THE COSET METHOD FOR RUBIK'S CUBE: SOLUTION (DRAFT)

3. A solution

There are multiple approaches and multiple reasonable answers. Here's one.

3.1. Problem 1/1'.

3.1.1. Conditions characterizing D. We will give conditions satisfied by any state that is solvable using only half turns (henceforth called "half-turn state").

First, consider the following collection of corners in the solved state:

Let $S_{\text {ev }} \times S_{\text {od }}$ be the subgroup of S_{8} that preserves this collection. (With the numbering from $\S 1$, this is the subgroup that permutes the even-numbered corners among themselves and the odd-numbered corners among themselves.) Since any half turn preserves this collection, we have

$$
\begin{equation*}
D \leq S_{\mathrm{ev}} \times S_{\mathrm{od}} \tag{3.1}
\end{equation*}
$$

In other words, any half-turn state satisfies
(D1): The even-numbered corners are permuted among themselves (and so the odd-numbered corners are permuted among themselves).
Next, any half turn exchanges two pairs of corners, so it is an even permutation. Hence

$$
\begin{equation*}
D \leq A_{8} \tag{3.2}
\end{equation*}
$$

where A_{8} is the alternating group (the subgroup of even permutations in S_{8}). In other words, any half-turn state satisfies
(D2): The corresponding permutation in S_{8} has even parity.
Finally, note that any half turn sends any plane containing 4 corners to another such plane. It follows that any half-turn state satisfies
(D3): Corners 1, 2, 3, 4 lie in a single plane.
That is, corners $1,2,3,4$ are in one of the following configurations, up to orienting the entire cube:

Proposition 3.1. A state is a half-turn state if and only if it satisfies (D1)-(D3).

[^0]For convenience, here are the conditions again, collected:
(D1): The even-numbered corners are permuted among themselves (and so the odd-numbered corners are permuted among themselves).
(D2): The corresponding permutation in S_{8} has even parity.
(D3): Corners 1, 2, 3, 4 lie in a single plane.
Note that, given (D1), (D2) is quite fast to check.

Proof of Proposition 3.1. It remains to show that any state satisfying (D1)-(D3) can be solved using only half turns. We will describe such a solution. (Note that each condition is preserved under the action of D, so we may invoke these conditions at every step of the solution.)

By (D1), corner 1 lies in one of the following positions:

Solve it as follows:

We can similarly solve corner 2 :

Then corner 3:

By (D3), corner 4 must already be solved:

Finally, by (D1) and (D2), corners 5, 6, 7, 8 must be in one of the following two configurations:

Let's summarize what we've done. Set

$$
\begin{equation*}
C=\left(S_{\mathrm{ev}} \times S_{\mathrm{od}}\right) \cap A_{8} \tag{3.3}
\end{equation*}
$$

We have the following containments of subgroups of S_{8} :

(D1) characterizes states corresponding to $S_{\text {ev }} \times S_{\text {od }}$, while (D2) characterizes states corresponding to A_{8}; requiring both gives C. By (3.2) and (3.1), we have $D \leq C$. However, this containment is strict; for example,

$$
\tau=\left(\begin{array}{lll}
1 & 3 & 7
\end{array}\right)
$$

lies in C but not in D (i.e. $x_{0} . \tau$ is not a half-turn state). To characterize D, we introduced a further condition (D3). Proposition 3.1 says that these three conditions suffice.

Remark 3.2. Unlike for (D2) and (D1), the subset of S_{8} corresponding to states in (D3) do not form a subgroup. For example, $x_{0} \cdot R^{2}$ and $x_{0} .(12)$ satisfy (D3),
but $x_{0} \cdot R^{2}(12)$ doesn't:

For more in this direction, see $\S 4$.

3.1.2. Order of D.

Approach 1. We use Proposition 3.1. By (D3), corners 1, 2, 3, 4 lie in one of 12 planes. Within this plane, by (D1) there are 2 ways to place corners 1 and 3 , and 2 ways to place corners 2 and 4. Having done this, by (D1) and (D2), there are only 2 possible ways to position corners $5,6,7,8$ (as in the proof of Proposition 3.1). This gives

$$
|D|=12 \cdot 2 \cdot 2 \cdot 2=96
$$

Approach 2. Recall the following containments:

We know that

$$
\left|S_{\mathrm{ev}} \times S_{\mathrm{od}}\right|=4!4!=576
$$

so it is enough to determine the indices $\left[S_{\mathrm{ev}} \times S_{\text {od }}: C\right]$ and $[C: D]$.
Multiplication by a fixed 2-cycle in $S_{\mathrm{ev}} \times S_{\text {od }}$ defines a bijection between the even permutations and the odd permutations in $S_{\text {ev }} \times S_{\text {od }}$, so

$$
\left[S_{\mathrm{ev}} \times S_{\mathrm{od}}: C\right]=2
$$

and

$$
|C|=\frac{1}{2}\left|S_{\mathrm{ev}} \times S_{\mathrm{od}}\right|=\frac{1}{2}(4!4!)=288
$$

From Approach 1, we know that $[C: D]=288 / 96=3$. But let's give a more conceptual proof.

As above, we consider multiplication by a fixed element in C that is not in D. Recall that a 3-cycle was such an element; for ease of exposition, we use the explicit choice $\tau=\left(\begin{array}{lll}1 & 3 & 7\end{array}\right)$. Define a map (of sets)

$$
c_{\tau}: C \rightarrow \mathbb{Z} / 3 \mathbb{Z}
$$

as follows. For $\sigma \in C$, the configuration of corners $1,2,3,4$ in $x_{0} . \sigma$ is one of the following, up to re-orienting the entire cube:

or

Define $c_{\tau}(\sigma)$ to be 0 in the first two, 1 in the third, and 2 in the fourth case. Then

$$
c_{\tau}(\sigma \tau)=c_{\tau}(\sigma)+1
$$

This may be seen by checking the effect of τ on each configuration; up to rotation, the following cover all cases:

In other words, $c_{\tau}(\sigma) \in\{0,1,2\}$ is the unique element such that $x_{0} . \sigma \tau^{-i}$ satisfies (D3). Since $\sigma, \tau \in C$, we know that $x_{0} . \sigma \tau^{-i}$ satisfies (D1) and (D2) for any $i \in\{0,1,2\}$. Hence it follows from Proposition 3.1 that $c_{\sigma}(\sigma) \in\{0,1,2\}$ is the unique element for which $\sigma \tau^{-i} \in D$, or equivalently, $\sigma \in D \tau^{i}$. We conclude that c_{τ} induces a bijection

$$
\begin{align*}
& \overline{c_{\tau}}: D \backslash C \xrightarrow{\sim} \mathbb{Z} / 3 \mathbb{Z} \\
& D \tau^{i} \longmapsto i . \tag{3.4}
\end{align*}
$$

Remark 3.3. D is not normal in C.
3.2. Problem 2. Recall again the following containments:

Since $S_{\mathrm{ev}} \times S_{\text {od }}$ corresponds to states characterized by (D1), the configuration of the odd-numbered corners (say) serve as a label for its right cosets:

$$
\left.\begin{array}{rl}
\left(S_{\mathrm{ev}} \times S_{\mathrm{od}}\right) \backslash S_{8} & \sim \tag{3.5}
\end{array} \text { \{config. of } 4 \text { corners }\right\} \text {. }
$$

The right A_{8} cosets may be labeled by parity:

$$
\begin{align*}
A_{8} \backslash S_{8} & \xrightarrow{\sim} \mathbb{Z} / 2 \mathbb{Z} \\
A_{8} \sigma & \longmapsto \text { parity of } \sigma . \tag{3.6}
\end{align*}
$$

The equality (3.3) implies that the natural map

$$
C \backslash S_{8} \rightarrow\left(S_{\mathrm{ev}} \times S_{\mathrm{od}}\right) \backslash S_{8} \times A_{8} \backslash S_{8}
$$

is injective; by comparing size, we see that it's even a bijection (though we won't need this). So by combining the labelings (3.5) and (3.6), we obtain a labeling of $C \backslash S_{8}$:

$$
\begin{align*}
C \backslash S_{8} & \xrightarrow{\sim} \text { \{config. of } 4 \text { corners }\} \times \mathbb{Z} / 2 \mathbb{Z} \\
C \sigma & \text { (config. of odds in } \left.x_{0} \cdot \sigma, \text { parity of } \sigma\right) . \tag{3.7}
\end{align*}
$$

For example,

Now focus on the following containments:

The idea is to combine the labelings (3.7) of $C \backslash S_{8}$ and (3.4) of $D \backslash C$ to produce a labeling of $D \backslash S_{8}$. To do this, choose a section s of the natural surjection $S_{8} \rightarrow$ $D \backslash S_{8}$:

For any coset in $D \backslash S_{8}$, represented by say $D \sigma$ for some $\sigma \in S_{8}$, we have $C \sigma=$ $C s(C \sigma)$, so $\sigma s(C \sigma)^{-1} \in C$. We can therefore define a map

$$
\begin{aligned}
D \backslash S_{8} & \rightarrow C \backslash S_{8} \times D \backslash C \\
D \sigma & \mapsto\left(C \sigma, D \sigma s(C \sigma)^{-1}\right),
\end{aligned}
$$

which is easily seen to be injective, hence a bijection by comparing size. Combining (3.7) and (3.4), we obtain a labeling

$$
\left.D \backslash S_{8} \xrightarrow{\sim} \text { \{config. of } 4 \text { corners }\right\} \times \mathbb{Z} / 2 \mathbb{Z} \times \mathbb{Z} / 3 \mathbb{Z}
$$

depending on the choice of s.

Concretely, the map

$$
\begin{aligned}
S_{8} & \longrightarrow C \\
\sigma & \longmapsto \sigma s(C \sigma)^{-1}
\end{aligned}
$$

assigns a state in C to any state σ in a way that only depends on $C \sigma$. In other words (in terms of the labeling (3.7)), given any state, we want to use only its configuration of odd-numbered corners and the parity of the corresponding permutation to systematically produce a state whose labels are

There are many ways to do this (corresponding to the choice of s), each leading to an easily-computable labeling for $D \backslash S_{8}$.

4. Another approach (Sketch)

Recall from Remark 3.2 that (D3) is not a "group-like" condition. The problem was that (D3) favored a single plane (the one containing $1,2,3,4$). We can correct this as follows. Let

$$
P \leq S_{8}
$$

be the subgroup that takes any plane of 4 corners to another such plane. Then

$$
\begin{equation*}
D \leq P \tag{4.1}
\end{equation*}
$$

so any half-turn state satisfies the following strengthening of (D3):
(D3s): Every collection of 4 corners that lie in a single plane in the solved state, lie in a single plane.
By (3.2), (3.1), and (4.1), we have

$$
D \leq\left(S_{\mathrm{ev}} \times S_{\mathrm{od}}\right) \cap A_{8} \cap P
$$

Thus we have the following containment of subgroups:

Proposition 3.1 implies that in fact

$$
\begin{equation*}
D=\left(S_{\mathrm{ev}} \times S_{\mathrm{od}}\right) \cap A_{8} \cap P \tag{4.2}
\end{equation*}
$$

so the corresponding conditions (D1) $+(\mathbf{D} 2)+(\mathbf{D} 3 \mathbf{s})$ provide another characterization of half-turn states.
(D3s) is a rather strong condition. One can show that it implies (D2) (so $P \leq A_{8}$), and that given (D3s), we only need the following weakening of (D1) to find a half turn solution:
(D2w): Corner 1 lies in an odd-numbered corner position.

In fact, this shows that D is an index 2 subgroup inside P, with the nontrivial coset represented for example by any 90° re-orientation of the entire cube.

This last characterization of half turns $((\mathbf{D} 2 \mathbf{w})+(\mathbf{D} 3 \mathbf{s}))$ does not involve counting parity. On the other hand, since there are 6 pairs of complement planes of 4 corners, checking (D3s) seems more time-consuming.

Group-like conditions have the following advantage: (4.2) implies that the natural map

$$
D \backslash S_{8} \rightarrow\left(A_{8} \backslash S_{8}\right) \times\left(\left(S_{\mathrm{ev}} \times S_{\mathrm{od}}\right) \backslash S_{8}\right) \times\left(P \backslash S_{8}\right)
$$

is injective. It therefore suffices to name the coset spaces $A_{8} \backslash S_{8},\left(S_{\text {ev }} \times S_{\text {od }}\right) \backslash S_{8}$, and $P \backslash S_{8}$ individually. However, it's not clear to me how to do this for $P \backslash S_{8}$ without keeping track of the configuration of 6 planes of 4 corners.

One could hope that there is a subgroup $Q \leq S_{8}$ with a small index inside S_{8} (so that $Q \backslash S_{8}$ is easy to describe) so that we still have

$$
D=\left(S_{\mathrm{ev}} \times S_{\mathrm{od}}\right) \cap A_{8} \cap Q
$$

[^0]: Date: April 19, 2017.

