HOW TO SOLVE THE 15-PUZZLE BLINDFOLDED: EXERCISES

1. NOTATION FOR 3-CYCLES

Problem 1: Understanding 3-cycle notation. Fill in the blank.

Problem 2: Applying 3-cycles. Fill in the blank.

Note that e.g. (11 12 15) doesn't have to move the tiles 11, 12, 15!

Problem 3: Identifying 3-cycle needed to solve a state. Consider the following puzzle states:

1	1	2	3	4	2.	8	2	3	4	3.	1	8	3	4	1	2	3	4	
	5	6	7	8		5	6	7	10		5	6	7	12	4.	5	6	13	8
1.	9	10	12	15		9	1	11	12		9	10	11	2		9	10	11	12
	13	14	11			13	14	15			13	14	15			14	7	15	

For each state, write down the 3-cycle you need to apply to turn it into the solved state.

 $1.(11\ 12\ 15)$

2. (___) 3. (___)

4. (____)

Date: April 22, 2017.

2. Basic 3-cycles

In the problems below, assume that position 16 is blank.

1. Fill in the blanks to explain how to perform the 3-cycle

in three steps:

 Step 1: Make position __ blank by doing the following moves: _____

 Step 2: Use this blank to perform the 3-cycle in 4 moves: _____

 Step 3: Reverse the moves from Step 1: _____

2. Put this into practice! Record your current puzzle state:

Compute what should happen if you apply (5 9 10) to your current state:

Perform the moves you found in the previous part. Did you get what you expected?

3. Repeat this for the following 3-cycles:

3. Easy 3-cycles

1. Consider the following 3-cycles:

We want to reduce the 3-cycle (1 2 11) to the basic 3-cycle (1 2 5) using conjugation:

$$(1\ 2\ 11) = x(1\ 2\ 5)x^{-1}$$

for some sequence of moves x. For this to work, x should:

- move the tile in position _____ to position ___;
- make position __ blank;
- without affecting positions ____ and ___.

Find such a sequence of moves x. (Hint: First, apply D so that position 12 becomes blank.)

2. Put this into practice! Record your current state:

Compute what should happen if you apply (1 2 11) to your current state:

Using the sequence of moves x you found, apply $x(1 \ 2 \ 5)x^{-1}$ to your current state. Did you get what you expected?

3. Repeat this for other 3-cycles: (10 11 13), (1 3 4), (3 5 6), make up your own!

4. Hard 3-cycles

1. Use the rule

$$(a \ b \ c) = (a \ b \ d)(a \ d \ c).$$

to rewrite the following 3-cycles as a product of two easy 3-cycles:

$$(2 8 10) = (___)(___)$$

2. Reduce each easy 3-cycle to a basic 3-cycle using conjugation:

$$(___) = x(___)x^{-1}, \text{ where } x = ___$$
$$(___) = y(__)y^{-1}, \text{ where } y = ___$$

3. Put this into practice! Record your current state:

Compute what should happen if you apply (2 8 10) to your current state:

Using the sequences you found above, apply (2810) to your current state. Did you get what you expected?

4. Repeat this for other 3-cycles: (5 14 3), (13 11 2), make your own!

5. Cycle decomposition and simplification

In these problems, you will work out the cycle decomposition and simplification for the following puzzle states:

	7 11 15 14	$10 \ 14 \ 8 \ 13$		5 15 4 1		4	12 1	3	
1.	4 12 13 1	$2 \ 3 \ 1 \ 6$	3		12 6 13 14	4	10	15 13	3 14
	3 8 9 10 2	9 5 4 12		7 3 8 2	4.	6	7 5	8	
	5 2 6	11 15 7		9 10 11		9	2 11		
5.	12 10 2 7	7 3 11 15	7.	1 7 14 13	8.	15	14 13	3 12	
	14 6 1 13	$12 \ 4 \ 10 \ 14$		10 8 6 12		11	10 7	8	
	3 9 8 11 6	. 5 9 13 1		9 5 3 15		9	6 5	4	
	15 4 5	8 2 6		11 4 2		3	2 1		

Problem 1: Cycle decomposition. For each state, write down the permutation you need to solve it as a product of disjoint cycles.

1.	
2.	
3.	
4.	
5.	
6.	
7.	
8.	

Problem 2: Cycle simplification. Recall the following cycle simplification rules:

$$(a \ b \ c \ d) = (a \ b \ c)(a \ d)$$
$$(a \ b \ c \ d \ e) = (a \ b \ c)(a \ d \ e)$$
$$(a \ b \ c \ d \ e \ f) = (a \ b \ c)(a \ d \ e)(a \ f)$$

;

For each state, use these rules to express the permutation you found in Problem 1 as a product of 3-cycles and 2-cycles.

1.	
2.	
3.	
4.	
5.	
6.	
7.	
8.	

Problem 3: Pairs of 2-cycles. Recall the following rule:

 $(a \ b)(c \ d) = (a \ b \ c)(a \ d \ c).$

For each state, express the permutation you found in Problem 1 as a product of 3-cycles.

 1.

 2.

 3.

 4.

 5.

 6.

 7.

 8.