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Abstract

This expository paper gives an elementary proof, using the Weil Conjectures for curves, that
an infinite algebraic extension of a finite field is PAC and large.

1 Introduction

The aim of this expository paper is to provide an elementary proof that an infinite algebraic
extension of a finite field is PAC and large. PAC fields and large fields are two classes of fields
appearing in field arithmetic, both defined through the properties of rational points of varieties
defined over them. Roughly, the proof reduces these fields to the case of smooth projective curves
and applies the Weil Conjectures for curves, where an elementary proof is known.

The paper is organized as follows. Section 2 discusses the Weil Conjectures; Section 2.1 states
the conjectures, first in the general case then specializing to curves, and Section 2.2 provides an
elementary proof of the Riemann Hypothesis for curves, due to E. Bombieri [3]. Section 3 discusses
PAC and large fields, and provides a reduction of their definition to smooth projective curves,
following an argument by J. Kollár [1]. Finally, Section 4 uses these results to prove that an infinite
algebraic extension of a finite field is PAC and large.

2 The Weil Conjectures

2.1 Introduction to the Weil Conjectures

Let V be a variety over k, a finite field of characteristic p and order q. A natural question concerns
the number of points on V . More specifically, letting kn = Fqn (so k = k1), one is interested in
the number of kn-rational points on V . It is natural to keep track of this information through
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a generating function,

∞∑
m=1

NmX
m, where Nm = #V (kn). Since this sum turns out to be not so

well-behaved, one instead considers the following:

Definition 1. The zeta function of V/k is

Z(V, T ) = exp

( ∞∑
m=1

Nm

m
Tm

)
.

Let V be a n-dimensional geometrically irreducible non-singular projective variety over k = k1.
Under this assumption, Weil made three conjectures about this zeta function.

Conjecture 1 (The Weil conjectures in full generality).

Rationality: Z(V, T ) is a rational function in T . More precisely, one can write

Z(V, T ) =
P1(T )P3(T ) · · ·P2n−1(T )

P0(T )P2(T ) · · ·P2n(T )
,

where for each i, Pi(T ) ∈ Z[T ] and factors as (1− ai,1T )(1− ai,2T ) · · · (1− ai,jiT ).

Functional Equation:
Z(V, T ) = ±q−nE/2T−EZ(V, 1/qnT ),

where E is the Euler characteristic of V .

Riemann Hypothesis: For all i and j, |ai,j | = q
i
2 .

If dim(V ) = 1, i.e. V is a smooth projective curve, then the conjectures are more explicit. Let g
be the genus of V . Then, the Weil conjectures state:

Conjecture 2 (The Weil conjectures for curves).

Rationality:

Z(V, T ) =
f2g(T )

(1− T )(1− qT )
,

where f2g is a degree-2g polynomial in Z[x].

Functional Equation: One can write

f2g(T ) = (1− α1T )(1− α2T ) · · · (1− α2gT ),

where the αis are algebraic integers, and αiαi+g = q for i = 1, . . . , g.

Riemann Hypothesis: Moreover, |αi| =
√
q.

To see why the third conjecture is called the Riemann hypothesis, let ζ(V, s) = Z(V, q−s). Then
all the zeroes of ζ occur when Re(s) = 1

2 . Moreover, the rationality implies that there are poles
precisely at 0 and 1, and the functional equation relates the values of ζ(V, s) to those of ζ(V, 1− s)
in the case of curves. This is analogous to the case for number fields, where there is a pole at 1
and the zeroes are conjectured to lie on the line Re(s) = 1

2 .

2



These conjectures can be restated in terms of Nm. Assuming the conjectures and notation above,

one can compute that Nm = qm−
2g∑
i=1

αmi + 1. This formulation is in fact equivalent to the original

one, so that the Weil conjectures for curves may be written as follows.

Conjecture 3 (Weil conjectures for curves, enumerative version).

Rationality: There are 2g algebraic integers, denoted αi, such that Nm = qm −
2g∑
i=1

αmi + 1.

Functional Equation: αiαi+g = q for i = 1, . . . , 2g.

Riemann Hypothesis: |αi| =
√
q, or equivalently αi = αi+g for i = 1, . . . , g.

While the rationality and the functional equation have straightforward proofs involving the Riemann-
Roch theorem, the Riemann Hypothesis is a much deeper result. Assuming the first two parts, the
following statements are equivalent:

(1) |αi| =
√
q for all i = 1, . . . , 2g.

(2) |Nm − (qm + 1)| ≤ 2g
√
qm for all m ≥ 1.

(3) Nm = qm +O(
√
qm) for all m ≥ 1.

Indeed, it is easy to show that (1) ⇒ (2) ⇒ (3) ⇒ (1). The first two implications are trivial.
If |ai| 6=

√
q for some ai, we may assume by the functional equation that |ai| >

√
q. Then ami

eventually dominates the growth of the error term for Nm, so |Nm − qm| grows faster than
√
qm.

Finally, we would be remiss to not point out why one would expect the Weil conjectures to be true.
Consider a hyperelliptic curve y2 = f2g+1(x), where f2g+1 is a degree-(2g+ 1) polynomial in x with
no repeated roots. To count the number of points in km, let χ2 by the character of order 2 of k×m,
with the convention that χ2(0) = 0. Then it is easy to see that the number of solutions to y2 = c is

1 + χ2(c), so the number of points on the curve is
∑
x∈km

(1 + χ2(f2g+1(x))) + 1, where the 1 outside

the sum accounts for the point at infinity. This becomes qm +
∑
x∈km

χ2(f2g+1(x)) + 1. Naively,

one expects that, as m gets large, the values of χ2(f2g+1(x)) are essentially random, so that the
expected value for the error from qm + 1 is O(

√
qm). Although far from a proof, this suggests why

such a theorem is possible.

2.2 An Elementary Proof of the Riemann Hypothesis for Curves

The proof of the Riemann Hypothesis in the general case uses cohomological techniques, which
are beyond the scope of this paper. Instead, this section gives an elementary proof for the case of
curves, due to E. Bombieri [3].

As is standard, view C as a curve over k and defined over k, equipped with a Frobeneous map ϕ,
which is an algebraic bijection (but not an automorphism!) from C to C that is totally ramified
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everywhere. Then C(km) are the fixed points of ϕm, so that one counts the fixed points of powers
of ϕ rather than solutions to polynomial equations.

The proof will proceed in two steps: we first show an upper bound, then use this to show the lower
bound. Additionally, it suffices to argue for only the even extensions of Fp, as one only needs that
Nm = qm +O(

√
qm) for a sequence of m that tends to infinity, and not all m.

Theorem 1 (The upper bound). Let C/k be a projective nonsingular irreducible curve of genus g,
defined over a finite field k. If [k : Fp] is even and q > (g + 1)4, then one has that the number of
k-rational points, which are the fixed points of the Frobeneous map ϕ, is less than q+(2g+1)

√
q+1.

Proof. Assume that ϕ has at least one fixed point x0 (otherwise the theorem is trivial). Let N1

denote the number of k-rational points. By Riemann-Roch, one has that m+ 1− g ≤ `(m(x0)) ≤
m+ 1, with equality on the left when m > 2g − 2.

If f ∈ L(D), then f ◦ϕ ∈ L(qϕ(D)) (if D = m(x0), since ϕ(x0) = x0, one has that f ◦ϕ ∈ L(qD));
the image of such functions in L(qϕ(D)) will be denoted L(D)◦ϕ. Every element of the form f◦ϕ is a
qth power (as (f ◦ϕ) = qϕ((f))). The image of the map from L(D1)⊗kL(D2)→ L(D1+D2) sending
f1⊗f2 to f1f2 will be denoted L(D1)L(D2). Also, the image of the inclusion from L(D) ↪→ L(pcD)
sending f to fp

c
will be denoted L(D)(p

c).

Lemma 2. If apc < q, the natural map L(a(x0))
(pc)⊗k (L(m(x0))◦ϕ)→ L(a(x0))

(pc)(L(m(x0))◦ϕ)
is an isomorphism.

Proof. The map is by definition surjective, so it suffices to prove injectivity. Let r = `(m(x0)).
Since `((m0 + 1)(x0)) ≤ `(m0(x0)) + 1 for any m0, there is a basis s1, s2, . . . , sr of L(m(x0)) such

that ordx0(si) < ordx0(si+1). Given r elements gi ∈ L(a(x0)) with

r∑
i=1

gp
c

i (si ◦ ϕ) = 0, it suffices to

show that gi = 0 for all i.

Assume otherwise, and let gi0 be the non-zero gi with the smallest index. Then, letting g =

−gp
c

i0
(si0 ◦ ϕ) =

r∑
i=i0+1

gp
c

i (si ◦ ϕ), one can compute the order of g at x0 in two ways and derive a

contradiction.

To be precise, we have

ordx0(g) = ordx0

(
r∑

i=i0+1

gp
c

i (si ◦ ϕ)

)
≥ min

i>i0

(
ordx0(gp

c

i (si ◦ ϕ))
)

= min
i>i0

(pc · ordx0(gi) + q · ordx0(si))

≥ −apc + q · ordx0(si0+1),
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where the last inequality follows since ordx0(f) ≥ −a for all f ∈ L(a(x0)), and ordx0(si) <
ordx0(si+1). On the other hand, ordx0(g) = pc · ordx0(gi0) + q · ordx0(si0), so

pc · ordx0(gi0) ≥ −apc + q(ordx0(si0+1)− ordx0(si0)) ≥ −apc + q > 0.

But then gi0 is regular (it has no pole outside of x0 and is visibly regular there) and has a zero on a
projective irreducible curve, so gi0 = 0, a contradiction. Thus, the map is injective, and the lemma
is proven.

Equating the dimensions of the two sides, we obtain

Corollary 3. If apc < q, dim
(
L(a(x0))

pc(L(m(x0)) ◦ ϕ)
)

= `(a(x0))`(m(x0)).

Now, if apc < q, the composition

δ : L(a(x0))
(pc)(L(m(x0) ◦ ϕ))→ L(a(x0))

(pc) ⊗k (L(m(x0)) ◦ ϕ)→ L(a(x0))
(pc) ⊗k L(m(x0))

→ L(a(x0))
(pc)L(m(x0))→ L((apc +m)(x0))

is well-defined (the first arrow is the inverse of the isomorphism in the lemma, the second is an
isomorphism, and the last two are the natural map and the inclusion defined above). If in addition
we have that a,m ≥ g, then by the corollary and Riemann-Roch,

dim(ker(δ)) ≥ `(a(x0))`(m(x0))− `((apc +m)(x0))

≥ (a+ 1− g)(m+ 1− g)− (apc +m+ 1− g).

If q = pα, choose c = α
2 (since α = [k : Fp] is even), m = pc + 2g, and a = b gp

c

g+1c + g + 1 =

pc − d p
c

g+1e + g + 1. Since p2c = q > (g + 1)4 by assumption, we have a < pc and so apc < q.
Clearly a,m ≥ g, so the above inequality applies, and we obtain dim(ker(δ)) > 0. Thus there
exists some non-zero f ∈ ker(δ). For all x fixed by ϕ, except x0 where f is not defined, one has
f(x) = (δ(f))(x) = 0. There are by definition N1 − 1 such x, and moreover f is a pc-th power,
so f has at least pc(N1 − 1) zeroes. But f only has a pole at x0, of order at most apc + mq, so
N1 ≤ a+ mq

pc + 1. Hence

N1 <
√
q +

(
√
q + 2g)q
√
q

+ 1 = q + (2g + 1)
√
q + 1,

which is what we wanted.

Theorem 4 (The complete Riemann Hypothesis for curves). With the assumptions and notations
as above, one has that N1 = q +O(

√
q).

Proof. There is a separable map C → P1 corresponding to a separable extension k(C)/k(t). Let
C ′ denote the curve corresponding to the normal closure of k(C)/k(t). Let G = Gal(k(C ′)/k(t))
and H = Gal(k(C ′)/k(C)), so H ⊂ G. Then G acts via algebraic maps on C ′; we may assume
that the elements of G are defined over k (if not, make a finite base change, and we are fine for the
same reason that we may assume that [k : Fp] is even). Recall that, in the general Galois covering
scenario X → Y where X and Y are curves, one has that, for all points y lying over an unramified
point of the cover, ϕ(y) = g(y) for some g in the Galois group (the Frobeneous substitution at y).
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Coming back to our case, let ν(C ′, g) be the number of points in C ′ with Frobeneous substitution
g. One can argue as before, replacing δ : L(a(x0))

(pc)(L(m(x0)) ◦ ϕ)→ L(a(x0))
(pc)L(m(x0)) with

δg : L(a(x0))
(pc)(L(m(x0)) ◦ ϕ)→ L(a(x0))

(pc)(L(m(x0)) ◦ g),

to get ν(C ′, g) ≤ q+(2g′+1)
√
q, where g′ is the genus of C ′. Meanwhile, we have that

∑
g∈G

ν(C ′, g) =

|G|(q + 1) +O(1), as the left-hand side counts |G| times the number of points in P1 unramified in

the cover. Thus ν(C ′, g) = q + O(
√
q). However, we also have that

∑
g∈H

ν(C ′, g) = |H|N1 + O(1),

so N1 = q +O(
√
q).

It should perhaps be noted that the above proof of the lower bound lacks entirely of geometric
content, shifting instead the bulk of the argument to an elementay fact in algebraic number theory.

3 PAC Fields and Large Fields

In this section, we look at two important classes of fields appearing in field arithmetic.

Definition 2. A field k is called PAC (pseudo-algebraically closed) if every (non-empty) geomet-
rically irreducible variety over k has a k-rational point.

Example 1. 1. Algebraically closed fields are PAC.

2. R is not PAC. The projective plane curve (x2 + y2 + z2 = 0) ∈ P2 is geometrically irreducible
and has no R-point.

3. Finite fields are not PAC. For example, for k = Fq of characteristic p > 3, the projective
plane curve (xq + yq + zq = 0) ∈ P2 is geometrically irreducible and has no k-rational point.
One can explicitly write down such a projective plane curve for the remaining cases as well;
see [2], Section 11.2.

In examples 2 and 3, we were able to show that the fields were not PAC using not general varieties
as in the definition of PAC, but projective plane curves. In fact, J. Kollár showed that this is the
case for all non-PAC fields [1]. Since example 3 shows the case k finite, Kollár’s proof starts with
a geometrically irreducible variety X defined over an infinite field k with no k-rational point, and
successively transforms X to obtain the desired plane curve. We shall only need the first step in
his proof, the reduction to smooth projective curves, reproduced below. Note in particular that
smoothness allows us to apply the Weil conjectures.

Theorem 5. If k is not PAC, then there exists a (non-empty) geometrically irreducible smooth
projective curve over k with no k-rational point.

Proof. LetX be a geometrically irreducible variety defined over an infinite field k such thatX has no
k-rational point. Since birational transformations preserve geometric irreducibility, by intersecting
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with an affine chart if necessary, we may assume that X is affine. Successively intersect X with
hyperplanes defined over k to obtain a curve B/k with no k-rational point. By Bertini’s theorem,
B is geometrically irreducible for general hyperplanes defined over k. Since k is infinite, there exists
a hyperplane defined over k such that this holds.

Let B be the projective closure of B. The finite set B \B may contain k-rational points, but B×B
contains at most finitely many k-rational points, so again intersecting with hyperplane defined over
k and avoiding these points (which we can since k is infinite), we obtain a geometrically irreducible
projective curve C1/k with no k-rational point. Finally, normalize C1 to obtain a smooth projective
curve C/k with no k-rational point.

The following class of fields, originally introduced in Galois theory, now appear in field arithmetic
because of their nice embedding properties.

Definition 3. A field k is called large (or ample) if every (non-empty) geometrically irreducible
variety over k with a k-rational point has infinitely many k-rational points.

Again, this definition may be reduced to smooth projective curves by essentially the same argument
as for PAC fields. More precisely, we have

Theorem 6. If k is not large, then there exists a (non-empty) geometrically irreducible smooth
projective curve over k with at least one but only finitely many k-rational points.

Proof. Finite fields are not large. Let X be a geometrically irreducible variety defined over an
infinite field k such that X has at least one but only finitely many k-rational points. We may
assume as before that X is affine. Fix a k-rational point p in X, and successively intersect X
with hyperplanes defined over k and passing through p to obtain a curve B/k with finitely many
k-rational points. Since k is infinite, again by Bertini’s theorem, we may choose this hyperplane
so that B is geometrically irreducible. Taking the projective closure B adds at most finitely many
k-rational points. Now B has only finite many singular points. Normalize to obtain a smooth
projective curve C/k. The preimage of any singular point is a closed subset of C, so this only adds
finitely many k-rational points.

As a consequence, the following is often taken in the literature as the definition of large fields.

Definition 4. A field k is called large (or ample) if every (non-empty) geometrically irreducible
smooth curve over k with a k-rational point has infinitely many k-rational points.

It can be shown that every PAC field k is large, so that a non-empty geometrically irreducible
variety over k in fact has infinitely many k-rational points. In particular, it is enough to prove just
the first part of Theorem 7 below. However, we prove large directly since the argument is the same
as that for PAC.
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4 Putting Everything Together

We can now state and prove the claim mentioned in the introduction.

Theorem 7. An infinite algebraic extension of a finite field is PAC and large.

Proof. Let k be an infinite algebraic extension of Fp. Let C be a smooth projective plane curve
over k. To show that k is PAC, by Theorem 5, it suffices to show that C has a k-rational point.
Since C is defined by finitely many polynomial equations with coefficients in k, it is in fact defined
over Fpn ⊂ k for all large enough n. Let g be the genus of C, and take n so large that

√
pn > 2g.

Then C has at least as many k-rational points as it has Fpn-rational points, of which there are, by
Theorem 4 (Riemann Hypothesis), more than (pn + 1)− 2g

√
pn ≥ 1.

For large, we use Theorem 6 and again apply the Riemann Hypothesis, noting that the bound
above tends to infinity as n→∞.
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