One-color diagrammatics ([Elias-Khovanov] did GL_n)

Recall Cartan realization $V_{\mathfrak{sl}_2}$ for \mathfrak{sl}_2, char $k \neq 2$.

$W = S_2 = \{ \text{id}, s \}$, $R = k[\alpha_5]$, $s(\alpha_5) = -\alpha_5$.

The diagrammatic Bott-Samelson category $D_{BS}(V_{\mathfrak{sl}_2}, S_2)$ is the strict k-linear monoidal category defined as follows:

- **Generating object**: S
- **Generating morphisms** (read bottom to top)

 \[
 \begin{array}{cccc}
 \phi & s & s & (s, s) & \phi \\
 \uparrow & \downarrow & \downarrow & \uparrow & \uparrow \\
 s & \neq & (s, s) & s & \neq \\
 \downarrow & (s, s) & \downarrow & \phi & (\text{for homogeneous})
 \end{array}
 \]

- **Degree**: 1 1 -1 -1 -1 $degf$

i.e. a morphism $\xrightarrow{w} \xrightarrow{x}$ is an k-linear combination of isotopy classes of diagrams in $R \times [0, 1]$ with bottom boundary \xrightarrow{w}, top boundary \xrightarrow{x}, and made up of local pieces as above.

Ex

\[
\begin{array}{c}
(\hat{s}, s, s, s) \\
\text{Shorthands:} \\
\wedge := \hat{s} \\
\wedge := Y
\end{array}
\]

Rank Rectilinear isotopy holds in any monoidal category (exchange law):

\[
\begin{array}{c}
\star \uparrow \star = \star \downarrow \star \\
\text{Isotopy in particular includes "cyclicity" under fixed biadjunctions:} \\
\wedge = \hat{s} = Y \\
\wedge = \hat{s} = Y, \ w = Y = \wedge
\end{array}
\]
Monoidal structure is horizontal concatenation.

Composition is vertical concatenation.

These morphisms are subject to the one-color relations
(see [Jensen–Williamson, §2.3.1])

\[\begin{align*}
Ex. \quad \text{Equality in } \text{End}(s, s) : \quad & 1 = 1 \rightarrow 1 = \frac{1}{2} s_1 \rightarrow \frac{1}{2} s_{-1} + \frac{1}{2} s_1 \rightarrow \frac{1}{2} s_{-1}
\end{align*} \]

\[\Rightarrow B_s(s, s) \cong B_s(1) \oplus B_s(-1) \quad \text{in additive envelope } D_{BS}^\oplus(\mathfrak{h}^k, S_2)
\]

because \(B_s(1) \quad \overset{p_1}{\rightarrow} \quad B_s(-1) \) satisfying
\[
\begin{align*}
\text{id}_{B_s(s, s)} &= i_1 \circ p_1 + i_2 \circ p_2 \\
p_1 \circ i_1 &= \text{id} \quad \overset{\text{check!}}{=} \quad p_2 \circ i_2 = \text{id}
\end{align*}
\]

Relations are homogeneous, so Hom spaces are (\(\mathbb{Z} \)-)graded.

Functor to bimodules

\[F: D_{BS}(\mathfrak{h}^k, S_2) \rightarrow SBim_{BS}(\mathfrak{h}^k, S_2) \]

defined by generators and relations:

\[s \quad \rightarrow \quad B_s \]

\[\begin{array}{cc}
\uparrow & \downarrow \\
\rightarrow & \rightarrow \\
B_s & B_s
\end{array} \quad \text{mult. } \frac{1}{2} s_{-1} + \frac{1}{2} s_1

\[\begin{array}{cc}
\uparrow & \downarrow \\
\rightarrow & \rightarrow \\
B_s & B_s
\end{array} \quad \text{comult.} \quad B_s \rightarrow B_s \oplus B_s
\[\begin{array}{cc}
\uparrow & \downarrow \\
\rightarrow & \rightarrow \\
\rightarrow & \rightarrow \\
\rightarrow & \rightarrow \\
\rightarrow & \rightarrow \\
B_s \oplus B_s & B_s
\end{array} \quad \text{mult. by } \frac{1}{2}
\]

"divided difference" \(\partial_s: R \rightarrow R(-2) \), \(\partial_s(f) = \frac{f - s(f)}{s_1} \).
Must check that these images satisfy the relations (including isotopy).

\[F(\bigvee) = F(\bigwedge) = \text{id}_{B_s} \]

\[\begin{array}{c}
\text{Ex}
\end{array} \]

\[\begin{array}{c}
F \\
\text{F}
\end{array} \]

Can calculate graded dimension of Hom spaces to show F is equivalence.

§ Elias-Williamson diagrammatic category

Let \((V, W)\) be a realization. [Elias-Williamson], building on [Elias-Khovanov, Elias]

Def \(D_{B_S}(V, W)\) is the strict \(k\)-linear monoidal category defined by the following diagrammatic presentation.

- \text{generating objects} : \(B_s, s \in S\)

 \[\Rightarrow \text{objects} : B_w, w \text{ expression} \]

- \text{generating morphisms}:
 - polynomial boxes
 - one-color generating morphisms \(A \in S\)

\[\forall s, t \in S, s \neq t, m_{st} < \infty, \text{ } 2m_{st}\text{-valent vertex} \]

\[\begin{array}{c}
\begin{array}{c}
\text{X} \\
\text{X}
\end{array}
\end{array} \]

\[\begin{array}{c}
\begin{array}{c}
: B(s, t, \ldots) \rightarrow B(t, s, \ldots), \text{ degree } 0
\end{array}
\end{array} \]

\[\begin{array}{c}
\begin{array}{c}
(\text{e.g., if } m_{st} = 2)
\end{array}
\end{array} \]

Rmk Let \(w = \frac{st}{m_{st}} = \frac{ts}{m_{st}}\). The \(2m_{st}\text{-valent vertex corresponds to} \]

\[\begin{array}{c}
\begin{array}{c}
R\text{-module map}
\end{array}
\end{array} \]

\[\begin{array}{c}
\begin{array}{c}
B(s, t, \ldots) = B_w \oplus (\text{lower}) \rightarrow B_w \rightarrow B_w \oplus (\text{lower}) = B(t, s, \ldots)
\end{array}
\end{array} \]

The morphisms are subject to the following (local, homogeneous) relations:

- one-color relations \(A \in S\)
- two-color relations \(\forall s, t, e \in S, s \neq t, m_{st} < \infty \) (see [JeuRn-Williamson, §2.3.2])
- three-color relations \(\forall \text{ finite } \{s, t, e\} \subseteq S \text{ of order } 3 \) (\text{[JW]})

Zamolodchikov relation for every parabolic \(A_3, B_3, A, \times I_2(m), H_3\)
Def \(\mathcal{D}(\mathfrak{g}, W) := \text{Ker}(\mathcal{D}^{\text{BS}}_{\mathfrak{g}}(\mathfrak{g}, W)). \)

These categories are called \textit{Elias-Williamson diagrammatic category} or simply \textit{diagrammatic Hecke category} associated to \((\mathfrak{g}, W)\).

Thm (Elias-Williamson)

1. For each \(w \in W \), \(\exists \) indecomposable \(B_w \in \mathcal{D}(\mathfrak{g}, W) \) characterized as follows. For any reduced expression \(w \) for \(w \),

\[B_w \subseteq B_x \]

and \(B_w \) does not appear as direct summand of \(B_x \) for any expression \(x \) with \(l(x) \leq l(w) \).

2. \(\mathcal{D}(\mathfrak{g}, W) \) categorifies \(H(W) \).

3. If \((\mathfrak{g}, W)\) is reflection faithful, then \(\exists \) monoidal equivalence

\[\mathcal{D}^{\text{BS}}_{\mathfrak{g}}(\mathfrak{g}, W) \overset{\sim}{\longrightarrow} \text{SBim}^{\text{BS}}_{\mathfrak{g}}(\mathfrak{g}, W) \]

and

\[\mathcal{D}(\mathfrak{g}, W) \overset{\sim}{\longrightarrow} \text{SBim}(\mathfrak{g}, W). \]

\\

\section{Parity sheaves [Juteau-Mantena-Williamson]}

\(X = \) complex algebraic variety (classical topology), \(k = \) field (for simplicity), \(X = \bigsqcup_{\lambda \in \mathcal{A}} X_{\lambda} \) stratification \(\mathcal{A} \) into affine spaces.

Def The category \(\mathcal{D}^{\text{b}}_\mathcal{A}(X, k) \) of \(\mathcal{A} \)-constructible complexes of \(k \)-vector spaces is the full subcategory of \(\mathcal{D}^{\text{b}}(X, k) := \mathcal{D}^{\text{Sh}}(X, k) \) consisting of complexes \(F \) s.t. \(H^i(F) \) is \(\mathcal{A} \)-constructible for all \(i \in \mathbb{Z} \), i.e.

\[H^i(F)|_{X_{\lambda}} \text{ is a local system } \forall \lambda \in \mathcal{A}. \]

Let \(j_\lambda : X_{\lambda} \longrightarrow X \) be inclusion.

Def (IJMW) \(F \in \mathcal{D}^{\text{b}}_\mathcal{A}(X, k) \) is \textit{even} if \(H^i(j_\lambda^*F) = H^i(j_\lambda^!F) = 0 \) for \(i \) odd, \(\forall \lambda \in \mathcal{A} \). It is \textit{odd} if \(F|_{\mathcal{I}} \) is even, \textit{parity} if it is of form even@odd.

Thm (IJMW) Let \(F \) be an indecomposable parity complex. Then

\[\text{supp } F = X_{\lambda}, \text{ some } \lambda \in \mathcal{A}, \]

\[F|_{X_{\lambda}} \overset{\sim}{\longrightarrow} \mathbb{C}^{\mathcal{A}}_{\lambda} \text{, some } n \in \mathbb{Z}. \]

Any two indecomposable parity complexes with same support are isomorphic up to shift \(\Rightarrow \) unique Verdier self-dual \(E_{\lambda} \), called \textit{parity cheat}.

May not exist in general; not unique up to unique isomorphism like IC.
Def Let \(X = \bigsqcup_{\lambda \in \Lambda_X} X_\lambda \) and \(Y = \bigsqcup_{\mu \in \Lambda_Y} Y_\mu \) be stratified varieties.

A morphism \(\pi : X \to Y \) is stratified if

1. for all \(\mu \in \Lambda_Y \), \(\pi^{-1}(Y_\mu) \) is a union of strata.
2. for each \(X_\lambda \subset \pi^{-1}(Y_\mu) \), the induced morphism \(\pi|_{X_\lambda} : X_\lambda \to Y_\mu \) is a submersion with smooth fibers.

A stratified morphism is even if cohomology of fiber is concentrated in even degrees.

Fact Direct image of a parity complex under a proper even morphism is parity.

This easy fact is a substitute for the decomposition theorem in this setting.

Cor If \(X_\lambda \) has an even resolution \(X_\lambda \xrightarrow{\alpha} X_\lambda \xrightarrow{\pi} \), then \(\mathcal{E}_\lambda \) exists, and \(\mathcal{E}_\lambda \subset \pi_* \mathcal{F} \subset \mathcal{H}^\wedge \mathcal{F} \).

Analogous statements hold in the equivariant derived category of Bernstein-Lunts. The definition of parity remains the same, but assumption on stratification is replaced by equivariant analogue.

Ex \(X = \text{IP}^1 = \mathbb{P}^1 \cup \text{pt} \)

\[(x_s)(x_{id}) \]

\[E_s = \mathbb{A}^1_{X_s} \]

\[E_{id} = \mathbb{A}^1_{X_{id}} \]

\[3 \text{ Parity complexes on flag varieties} \]

Let \(A = (a_{st})_{s,t \in S} \) be a generalized Cartan matrix, \(|S| < \infty \), i.e. \(a_{ss} = 2 \) \(\forall s \in S \), \(a_{st} \leq 0 \) if \(s \neq t \), \(a_{st} = 0 \) \(\iff a_{ts} = 0 \).

Consider an associated Kac-Moody root datum

\[(\Lambda, \{\alpha_r\}_{\alpha \in S}, \{\alpha_s\}_{\alpha \in S}) \]

i.e. \(\Lambda \) is a free \(\mathbb{Z} \)-module of finite rank, \(\alpha_s \in \text{Hom}_{\mathbb{Z}} (\Lambda, \mathbb{Z}) \), \(\alpha_s \in \Lambda \), s.t. \(a_{st} = \langle \alpha_t^* , \alpha_s \rangle \) \(\forall s,t \in S \).

\(\Rightarrow \) Kac-Moody group \(G \), an ind group scheme over \(\mathbb{C} \), with canonical Borel \(B \supset \text{max torus } T \); Weyl group \((W, S) \).

Ex A complex reductive group \(G \supset B \supset \text{max torus } T \) is root datum.

Corresponding Kac-Moody group recovers \(G \supset B \supset T \).
\[X := G/B = \bigcup_{w \in W} X_w, \quad X_w := BwB/B \cong C^{(w)} \]

Consider \(D^b_B(X, k) \), \(k \) field, monoidal under convolution product:
\[G \times X \xrightarrow{\cdot} G \times X \xrightarrow{\text{mult}} X \]

Given \(E, F \in D^b_B(X, k) \),
\[E \ast F := \text{mult}^\ast(E \boxtimes F), \quad \text{where } E \boxtimes F \text{ is unique with } q^\ast(E \boxtimes F) = E \boxtimes F. \]

For \(s \in S \),
\[E_s := [1]^{B_sB/B} \in \text{Parity}_B(X, k). \]

For expression \(w = (s_1, ..., s_k) \), the Bott-Samelson parity complex
\[E_w := E_{s_1} \ast ... \ast E_{s_k} \in \text{Parity}_B(X, k) \]

(parity because \((-) \ast E_s = q^\ast E_s \ast [1], \quad q_s : X \rightarrow G/B \) even)

\[\text{Def } \text{Parity}^{BS}_B(X, k) \text{ is the full subcategory of } \text{Parity}_B(X, k) \]

consisting of \(E_w[n], \) \(w \) expression, \(n \in \mathbb{Z} \).

For every \(w \in W \), parity sheaf \(E_w \) arises as direct summand of \(E_w \), \(w \) reduced expression for \(w \):
\[\text{supp } E_w = BwB/B = X_w, \quad E_w |_{X_w} \cong [k]^{X_{(w)}} \]

so \(E_w \) is unique direct summand with full support. Hence
\[\text{Kan}(\text{Parity}^{BS}_B(X, k)) \cong \text{Parity}_B(X, k). \]