HOW TO SOLVE THE 15-PUZZLE BLINDFOLDED: EXERCISES

1. Notation for 3-CYCLES

Problem 1: Understanding 3-cycle notation. Fill in the blank.
$(111215)=$

$(121511)=$

$(1028)=$

(_ _ _)

$\left(___\right)=$

$\left(_\right.$_ _ $)=$

Problem 2: Applying 3-cycles. Fill in the blank.

1	5	8	10					
11	2	6	9					
14	12	3	7					
4	15	13		$\left(\begin{array}{lll}11 & 12 & 15\end{array}\right)=$	1	5	8	10
:---:	:---:	:---:	:---:					
11	2	6	9					
14	12	13	3					
4	15	7		,				

$\left.\begin{array}{|c|c|c|c|}\hline 1 & 5 & 8 & 10 \\ \hline 11 & 2 & 6 & 9 \\ \hline 14 & 12 & 3 & 7 \\ \hline 4 & 15 & 13 & \\ \hline\end{array} \quad \begin{array}{lll}10 & 2 & 8\end{array}\right)=$

\(\left.\begin{array}{|c|c|c|c|}\hline 7 \& 12 \& 11 \& 14

\hline 10 \& 3 \& 15 \& 13

\hline 2 \& 6 \& 9 \& 8

\hline 5 \& 4 \& 1 \&

\hline\end{array} \quad $$
\begin{array}{lll}3 & 5 & 7\end{array}
$$\right)=\)| | | | |
| :--- | :--- | :--- | :--- |
| | | | |
| | | | |
| | | | |,

$\left.\begin{array}{|c|c|c|c|}\hline 7 & 12 & 11 & 14 \\ \hline 10 & 3 & 15 & 13 \\ \hline 2 & 6 & 9 & 8 \\ \hline 5 & 4 & 1 & \\ \hline\end{array} \quad \begin{array}{l}1 \\ 1\end{array} 1410\right)=$

Note that e.g. (11 12 15) doesn't have to move the tiles $11,12,15$!

Problem 3: Identifying 3-cycle needed to solve a state. Consider the following puzzle states:
1.

1	2	3	4
5	6	7	8
9	10	12	15
13	14	11	

2.

8	2	3	4
5	6	7	10
9	1	11	12
13	14	15	

3.

1	8	3	4
5	6	7	12
9	10	11	2
13	14	15	

4.

1	2	3	4
5	6	13	8
9	10	11	12
14	7	15	

For each state, write down the 3 -cycle you need to apply to turn it into the solved state.

1. (111215)
2. (_ — _)
3. (————)
4. (_ — _)

2. BASIC 3-CYCLES

In the problems below, assume that position 16 is blank.

1. Fill in the blanks to explain how to perform the 3-cycle

$$
\left(\begin{array}{lll}
5 & 9 & 10
\end{array}\right)=
$$

in three steps:
Step 1: Make position __ blank by doing the following moves: \qquad
Step 2: Use this blank to perform the 3-cycle in 4 moves:
Step 3: Reverse the moves from Step 1: \qquad
2. Put this into practice! Record your current puzzle state:

Compute what should happen if you apply (5910) to your current state:

Perform the moves you found in the previous part. Did you get what you expected?
3. Repeat this for the following 3 -cycles:

$(141310)=$

3. EASY 3-CYCLES

1. Consider the following 3 -cycles:
$\left(\begin{array}{ll}1 & 2\end{array} 1\right)=$

$(125)=$

We want to reduce the 3-cycle (1211) to the basic 3-cycle (1 25) using conjugation:
$\left(\begin{array}{ll}1 & 2\end{array} 11\right)=x(125) x^{-1}$
for some sequence of moves x. For this to work, x should:

- move the tile in position \qquad to position __;
- make position \qquad blank;
- without affecting positions \qquad and \qquad
Find such a sequence of moves \bar{x}. (Hint: First, apply D so that position 12 becomes blank.)

2. Put this into practice! Record your current state:

Compute what should happen if you apply (1 2 11) to your current state:

$$
\text { (your current state)(12 11) }=\begin{array}{|l|l|l|l|}
\hline & & & \\
\hline
\end{array}
$$

Using the sequence of moves x you found, apply $x(125) x^{-1}$ to your current state. Did you get what you expected?
3. Repeat this for other 3-cycles: (10 11 13), (134), (3 5 6), make up your own!

4. Hard 3-CyCles

1. Use the rule

$$
(a b c)=(a b d)(a d c)
$$

to rewrite the following 3 -cycles as a product of two easy 3 -cycles:

$$
\left(\begin{array}{ll}
2 & 8 \\
10
\end{array}\right)=(-\quad \text { - })(\text { _ - }) .
$$

2. Reduce each easy 3 -cycle to a basic 3 -cycle using conjugation:

$$
\begin{array}{ll}
\left(___\right)=x\left(___\right) x^{-1}, & \text { where } \quad x= \\
\left(___\right)=y\left(___\right) y^{-1}, & \text { where } \quad y= \\
\hline
\end{array}
$$

3. Put this into practice! Record your current state:

Compute what should happen if you apply (2810) to your current state:

Using the sequences you found above, apply (2810) to your current state. Did you get what you expected?
4. Repeat this for other 3-cycles: (5 143), (13 112), make your own!

5. Cycle decomposition and simplification

In these problems, you will work out the cycle decomposition and simplification for the following puzzle states:

1. | 7 | 11 | 15 | 14 |
| :---: | :---: | :---: | :---: |
| 4 | 12 | 13 | 1 |
| 3 | 8 | 9 | 10 |
| 5 | 2 | 6 | |
2. | 10 | 14 | 8 | 13 |
| :---: | :---: | :---: | :---: |
| 2 | 3 | 1 | 6 |
| 9 | 5 | 4 | 12 |
| 11 | 15 | 7 | |
3.

5	15	4	1
12	6	13	14
7	3	8	2
9	10	11	

4.

4	12	1	3
10	15	13	14
6	7	5	8
9	2	11	

5.

12	10	2	7
14	6	1	13
3	9	8	11
15	4	5	

6.

7	3	11	15
12	4	10	14
5	9	13	1
8	2	6	

7.

1	7	14	13
10	8	6	12
9	5	3	15
11	4	2	

8.

15	14	13	12
11	10	7	8
9	6	5	4
3	2	1	

Problem 1: Cycle decomposition. For each state, write down the permutation you need to solve it as a product of disjoint cycles.
1.
2.
3.
4.
. \qquad
6.
7.
8. \qquad

Problem 2: Cycle simplification. Recall the following cycle simplification rules:

$$
\begin{aligned}
(a b c d) & =(a b c)(a d) \\
(a b c d e) & =(a b c)(a d e) \\
(a b c d e f) & =(a b c)(a d e)(a f) \\
& \vdots
\end{aligned}
$$

For each state, use these rules to express the permutation you found in Problem 1 as a product of 3-cycles and 2-cycles.
1.
2.
3.
4.
5.
6.
7.
8.

Problem 3: Pairs of 2-cycles. Recall the following rule:

$$
(a b)(c d)=(a b c)(a d c)
$$

For each state, express the permutation you found in Problem 1 as a product of 3 -cycles.
1.
2.
3.
.
4.
5.
6.
7.
8. \qquad

