-R)) into a bigraded
(R⊗ Λ∨)-bimodule. Concretely, given f ⊗ x ∈ R⊗ Λ∨ and g : K1 → K2, we have

(f ⊗ x) · g = ρK2
◦ ((mf ◦ ιx)⊗ g) ◦ ρ−1

K1
,(3.19)

g · (f ⊗ x) = λK2
◦ (g ⊗ (mf ◦ ιx)) ◦ λ−1

K1
.(3.20)

3.7.3. Monoidal structure. Recall that the exterior algebra Λ is naturally a Hopf
algebra. In particular, there is a multiplicative comultiplication ∆ : Λ → Λ ⊗ Λ
determined by ∆(r) = r ⊗ 1 + 1 ⊗ r for r ∈ V ∗ ⊂ Λ. Extending Re-linearly, we
obtain a multiplicative map ∆K∅ ∈ Hom0,0(K∅,K∅ ⊗K∅).

We claim that ∆K∅ is a chain map:

(3.21) ∆K∅ ◦ dK∅ = dK∅⊗K∅ ◦∆K∅ .

Indeed, since K∅ and K∅⊗K∅ are both dgga and ∆K∅ is multiplicative, it suffices
to check (3.21) on r ⊗ (1⊗ 1) for r ∈ V ∗ ⊂ Λ, where it is easy.

Next, we define a chain map

(3.22) τ̃s ∈ Hom0,0(Ks,K∅ ⊗R Ks)

representing the morphism λ−1
Ks

, where λ is the left unitor (see (3.14)). To do this,
note that Ks(−1) is also a dgga, so K∅ ⊗R Ks(−1) is also a dgga, and first define
an element

τ̃ ′s ∈ Hom0,0(Ks(−1),K∅ ⊗R Ks(−1))

by

τ̃ ′s(r ⊗ (1⊗ 1)) = [r ⊗ (1⊗ 1)]⊗ [1] + [1]⊗ [r ⊗ (1⊗ 1)] for r ∈ (V ∗)s ⊂ Λ,

τ̃ ′s(ξs ⊗ (1⊗ 1)) = [ρs ⊗ (s(ρs)⊗ 1) + s(ρs)⊗ (1⊗ ρs)]⊗ [1] + [1]⊗ [ξs ⊗ (1⊗ 1)]

and extending multiplicatively. (This is possible because the comultiplication ∆
on Λ restricts to one on Λs.) As with ∆K∅ , we can show by checking on these
multiplicative generators that τ̃ ′s is a chain map. The only new computation is for
ξs:

d(τ̃ ′s(ξs)) = [ρss(ρs)⊗ 1− 1⊗ ρss(ρs)]⊗ [1] + [1]⊗ [ρss(ρs)⊗ 1− 1⊗ ρss(ρs)]
= [ρss(ρs)⊗ 1]⊗ [1]− [1]⊗ [1⊗ ρss(ρs)]

= τ̃ ′s(ρss(ρs)⊗ 1− 1⊗ ρss(ρs)) = τ̃ ′s(d(ξs)).

Thus τ̃ ′s is a chain map. Now, we let τ̃s be the image of τ̃ ′s under the obvious
identification (involving no sign)

Hom0,0(Ks(−1),K∅ ⊗R Ks(−1))
∼→ Hom0,0(Ks,K∅ ⊗R Ks).

Clearly
(εK∅ ⊗ εKs) ◦ τ̃s = (λbim

Bs
)−1 ◦ εKs ,

so τ̃s represents λ−1
Ks

, as claimed.
One may similarly define a chain map

(3.23) σ̃s ∈ Hom0,0(Ks,Ks ⊗R K∅)

representing ρ−1
Ks

as the image of σ̃′s ∈ Hom0,0(Ks(−1),Ks(−1)⊗R K∅) defined by

σ̃′s(r ⊗ (1⊗ 1)) = [r ⊗ (1⊗ 1)]⊗ [1] + [1]⊗ [r ⊗ (1⊗ 1)] for r ∈ (V ∗)s ⊂ Λ,

σ̃′s(ξs ⊗ (1⊗ 1)) = [ξs ⊗ (1⊗ 1)]⊗ [1] + [1]⊗ [ρs ⊗ (s(ρs)⊗ 1) + s(ρs)⊗ (1⊗ ρs)],
and extending multiplicatively.
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3.7.4. The morphism φs. Extend the canonical isomorphism (2.3) to

(3.24) ((V ∗)s ⊕ kξs)∗ = (V/kα∨s )⊕ kξ∨s

by letting any element of V/kα∨s act as 0 on ξs, and by setting ξ∨s ((V ∗)s) = 0 and
ξ∨s (ξs) = 1. It follows that

Hom(Ks, Bs) = Hom
(
Λ•
(
(V ∗)sJ1K⊕ kξs(−2)J1K

)
⊗Re(1), Bs

)
∼= Bs(−1)⊗ Λ•

(
(V/kα∨s )J−1K⊕ kξ∨s (2)J−1K

)
as bigraded k-modules. Moreover, dHom(Ks,Bs) = 0, so the total cohomology is the
same. We deduce that

dimk Hom−2,1(Ks, Bs) = 1.

Since

(3.25) εKs
◦ − : HomKb(Ks,Ks[i](j))→ HomKb(Ks, Bs[i](j))

is an isomorphism for any (i, j) ∈ Z2, it follows that

dimHom−2,1(Ks,Ks) = 1

as well.
For degree reasons, any chain map f ∈ Hom−2,1(Ks, Bs) sends f((Ks)

i) = 0 if
i 6= −1, f((V ∗)s ⊗Re) = 0, and f(ξs) = a(1⊗ 1) for some a ∈ k.

Since Ks is a Koszul resolution, there is a chain map

(3.26) φ̃s = −ξ∨s _ (−) ∈ Hom−2,1(Ks,Ks).

Let

(3.27) φs ∈ Hom−2,1(Ks,Ks)

be the induced map on total cohomology. Since (εKs◦φ̃s)(ξs) = −1⊗1, the following
lemma is immediate from the discussion above.

Lemma 3.5. Let f ∈ Hom−2,1(Ks,Ks). Then f = −aφs, where a ∈ k is deter-

mined by (εKs
◦ f̃)(ξs) = a(1⊗ 1) for any chain map f̃ representing f .

Remark 3.6. The minus sign in the definition of φs is chosen so that the Hochschild
barbell relation (4.4) involves α∨s rather than −α∨s .

3.7.5. The morphism ηExt
s . Since Ks is also a Koszul resolution, we may define

chain maps in End(Ks) by contraction, as in §3.7.2. Define the chain map

(3.28) η̃Ext
s = α∨s _́ (−) ∈ Hom−1,1(K∅,Ks).

Here, we use the isomorphism (3.24), so η̃Ext
s kills ξs. Let

(3.29) ηExt
s ∈ Hom−1,1(K∅,Ks)

be the induced morphism.

Lemma 3.7. We have

(3.30) ms ◦ (ηExt
s ⊗ idKs

) ◦ λ−1
Ks

= φs = ms ◦ (idKs
⊗ ηExt

s ) ◦ ρ−1
Ks
.
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Proof. We prove the first equality using Lemma 3.5 and the chain map τ̃ defined in
(3.22); the second equality is similar, but using the chain map σ̃ defined in (3.23).

Arbitrary choose a chain map m̃s representing ms, and consider the chain map

m̃s ◦ (η̃Ext
s ⊗ idKs

) ◦ τ̃s ∈ Hom−2,1(Ks,Ks)

representing ms ◦ (ηExt
s ⊗ idKs

) ◦ λ−1
Ks

. By (3.5), we have

εKs
◦ m̃s ◦ (η̃Ext

s ⊗ idKs
) ◦ τ̃s = mbim

s ◦ (εKs
⊗ εKs

) ◦ (η̃Ext
s ⊗ idKs

) ◦ τ̃s.

We can now explicitly compute the effect of the last expression on ξs, step by step:

ξs
τ̃s7−→ [ρ⊗ (s(ρ)⊗ 1) + s(ρ)⊗ (1⊗ ρ)]⊗ [1] + [1]⊗ [ξs ⊗ (1⊗ 1)]

η̃Ext
s ⊗idKs7−→ [s(ρ)⊗ 1− 1⊗ ρ]⊗ [1]

εKs⊗εKs7−→ s(ρ)⊗ 1⊗ 1− 1⊗ ρ⊗ 1
mbim

s7−→ −1.

Hence the first equality follows from Lemma 3.5. �

Lemma 3.8. We have

ηExt
s = φs ◦ ηs.

Proof. This follows from the following chain of equalities:

φs ◦ ηs = ms ◦ (ηExt
s ⊗ idKs

) ◦ λ−1
Ks
◦ ηs

= ms ◦ (ηExt
s ⊗ idKs) ◦ (idK∅ ⊗ ηs) ◦ λ−1

K∅

= ms ◦ (idKs ⊗ ηs) ◦ (ηExt
s ⊗ idK∅) ◦ λ−1

K∅

= ms ◦ (idKs
⊗ ηs) ◦ ρ−1

Ks
◦ ρKs

◦ (ηExt
s ⊗ idK∅) ◦ λ−1

K∅

= ms ◦ (idKs
⊗ ηs) ◦ ρ−1

Ks
◦ ηExt

s ◦ ρK∅ ◦ λ−1
K∅

= ηExt
s .

The first equality follows from Lemma 3.7. The third equality follows from the
interchange law. The second and fifth equalities follow from the naturality of λ−1

and ρ, respectively. The last equality follows from the corresponding relations in
R-gmod-R. �

Remark 3.9. The proof of Lemma 3.8 above is best understood diagrammatically:

= = = = = .

3.7.6. Exterior forcing relation.

Lemma 3.10. For any x ∈ V J−1K ⊂ Λ∨, we have

(3.31) idKs
· x− s(x) · idKs

= αs(x)(ηExt
s ◦ εs)

in End0,1(Ks).

Proof. Because of the isomorphism (3.25), it suffices to show (3.31) after post-
composing with εKs

, i.e. show that

(3.32) εKs
◦ (idKs

· x− s(x) · idKs
) = αs(x)(εKs

◦ ηExt
s ◦ εs)
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in Hom0,1(Ks, Bs). By the definition of the (R ⊗ Λ∨)-bimodule structure (3.19),
the left hand side of (3.32) can be represented by the chain map

(3.33) εKs
◦ (ρ̃Ks

◦ (idKs
⊗ ι̃x) ◦ σ̃s − λ̃Ks

◦ (ι̃s(x) ⊗ idKs
) ◦ τ̃s).

The right hand side of (3.32) can be represented by the chain map

(3.34) αs(x)(εKs
◦ η̃Ext

s ◦ ε̃s).
In fact, we will show by an explicit calculation that (3.33) and (3.34) are already
equal as chain maps. Since any element in Hom0,1(Ks, Bs) is automatically zero
outside (Ks)

−1, we only need to understand what happens to (V ∗)sf ⊗ (1⊗ 1) and
to ξs ⊗ (1⊗ 1).

From the explicit description of the chain maps ε̃s (3.18) and η̃Ext
s (3.28), we see

that (3.34) kills (V ∗)s ⊗ (1⊗ 1) and sends ξs to αs(x)(s(ρs)⊗ 1− 1⊗ ρs).
For (3.33), we compute using the explicit descriptions of τ̃s (3.22) and σ̃s (3.23).

For r ∈ (V ∗)s, we have

r
τ̃s7−→ [r]⊗ [1] + [1]⊗ [r]

ι̃s(x)⊗idKs7−→ 〈s(x), r〉 λ̃Ks7−→ 〈s(x), r〉,

r
σ̃s7−→ [r]⊗ [1] + [1]⊗ [r]

idKs⊗ι̃x7−→ 〈x, r〉[1]⊗ [1]
ρ̃Ks7−→ 〈x, r〉,

and 〈s(x), r〉 = 〈x, s(r)〉 = 〈x, r〉. Moreover,

ξs
τ̃s7−→ [ρs ⊗ (s(ρs)⊗ 1) + s(ρs)⊗ (1⊗ ρs)]⊗ [1] + [1]⊗ [ξs]

ι̃s(x)⊗idKs7−→ [〈x, s(ρs)〉s(ρs)⊗ 1 + 〈x, ρs〉1⊗ ρs]⊗ [1]

λ̃Ks7−→ 〈x, s(ρs)〉s(ρs)⊗ 1 + 〈x, ρs〉1⊗ ρs
and

ξs
σ̃s7−→ [ρs ⊗ (s(ρs)⊗ 1) + s(ρs)⊗ (1⊗ ρs)]⊗ [1] + [1]⊗ [ξs]

idKs⊗ι̃x7−→ [〈x, ρs〉s(ρs)⊗ 1 + 〈x, s(ρs)〉1⊗ ρs]⊗ [1]

ρ̃Ks7−→ 〈x, ρs〉s(ρs)⊗ 1 + 〈x, s(ρs)〉1⊗ ρs.

It follows that (3.33) also kills (V ∗)s ⊗ (1⊗ 1) and sends ξs to

〈x, ρs − s(ρs)〉s(ρs)⊗ 1 + 〈x, s(ρs)− ρs〉1⊗ ρs = αs(x)(s(ρs)⊗ 1− 1⊗ ρs).
This completes the proof. �

Remark 3.11. For the GL2-realization h, many of the relations between morphisms
in BSBimExt(h, S2) are already in [GH, §3.5]. The correspondence between the
notation for morphisms in this paper and that of [GH] is as follows:

ηs = b∗, εs = b, ηExt
s = ω∗, εExt

s = ω, φs = −ιϕ2
.

4. Diagrammatics

4.1. Definition of the digrammatic category.

Definition 4.1. The Ext-enhanced Elias–Williamson diagrammatic category asso-
ciated to the realization h of W = W (A1), denoted by

DExt(h,W ),
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is the strict k-linear supermonoidal category with an additional grading defined by
the diagrammatic presentation below.

More precisely, morphisms spaces of DExt(h,W ) are bigraded k-modules. We
write deg f = (m,n) to mean that a morphism f is homogeneous of bidegree (m,n),
or cohomological degree m and Soergel degree n. If a morphism f is homogeneous,
we also denote its cohomological degree by |f |. The category DExt(h,W ) is super-
monoidal for the cohomological grading. That is, there is a tensor product operation
⊗ and an identity object satisfying the axioms of a strict monoidal category, except
that ⊗ is not bifunctorial on morphisms, but rather satisfy the super exchange law
for the cohomological grading:

(h⊗ k) ◦ (f ⊗ g) = (−1)|k||f |(h ◦ f)⊗ (k ◦ g)

for homogeneous h, k.

4.1.1. Objects. The objects of DExt(h,W ) are the same as those of the ordinary
Elias–Williason diagrammatic category D(h,W ): they are indexed by expressions,
i.e. words in S = {s}, and the object corresponding w is denoted by Bw. In other

words, the objects of DExt(h,W ) are

B∅, Bs, B(s,s), B(s,s,s), · · · .

4.1.2. Morphisms. The Elias–Khovanov diagrammatic category is a k-linear strict
monoidal category described by the well-known string diagrams, where each dia-
gram represents a morphism from its bottom boundary to its top boundary, and
the monoidal structure and composition correspond, respectively, to horizontal and
vertical stacking of diagrams.

The string diagrammatics can be adapted to our setting of a supermonoidal
category with an additional grading as follows. A diagram is to be interpreted by
composing horizontally and then vertically, so that

f

g

h

k
= (f ⊗ h) ◦ (g ⊗ k).

Then the super interchange law follows from the following more basic interchange
law:

f g =
f

g
= (−1)|f ||g|

f

g

As in the Elias–Khovanov category, the morphisms in DExt(h,W ) are specified
by a set of generating morphisms. Each generating morphism in D(h,W ) of degree
m is also a generating morphism in DExt(h,W ) of bidegree (m, 0).

generator f

bidegree (1, 0) (1, 0) (−1, 0) (−1, 0) (deg f, 0)
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Here, f is a homogeneous element in R. In addition, DExt(h,W ) has the following
“Hochschild generators”:

generator x

bidegree (−2, 1) deg x
name (bivalent) Hochschild dot exterior box

Here, x is a homogeneous element in Λ∨, and deg x denotes its bidegree. For
example, x ∈ V ⊂ Λ∨ has bidegree (0, 1).

In other words, a general morphism Bw → Bv in DExt(h,W ) is represented by a
k-linear combination of planar diagrams, where each diagram has bottom boundary
w, top boundary v, and is made up of local pieces given by the generating morphisms
above.

We also define the following “univalent Hochschild dots” as shorthands:

(4.1) := , := .

4.1.3. Relations. The morphisms of DExt(h,W ) satisfy the defining relations of
D(h,W ), plus the following additional relations:

(1) Hochschild dot slides past trivalent vertices:

(4.2) = =

(4.3) = =

(2) Hochschild barbell relation:

(4.4) = = = α∨s

(3) Hochschild dot annihilation:

(4.5) = 0

(4) Exterior boxes add and multiply:

(4.6) x + y = x+ y ,

x

y

= x ∧ y

for x, y ∈ Λ∨.



DIAGRAMMATICS FOR EXT-ENHANCED SOERGEL BIMODULES IN TYPE A1 17

(5) Exterior forcing relation:

(4.7) x = s(x) + ∂s(x) for x ∈ Λ∨ homogeneous,

where ∂s : Λ∨ → Λ∨s = (Λ∨)/kα∨s is the exterior Demazure operator defined
in §2.3.

Remark 4.2. Although ∂s(x) is only defined modulo kα∨s , the final term in (4.7)
makes sense because of the relation (4.14), which is derived without using (4.7).

This concludes the list of the additional relations and the definition of DExt(h,W ).
Note that all relations are homogeneous for the bigrading, so the morphism spaces
in DExt(h,W ) are bigraded.

4.2. Further relations.

Lemma 4.3. The following relations hold in DExt(h,W ).

(1) Hochschild dot is cyclic:

(4.8) = = , = =

(4.9) = = , = =

(2) Hochschild dot “pops out”:

(4.10) = = , = =

(3) Hochschild dot jumps:

(4.11)

= , = ,

= , = .

(4) Ordinary vs. Hochschild dot:

(4.12) α∨s = αs , α∨s = αs .

(4.13)
α∨s =

αs
.

(5) Simple coroot kills Hochschild dot:

(4.14) α∨s = α∨s = 0,
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(4.15)
α∨s = 0.

Proof. The equations in (4.8) and (4.9) are obtained by adding an ordinary dot
morphism to (4.2) and (4.3) and simplifying using the Elias–Khovanov one-color
relations.

The first equation in (4.11) follows from the calculation

= =
ρs

−
s(ρs)

=
ρs

−
s(ρs)

by noting that the last expression is fixed by reflection about a vertical axis. The
other equations in (4.11) are obtained by dotting the first equation.

The first equation in (4.12) follows from the computation

α∨s
(4.4)
=

(4.11)
= = αs .

The second equation is similar. Equation (4.13) is obtained by dotting (4.12).
Finally, the first equation in (4.14) follows from

α∨s
(4.4)
=

(4.11)
=

(4.5)
= 0,

and the second equation is similar. Equation (4.15) is obtained by dotting (4.14).
�

By cyclicity, diagrams in DExt(h,W ) up to isotopy unambigiuously represents a
morphism. For example, the morphisms in (4.8) can be drawn as

, .

For any homogeneous x ∈ Λ, we have

x = (−1)|x| x .

Indeed,

x = (−1)|x|
x

= (−1)|x|
x

= (−1)|x| x .

We can therefore

Remark 4.4. If the exterior forcing relation (4.7) is known for exterior boxes labeled
x and y, then the exterior forcing relation for x ∧ y can be deduced from the
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remaining relations. Indeed,

x ∧ y =

x

y

=
s(x)

y

+
s(x)

y

=

s(x)

s(y)

+

s(x)

∂s(y)
+ s(x) ∧ y = s(x ∧ y) + ∂s(x ∧ y) ,

where the last equality uses the twisted graded Leibniz rule (2.9) for ∂s.

Remark 4.5. If 2 is invertible in k, then the exterior forcing relation (4.7) can be
replaced by the weaker relation

(4.16) x = x for x ∈ (Λ∨)s.

First, we observe that the special case of the exterior forcing relation

(4.17) α∨
s = −α∨

s + 2

can be derived from the other relations:

α∨
s

(4.12)
= αs

= −αs
+ 2

(4.12)
= −α∨

s + 2

Now, if 2 is invertible in k, then any x ∈ Λ∨ can be decomposed as

x =
x+ s(x)

2
+

1

2
α∨s ∧ ∂s(x),

where x+s(x)
2 , ∂s(x) ∈ (Λ∨)s. Using this decomposition, (4.7) can be derived from

(4.16) and (4.17).
Even if 2 is not invertible in k, one still has the (unique) decomposition x =

y + ρ∨s ∧ z for y, z ∈ (Λ∨)s. However, we still need to know how to slide ρ∨s .

4.3. Computation of morphism spaces. The following morphism spaces were
computed in [EK].
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Lemma 4.6. We have

HomD(B∅, B∅) = R · idB∅ ,

HomD(Bs, B∅) = R · ,

HomD(B∅, Bs) = R · ,

HomD(Bs, Bs) = R · +R ·

For instance, the last equality says that every ordinary Elias–Khovanov diagram
with bottom boundary s and top boundary s can be reduced to a k-linear combi-
nation of diagrams of the forms

f or f ,

where f is a homogeneous element of R. We use Lemma 4.6 to prove the following
results for morphism spaces in DExt.

Proposition 4.7. We have

(4.18) HomDExt(B∅, B∅) = RExt = R⊗ Λ∨,

(4.19) HomDExt(Bs, B∅) = RExt · +RExt · ,

(4.20) HomDExt(B∅, Bs) = RExt · +RExt · ,

(4.21) HomDExt(Bs, Bs) = RExt · + RExt · + RExt · + RExt · ,

Moreover, for each diagram above containing a Hochschild dot, the coefficient f ⊗
x ∈ R⊗ Λ∨ can be chosen so that f is not divisible by αs and x is not divisible by
α∨s .

For example, (4.18) says that every morphism B∅ → B∅ in DExt can be reduced
to a finite sum of diagrams of the form

x f

for some x ∈ Λ∨ homogeneous and f ∈ R homogeneous. However, it does not say
that EndDExt(B∅) ∼= R⊗ Λ∨ since a priori we may have idB∅ = 0.

In the proof below, given a diagram, the connected components of the comple-
ment of the underlying graph in R× [0, 1] are called its regions. The vertices of the
graph are its points on the boundaries R× 0, 1 and the ordinary (non-Hochschild)
univalent and trivalent vertices. An edge of the graph is a connected component of
the complement of the vertices.

Proof. Consider the following procedure on a diagram containing at least one edge:
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(1) Use the exterior forcing relation to move every exterior box to the far left
region, at the cost of replacing a diagram with a k-linear combination of
diagrams. (The subsequent steps of this procedure are to be applied to
each diagram.)

(2) Choose a “highest” edge, i.e. one that borders the same region as the top
boundary, and use (4.11) to move every Hochschild dot to that edge.

(3) If there are two or more Hochschild dots, then the diagram equals the zero
morphism by (4.5). If there is exactly one Hochschild dot, then use (4.10)
to “pop it out” to a region bordered by the top boundary.

This procedure turns every diagram relevant to the present lemma into a k-
linear combination of diagrams of the following types, depending on if it contains a
Hochschild dot or not. In each diagram below, x is some homogeneous element in
∈ Λ∨, and the dotted part of the diagram is an ordinary Elias–Khovanov diagram.

• For B∅ → B∅:

x

or

x

• For Bs → B∅:

x

or

x

• For B∅ → Bs:

x

or

x

• For Bs → Bs:

x

or

x

Every equality now follows from Lemma 4.6 and the Hochschild barbell relation
(4.4). The last statement of the lemma follows from (4.12) and (4.15). �
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5. From diagrammatics to bimodules

Now come back to the setting of §3. The following theorem is essentially due to
Elias–Khovanov [EK].

Theorem 5.1. There is a k-linear monoidal equivalence

F : D(h, S2)→ BSBim(h, S2)

determined on objects by
F(Bs) = Bbim

s

and on morphisms by

F( ) = εbim
s , F( ) = ηbim

s

F( ) = mbim
s , F( ) = cbim

s

F( f ) = mbim
f (f ∈ R homogeneous).

The following is the first main result of this paper.

Theorem 5.2. There exists a k-linear monoidal functor

FExt : DExt(h, S2)→ BSBimExt(h, S2)

extending the functor F of Theorem 5.1 and satisfying

FExt( ) = φs, F( x ) = ιx for x ∈ Λ∨ homogeneous,

where φs and ιx are the morphism defined in §3.7.4 and §3.7.2, respectively.

Proof. We need to show that the images of the generating morphisms satisfy the
new relations in §4.1.3.

By Lemma 3.8, we have

(5.1) FExt( ) = ηExt
s .

Using (5.1), the relation

= α∨s

is easily checked from the explicit description of the chain maps involved. This to-
gether with the remaining relations show the rest of the Hochschild barbell relation
(4.4).

Also using (5.1), (3.30) says that the images of the generators satisfy the first
relation in (4.10). But this relation implies (4.2) and (4.3):

(4.10)
= =

(4.10)
=

(4.10)
= = =

(4.10)
=
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and similarly for the reflection along a vertical axis.
The relation (4.5) holds by degree reason, and (4.6) is clear.
It remains to verify the exterior forcing relation (4.7). By Remark 4.4, the

exterior forcing relation follows from that for exterior boxes labeled x ∈ V J−1K ⊂
Λ∨, and this linear version was checked in (3.31). �

Theorem 5.3. The functor FExt of Theorem 5.2 is an equivalence.

Proof. The functor FExt is essentially surjective by construction.
FINISH Show it is full using the computation from §3.
FINISH Use the computation of morphism spaces in §4.3 to show that HomDExt

has graded dimension less than or equal to Hom, and conclude that FExt is also
faithful. �
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