A Commutative Diagram of the Heavens

Shotaro Makisumi
Stanford University
Math Day at the Beach, 2014

Introduction

Question

Why are the days of the week in the following order?
Monday Tuesday Wednesday Thursday Friday Saturday Sunday

Introduction

Question

Why are the days of the week in the following order?
Monday Tuesday Wednesday Thursday Friday Saturday Sunday

- Only care about the cyclic order (no "first" day)

Introduction

Question

Why are the days of the week in the following order?
Monday Tuesday Wednesday Thursday Friday Saturday Sunday

- Only care about the cyclic order (no "first" day)
- A leisurely stroll across languages, for a mathematical audience

Introduction

Question

Why are the days of the week in the following order?
Monday Tuesday Wednesday Thursday Friday Saturday Sunday

- Only care about the cyclic order (no "first" day)
- A leisurely stroll across languages, for a mathematical audience
- Everything here is well known; any originality is only in the presentation

Introduction

Question

Why are the days of the week in the following order?
Monday Tuesday Wednesday Thursday Friday Saturday Sunday

- Only care about the cyclic order (no "first" day)
- A leisurely stroll across languages, for a mathematical audience
- Everything here is well known; any originality is only in the presentation
- Inspired in part by conversations with Brian Lawrence (Stanford)

Why should there be any reason at all? First hint

Why should there be any reason at all? First hint

Look at etymology

Why should there be any reason at all? First hint

Look at etymology

Monday Tuesday Wednesday Thursday Friday Saturday Sunday

Why should there be any reason at all? First hint

Look at etymology

Monday	Tuesday	Wednesday	Thursday	Friday	Saturday	Sunday
\uparrow					\uparrow	
Moon					Saturn	Sun

- Monday, Saturday, Sunday correspond to Moon, Saturn, Sun

Why should there be any reason at all? First hint

Look at etymology

Monday	Tuesday	Wednesday	Thursday	Friday	Saturday	Sunday
\uparrow					\downarrow	
Moon					Saturn	Sun

- Monday, Saturday, Sunday correspond to Moon, Saturn, Sun
- Sun, Moon, and the five visible planets (Mercury, Venus, Mars, Jupiter, Saturn) form the "seven luminaries" of antiquity.

Why should there be any reason at all? First hint

Look at etymology

Monday	Tuesday	Wednesday	Thursday	Friday	Saturday	Sunday
\uparrow						
Moon					Saturn	Sun

- Monday, Saturday, Sunday correspond to Moon, Saturn, Sun
- Sun, Moon, and the five visible planets (Mercury, Venus, Mars, Jupiter, Saturn) form the "seven luminaries" of antiquity.
- The luminaries have (at least one) natural order

Why should there be any reason at all? First hint

Look at etymology

Monday	Tuesday	Wednesday	Thursday	Friday	Saturday	Sunday
\uparrow						
Moon	$?$	$?$	$?$	$?$	Saturn	Sun

- Monday, Saturday, Sunday correspond to Moon, Saturn, Sun
- Sun, Moon, and the five visible planets (Mercury, Venus, Mars, Jupiter, Saturn) form the "seven luminaries" of antiquity.
- The luminaries have (at least one) natural order

Goal 1

There is a correspondence between the days of the week and the seven luminaries extending the above

Why should there be any reason at all? First hint

Look at etymology

Monday	Tuesday	Wednesday	Thursday	Friday	Saturday	Sunday
\uparrow						
Moon	$?$	$?$	$?$	\downarrow	\downarrow	\downarrow

- Monday, Saturday, Sunday correspond to Moon, Saturn, Sun
- Sun, Moon, and the five visible planets (Mercury, Venus, Mars, Jupiter, Saturn) form the "seven luminaries" of antiquity.
- The luminaries have (at least one) natural order

Goal 1

There is a correspondence between the days of the week and the seven luminaries extending the above

Goal 2

The order of the days comes from some natural order on the luminaries

Why should there be any reason at all? Second hint

Why should there be any reason at all? Second hint

Monday Tuesday Wednesday Thursday Friday Saturday Sunday

Why should there be any reason at all? Second hint

- The other days "correspond" to Norse gods

Why should there be any reason at all? Second hint

- The other days "correspond" to Norse gods
- Mercury, Venus, Mars, Jupiter, Saturn are Roman gods

Why should there be any reason at all? Second hint

- The other days "correspond" to Norse gods
- Mercury, Venus, Mars, Jupiter, Saturn are Roman gods

Refined Goal 1

There is a correspondence

Why should there be any reason at all? Second hint

- The other days "correspond" to Norse gods
- Mercury, Venus, Mars, Jupiter, Saturn are Roman gods

Refined Goal 1

There is a correspondence

- Remark: Gods don't have a natural order

Goal 1: Days and Luminaries

Goal 1: Days and Luminaries

French
lundi mardi mercredi jeudi vendredi samedi dimanche

Goal 1: Days and Luminaries

French
lundi mardi mercredi jeudi vendredi samedi dimanche

- Saturday and Sunday are from religious terms (Sabbath, Dominicus)

Goal 1: Days and Luminaries

French
lundi mardi mercredi jeudi vendredi samedi dimanche

- Saturday and Sunday are from religious terms (Sabbath, Dominicus)
- "-di" = "-day"

Goal 1: Days and Luminaries

French
lundi mardi mercredi jeudi vendredi samedi dimanche

- Saturday and Sunday are from religious terms (Sabbath, Dominicus)
- "-di" = "-day"
- The weekdays correspond exactly to the missing luminaries!

Goal 1: Days and Luminaries

French
$\underset{\uparrow}{\text { lundi mardi mercredi jeudi vendredi samedi dimanche }}$
Lune

- Saturday and Sunday are from religious terms (Sabbath, Dominicus)
- "-di" = "-day"
- The weekdays correspond exactly to the missing luminaries!
- Monday again corresponds to the Moon

Goal 1: Days and Luminaries

French

- Saturday and Sunday are from religious terms (Sabbath, Dominicus)
- "-di" = "-day"
- The weekdays correspond exactly to the missing luminaries!
- Monday again corresponds to the Moon

Goal 1: Days and Luminaries

French

- Saturday and Sunday are from religious terms (Sabbath, Dominicus)
- "-di" = "-day"
- The weekdays correspond exactly to the missing luminaries!
- Monday again corresponds to the Moon

Goal 1: Days and Luminaries

French

- Saturday and Sunday are from religious terms (Sabbath, Dominicus)
- "-di" = "-day"
- The weekdays correspond exactly to the missing luminaries!
- Monday again corresponds to the Moon

Goal 1: Days and Luminaries

French

- Saturday and Sunday are from religious terms (Sabbath, Dominicus)
- "-di" = "-day"
- The weekdays correspond exactly to the missing luminaries!
- Monday again corresponds to the Moon

Goal 1: Days and Luminaries

French

lundi	mardi	mercredi	jeudi	vendredi	samedi
\downarrow	\uparrow	\uparrow	\downarrow	\downarrow	

Spanish

- Saturday and Sunday are from religious terms (Sabbath, Dominicus)
- "-di" = "-day"
- The weekdays correspond exactly to the missing luminaries!
- Monday again corresponds to the Moon
- Same in Spanish

Goal 1: Days and Luminaries

French

lundi	mardi	mercredi	jeudi	vendredi	samedi	dimanche
\downarrow	\downarrow	\downarrow	\uparrow	\downarrow		
Lune	Mars	Mercure	Jupiter	Vénus		

Spanish

- Saturday and Sunday are from religious terms (Sabbath, Dominicus)
- "-di" = "-day"
- The weekdays correspond exactly to the missing luminaries!
- Monday again corresponds to the Moon
- Same in Spanish
- Probably not a coincidence; part of a single system of planetary days

Goal 1: Days and Luminaries

So we can construct a correspondence between the days and the luminaries

Monday	Tuesday	Wednesday	Thursday	Friday	Saturday	Sunday
Moon	Mars	Mercury	Jupiter	Venus	Saturn	Sun

Goal 1: Days and Luminaries

So we can construct a correspondence between the days and the luminaries

Monday	Tuesday	Wednesday	Thursday	Friday	Saturday
\uparrow				Sunday	
Moon	Mars	Mercury	Jupiter	Venus	Saturn

- using English

Goal 1: Days and Luminaries

So we can construct a correspondence between the days and the luminaries

Monday	Tuesday	Wednesday	Thursday	Friday	Saturday	Sunday
\downarrow	\uparrow	\downarrow	\uparrow	\uparrow	\uparrow	\uparrow
Moon	Mars	Mercury	Jupiter	Venus	Saturn	Sun

- using English and (say) French

Goal 1: Days and Luminaries

So we can construct a correspondence between the days and the luminaries

Monday	Tuesday	Wednesday	Thursday	Friday	Saturday	Sunday
\downarrow	\uparrow	\ddots	\uparrow	\uparrow	\uparrow	\uparrow
Moon	Mars	Mercury	Jupiter	Venus	Saturn	Sun

- using English and (say) French
- Monday \longleftrightarrow Moon through both English and French

Goal 1: Days and Luminaries

So we can construct a correspondence between the days and the luminaries

Monday	Tuesday	Wednesday	Thursday	Friday	Saturday	Sunday
\downarrow	\uparrow	\ddots	\uparrow	\downarrow	\uparrow	\uparrow
Moon	Mars	Mercury	Jupiter	Venus	Saturn	Sun

- using English and (say) French
- Monday \longleftrightarrow Moon through both English and French
- Sloppy

Goal 1: Days and Luminaries

So we can construct a correspondence between the days and the luminaries

Monday	Tuesday	Wednesday	Thursday	Friday	Saturday	Sunday
\downarrow	\uparrow	\downarrow	\uparrow	\uparrow	\uparrow	\uparrow
Moon	Mars	Mercury	Jupiter	Venus	Saturn	Sun

- using English and (say) French
- Monday \longleftrightarrow Moon through both English and French
- Sloppy
- What does "correspond" mean?

Goal 1: Days and Luminaries

So we can construct a correspondence between the days and the luminaries

- using English and (say) French
- Monday \longleftrightarrow Moon through both English and French
- Sloppy
- What does "correspond" mean?
- Should differentiate between an object or concept and its name

A more precise diagram

A more precise diagram

Tuesday Monday Sunday

A more precise diagram

Tuesday Monday Sunday

Sun Moon Mars

A more precise diagram

Tuesday Monday Sunday
Sun Moon Mars

- No direct Days (concepts) \longleftrightarrow Luminaries (objects)

A more precise diagram

- No direct Days (concepts) \longleftrightarrow Luminaries (objects)
- Express in a language

A more precise diagram

- No direct Days (concepts) \longleftrightarrow Luminaries (objects)
- Express in a language then use etymology

A more precise diagram

- No direct Days (concepts) \longleftrightarrow Luminaries (objects)
- Express in a language then use etymology
- Can't realize Tuesday \longleftrightarrow Mars through English

A more precise diagram

- No direct Days (concepts) \longleftrightarrow Luminaries (objects)
- Express in a language then use etymology
- Can't realize Tuesday \longleftrightarrow Mars through English or Sunday \longleftrightarrow Sun through French

A more precise diagram

- No direct Days (concepts) \longleftrightarrow Luminaries (objects)
- Express in a language then use etymology
- Can't realize Tuesday \longleftrightarrow Mars through English or Sunday \longleftrightarrow Sun through French
- Consistent: Monday \longleftrightarrow Moon through either language

Problems

This achieves the original Goal 1, but it's unsatisfying.

Problems

This achieves the original Goal 1, but it's unsatisfying.

- The planetary day system was likely only invented once

Problems

This achieves the original Goal 1, but it's unsatisfying.

- The planetary day system was likely only invented once
- Should be able to realize the correspondence through a single language

Problems

This achieves the original Goal 1, but it's unsatisfying.

- The planetary day system was likely only invented once
- Should be able to realize the correspondence through a single language
- Should also take into account the gods

Problems

This achieves the original Goal 1, but it's unsatisfying.

- The planetary day system was likely only invented once
- Should be able to realize the correspondence through a single language
- Should also take into account the gods

A satisfactory answer involves more languages and more complicated diagrams.

Problems

This achieves the original Goal 1, but it's unsatisfying.

- The planetary day system was likely only invented once
- Should be able to realize the correspondence through a single language
- Should also take into account the gods

A satisfactory answer involves more languages and more complicated diagrams.

- Need better way to express correspondences

Problems

This achieves the original Goal 1, but it's unsatisfying.

- The planetary day system was likely only invented once
- Should be able to realize the correspondence through a single language
- Should also take into account the gods

A satisfactory answer involves more languages and more complicated diagrams.

- Need better way to express correspondences
- Use commutative diagrams

Sets and functions between sets

Sets and functions between sets

Some sets:

$$
\begin{aligned}
\mathbb{N} & =\{1,2, \ldots\} \\
\mathbb{Z} & =\{\ldots,-2,-1,0,1,2, \ldots\}
\end{aligned}
$$

Sets and functions between sets

Some sets:

$$
\begin{aligned}
\mathbb{N} & =\{1,2, \ldots\} \\
\mathbb{Z} & =\{\ldots,-2,-1,0,1,2, \ldots\}
\end{aligned}
$$

Draw functions between sets as an arrow:

Sets and functions between sets

Some sets:

$$
\begin{aligned}
\mathbb{N} & =\{1,2, \ldots\} \\
\mathbb{Z} & =\{\ldots,-2,-1,0,1,2, \ldots\}
\end{aligned}
$$

Draw functions between sets as an arrow:

$$
\mathbb{N} \xrightarrow{\times 2} \mathbb{N}
$$

Sets and functions between sets

Some sets:

$$
\begin{aligned}
\mathbb{N} & =\{1,2, \ldots\} \\
\mathbb{Z} & =\{\ldots,-2,-1,0,1,2, \ldots\}
\end{aligned}
$$

Draw functions between sets as an arrow:

$$
\mathbb{N} \xrightarrow{\times 2} \mathbb{N} \xrightarrow{\times(-1)} \mathbb{Z}
$$

Sets and functions between sets

Some sets:

$$
\begin{aligned}
\mathbb{N} & =\{1,2, \ldots\} \\
\mathbb{Z} & =\{\ldots,-2,-1,0,1,2, \ldots\}
\end{aligned}
$$

Draw functions between sets as an arrow:

$$
\mathbb{N} \xlongequal[\times(-2)]{\stackrel{\times 2}{\longrightarrow}} \mathbb{N} \xrightarrow{\times(-1)} \mathbb{Z}
$$

Can compose functions.

Commutative diagram

Commutative diagram

A diagram commutes if any two "paths" between two objects compose to the same function.

Commutative diagram

A diagram commutes if any two "paths" between two objects compose to the same function.

- Example: Both paths give $\times 6$.

Commutative diagram

A diagram commutes if any two "paths" between two objects compose to the same function.

- Example: Both paths give $\times 6$.
- Non-Example: The order in which you add and multiply matters.

$$
\begin{aligned}
& \mathbb{Z} \\
&+3 \mid \xrightarrow{\times 2} \mathbb{Z} \\
& \mathbb{Z} \\
& \underset{\times 2}{ } \\
& \\
& \mathbb{Z}
\end{aligned}
$$

Commutative diagram

A diagram commutes if any two "paths" between two objects compose to the same function.

- Example: Both paths give $\times 6$.

$$
\begin{array}{r}
\mathbb{Z} \stackrel{\times 2}{\mathbb{Z}} \underset{\mathbb{Z}}{\mathbb{Z}} \underset{\times 2}{ }{ }_{\square}^{\longrightarrow} \times 3 \\
\mathbb{Z}
\end{array}
$$

- Non-Example: The order in which you add and multiply matters.

Back to the Heavens: Some notation

Back to the Heavens: Some notation

Goal: Draw the "right" commutative diagram

Back to the Heavens: Some notation

Goal: Draw the "right" commutative diagram
$D=\{$ Days of the week (concept) $\}=\{$ Monday, Tuesday,$\ldots\}$

Back to the Heavens: Some notation

Goal: Draw the "right" commutative diagram
$D=\{$ Days of the week (concept) $\}=\{$ Monday, Tuesday, $\ldots\}$
$L=\{$ Seven Luminaries (object) $\}=\{$ Moon, Mars, $\ldots\}$

Back to the Heavens: Some notation

Goal: Draw the "right" commutative diagram

$$
\begin{aligned}
D & =\{\text { Days of the week (concept) }\}=\{\text { Monday, Tuesday, } \ldots\} \\
L & =\{\text { Seven Luminaries (object) }\}=\{\text { Moon, Mars, } . .\} \\
D_{e n} & =\{\text { "Monday", "Tuesday", } \ldots\}, L_{e n}=\{\text { "Moon", "Mars", } \ldots\}
\end{aligned}
$$

Back to the Heavens: Some notation

Goal: Draw the "right" commutative diagram

$$
\begin{aligned}
D & =\{\text { Days of the week (concept) }\}=\{\text { Monday, Tuesday, } \ldots\} \\
L & =\{\text { Seven Luminaries (object) }\}=\{\text { Moon, Mars, }, \ldots\} \\
D_{e n} & =\{\text { "Monday", "Tuesday" }, \ldots\}, L_{e n}=\{\text { "Moon", "Mars" }, \ldots\} \\
D_{f r} & =\{\text { "lundi", "mardi", } \ldots\}, L_{f r}=\{\text { "lune", "Mars" }, \ldots\}
\end{aligned}
$$

Back to the Heavens: Some notation

Goal: Draw the "right" commutative diagram
$D=\{$ Days of the week (concept) $\}=\{$ Monday, Tuesday, $\ldots\}$
$L=\{$ Seven Luminaries (object) $\}=\{$ Moon, Mars, $\ldots\}$
$D_{e n}=\{$ "Monday", "Tuesday", $\ldots\}, L_{e n}=\{$ "Moon", "Mars",$\ldots\}$
$D_{f r}=\{$ "lundi", "mardi",$\ldots\}, L_{f r}=\{$ "lune", "Mars",$\ldots\}$
etc.

Back to the Heavens: Some notation

Goal: Draw the "right" commutative diagram
$D=\{$ Days of the week (concept) $\}=\{$ Monday, Tuesday, $\ldots\}$
$L=\{$ Seven Luminaries (object) $\}=\{$ Moon, Mars, $\ldots\}$
$D_{e n}=\{$ "Monday", "Tuesday",$\ldots\}, L_{e n}=\{$ "Moon", "Mars",$\ldots\}$
$D_{f r}=\{$ "lundi", "mardi", $\ldots\}, L_{f r}=\{$ "lune", "Mars",$\ldots\}$
etc.

- $X \longleftrightarrow Y$ means a correspondence, i.e. a bijection $X \rightarrow Y$
- $X \leftrightarrow \cdots Y$ means a partial correspondence

New diagram

New diagram

$D \quad L$

New diagram

New diagram

- The two triangles commute (definition of translation)

New diagram

- The two triangles commute (definition of translation)
- The rectangle commutes (i.e. consistent on Monday \longleftrightarrow moon)

New diagram

- The two triangles commute (definition of translation)
- The rectangle commutes (i.e. consistent on Monday \longleftrightarrow moon)
- Planetary days $D \longleftrightarrow L$ obtained by combining the two partial correspondences

A single language

Latin

A single language

Latin

dies Lūnae dies Martis dies Mercurī̀ dies lovis dies Veneris dies Saturnī dies Sōlis

A single language

Latin

- Can realize the correspondence $D \longleftrightarrow L$ through Latin alone

A single language

Latin

- Can realize the correspondence $D \longleftrightarrow L$ through Latin alone

A single language

Latin

- Can realize the correspondence $D \longleftrightarrow L$ through Latin alone

A single language

Latin

- Can realize the correspondence $D \longleftrightarrow L$ through Latin alone

- Translation refined to descendant relation la $\longrightarrow \mathrm{fr}$

A single language

Latin

- Can realize the correspondence $D \longleftrightarrow L$ through Latin alone

- Translation refined to descendant relation la $\longrightarrow \mathrm{fr}$
- la \longleftrightarrow en is still mysterious

Enter the gods

Enter the gods

Latin

dies Lūnae	dies Martis	dies Mercurī̄	dies lovis	dies Veneris	dies Saturnī	dies Sōlis
Luna	Mars	Mercurius	luppiter	Venus	Saturnus	Sol

Enter the gods

Latin

- D and L were named after Roman gods

$$
G_{R}=\{\text { Roman gods used to name } D \text { and } L\}
$$

Enter the gods

Latin

- D and L were named after Roman gods

$$
G_{R}=\{\text { Roman gods used to name } D \text { and } L\}
$$

- Triangle

Enter the gods

Latin

- D and L were named after Roman gods

$$
G_{R}=\{\text { Roman gods used to name } D \text { and } L\}
$$

- Triangle

- This can be traced through languages

The triangle for Romance languages

The triangle for Romance languages

A very simplified family tree of Romance languages:

The triangle for Romance languages

A very simplified family tree of Romance languages:

- All descended from Latin

The triangle for Romance languages

A very simplified family tree of Romance languages:

- All descended from Latin
- (*Ibero-Romance may not actually have existed)

The triangle for Romance languages

Triangle at each language in the tree:

The triangle for Romance languages

Triangle at each language in the tree:

Correspondences can only weaken

The triangle for Romance languages

Triangle at each language in the tree:

Correspondences can only weaken

- Lost for Saturday and Sunday in French, Spanish

The triangle for Romance languages

Triangle at each language in the tree:

Correspondences can only weaken

- Lost for Saturday and Sunday in French, Spanish
- Days numbered in Portuguese (only such Romance language)

The triangle for Romance languages

Triangle at each language in the tree:

Correspondences can only weaken

- Lost for Saturday and Sunday in French, Spanish
- Days numbered in Portuguese (only such Romance language)
- Partial correspondences for *lbero-Romance must have been at least as strong as for Spanish

What about English?

What about English?

- English is a Germanic language, not a descendant of Latin

What about English?

- English is a Germanic language, not a descendant of Latin
- Most other Germanic languages follow English's pattern

What about English?

- English is a Germanic language, not a descendant of Latin
- Most other Germanic languages follow English's pattern Swedish

måndag	tisdag	onsdag	torsdag	fredag	lördag	söndag
\uparrow	\uparrow	\uparrow	\uparrow	\uparrow		
Månen	Tyr	Oden	Thor	Frigg		Solen

What about English?

- English is a Germanic language, not a descendant of Latin
- Most other Germanic languages follow English's pattern Swedish

måndag	tisdag	onsdag	torsdag	fredag	lördag	söndag
	\uparrow	\uparrow	\uparrow	\uparrow		\uparrow
Månen	Tyr	Oden	Thor	Frigg		Solen

- Can track names of Germanic gods and of days through the tree

What about English?

- English is a Germanic language, not a descendant of Latin
- Most other Germanic languages follow English's pattern

Swedish

måndag	tisdag	onsdag	torsdag	fredag	lördag	söndag
\downarrow	\uparrow	\uparrow	\uparrow	\uparrow		\uparrow
Mànen	Tyr	Oden	Thor	Frigg		Solen

- Can track names of Germanic gods and of days through the tree
- *Proto-Germanic *Wōdanaz, Proto-Norse Wōdin, Old Norse Ōdhinn
- OHG Wôdan/Wuotan, Old English Wōden

What about English?

- English is a Germanic language, not a descendant of Latin
- Most other Germanic languages follow English's pattern Swedish

måndag	tisdag	onsdag	torsdag	fredag	lördag	söndag
\downarrow	\uparrow	\uparrow	\uparrow	\uparrow		\uparrow
Mànen	Tyr	Oden	Thor	Frigg		Solen

- Can track names of Germanic gods and of days through the tree
- *Proto-Germanic *Wōdanaz, Proto-Norse Wōdin, Old Norse Ōdhinn
- OHG Wôdan/Wuotan, Old English Wōden
- Without history, can't say where the triangle originated, but it must already have existed in proto-Germanic

Some history

Some history

- 7-day calendar and planetary days already used by the Romans

Some history

- 7-day calendar and planetary days already used by the Romans
- ~1st century A.D.: Germanic peoples borrow planetary days

Some history

- 7-day calendar and planetary days already used by the Romans
- ~1st century A.D.: Germanic peoples borrow planetary days
- Translated Sun and Moon

Some history

- 7-day calendar and planetary days already used by the Romans
- ~1st century A.D.: Germanic peoples borrow planetary days
- Translated Sun and Moon
- Gods:

Some history

- 7-day calendar and planetary days already used by the Romans
- ~1st century A.D.: Germanic peoples borrow planetary days
- Translated Sun and Moon
- Gods:

- Choice: How did they choose the corresponding Germanic god?

Some history

- 7-day calendar and planetary days already used by the Romans
- ~1st century A.D.: Germanic peoples borrow planetary days
- Translated Sun and Moon
- Gods:

- Choice: How did they choose the corresponding Germanic god?
- Interpretatio germanica: "[T]he practice by the Germanic peoples of identifying Roman gods with the names of Germanic deities." (Wikipedia)

A surprising language: Japanese

A surprising language：Japanese

月曜日 火曜日 水䍜日 木曜日 金曜日 土曜日 日曜日

－曜日（Luminary Day）

A surprising language：Japanese

月曜日 火曜日 水曜日 木曜日 金曜日 土曜日 日曜日					
月 火星	水星	木星	金星	土星	太陽

－曜日（Luminary Day），星（Star）

A surprising language：Japanese

- 曜日（Luminary Day），星（Star）
- Direct for Monday（月（Moon））and Sunday（日（Day／Sun））

A surprising language：Japanese

- 曜日（Luminary Day），星（Star）
- Direct for Monday（月（Moon））and Sunday（日（Day／Sun））
－Other days and luminaries：$E=\{$ Five Elements of Chinese thought $\}$

A surprising language：Japanese

- 曜日（Luminary Day），星（Star）
- Direct for Monday（月（Moon））and Sunday（日（Day／Sun））
－Other days and luminaries：$E=\{$ Five Elements of Chinese thought $\}$

A surprising language：Japanese

- 曜日（Luminary Day），星（Star）
- Direct for Monday（月（Moon））and Sunday（日（Day／Sun））
－Other days and luminaries：$E=\{$ Five Elements of Chinese thought $\}$

－This is the same correspondence $D \longleftrightarrow L$ ！

A surprising commutative diagram

A surprising commutative diagram

A surprising commutative diagram

jeudi \longleftrightarrow Jupiter

A surprising commutative diagram

jeudi \longleftrightarrow Jupiter

- Too good to be a coincidence

A surprising commutative diagram

jeudi \longleftrightarrow Jupiter

- Too good to be a coincidence
- E has an order (unlike G_{R}), but unrelated to the order on D

A surprising commutative diagram

jeudi \longleftrightarrow Jupiter

- Too good to be a coincidence
- E has an order (unlike G_{R}), but unrelated to the order on D
- Most likely related to the Western planetary day system

A surprising commutative diagram

jeudi \longleftrightarrow Jupiter

- Too good to be a coincidence
- E has an order (unlike G_{R}), but unrelated to the order on D
- Most likely related to the Western planetary day system

- $E \longleftrightarrow L_{j a}$ from China

A surprising commutative diagram

jeudi \longleftrightarrow Jupiter

- Too good to be a coincidence
- E has an order (unlike G_{R}), but unrelated to the order on D
- Most likely related to the Western planetary day system

- $E \longleftrightarrow L_{j a}$ from China
- $D_{j a} \longleftrightarrow L_{j a}$ from the West (somehow)

A surprising commutative diagram

jeudi \longleftrightarrow Jupiter

- Too good to be a coincidence
- E has an order (unlike G_{R}), but unrelated to the order on D
- Most likely related to the Western planetary day system

- $E \longleftrightarrow L_{j a}$ from China
- $D_{j a} \longleftrightarrow L_{j a}$ from the West (somehow)
- $E \longleftrightarrow D_{j a}$ only as a consequence (unlike with G_{R})

Application: Me

- What correspondences exist in my head?

Application: Me

- What correspondences exist in my head?

- Native Japanese speaker

Application: Me

- What correspondences exist in my head?

- Native Japanese speaker who knows English

Application: Me

- What correspondences exist in my head?

- Native Japanese speaker who knows English and French

Application: Me

- What correspondences exist in my head?

- Native Japanese speaker who knows English and French
- Never had to translate planet names

Application: Me

- What correspondences exist in my head?

- Native Japanese speaker who knows English and French
- Never had to translate planet names
- Know the order of the planets only in Japanese

Example: What's the name of the 5th planet from the Sun in English?

Example：What＇s the name of the 5th planet from the Sun in English？

－Use mnemonic to get＂木星＂（Wood star）in Japanese

＂木星＂

Example：What＇s the name of the 5th planet from the Sun in English？

－Use mnemonic to get＂木星＂（Wood star）in Japanese

＂木星＂
－No direct path．．．but the diagram commutes！

Example：What＇s the name of the 5th planet from the Sun in English？

－Use mnemonic to get＂木星＂（Wood star）in Japanese

－No direct path．．．but the diagram commutes！
－木（Wood）

Example：What＇s the name of the 5th planet from the Sun in English？

－Use mnemonic to get＂木星＂（Wood star）in Japanese

－No direct path．．．but the diagram commutes！
－木（Wood），木曜日（Wood luminary day）

Example：What＇s the name of the 5th planet from the Sun in English？

－Use mnemonic to get＂木星＂（Wood star）in Japanese

－No direct path．．．but the diagram commutes！
－木（Wood），木曜日（Wood luminary day）

Example：What＇s the name of the 5th planet from the Sun in English？

－Use mnemonic to get＂木星＂（Wood star）in Japanese

－No direct path．．．but the diagram commutes！
－木（Wood），木曜日（Wood luminary day）

Example：What＇s the name of the 5th planet from the Sun in English？

－Use mnemonic to get＂木星＂（Wood star）in Japanese

－No direct path．．．but the diagram commutes！
－木（Wood），木曜日（Wood luminary day）

Example: What's the name of the 5th planet from the Sun in English?

- Use mnemonic to get "木星" (Wood star) in Japanese

Why does the correspondence exist in Japanese?

Why does the correspondence exist in Japanese?

Through China. But in Chinese:

Why does the correspondence exist in Japanese？

Through China．But in Chinese：

星期一 星期一 星期三 星期四 星期五 星期六 星期日

－星期（Star period）

Why does the correspondence exist in Japanese？

Through China．But in Chinese：

| 星期一 星期二 星期三 星期四 星期五 星期六 星期日 | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 月 小星 | | | | |
| 水星 | 木星 | 金星 | 土星 | 太阳 |

－星期（Star period），星（Star）

Why does the correspondence exist in Japanese？

Through China．But in Chinese：

- 星期（Star period），星（Star）
- Direct correspondence only for Sunday（日（Day／Sun））

Why does the correspondence exist in Japanese？

Through China．But in Chinese：

星期一	星期二	星期三	星期四	星期五	星期六	星期日
	火（Fire）	水（Water）	木（Wood）	金（Metal）	土（Earth）	
	\downarrow	\downarrow	\uparrow	\downarrow	\downarrow	
月	火星	水星	木星	金星	土星	太阳

- 星期（Star period），星（Star）
- Direct correspondence only for Sunday（日（Day／Sun））
－Only the planets are named after the elements

Why does the correspondence exist in Japanese？

Through China．But in Chinese：

1	2	3	4	5	6	
星期一	星期二	星期三	星期四	星期五	星期六	星期日
	火（Fire）	水（Water）	$木($ Wood）	金（Metal）	土（Earth）	
	\downarrow	\downarrow	\downarrow	\downarrow	\downarrow	
月	火星	水星	木星	金星	土星	太阳

- 星期（Star period），星（Star）
- Direct correspondence only for Sunday（日（Day／Sun））
－Only the planets are named after the elements
－The other days are numbered！

Why does the correspondence exist in Japanese？

Through China．But in Chinese：

1	2	3	4	5	6	
星期一	星期二	星期三	星期四	星期五	星期六	星期日
	火（Fire）	水（Water）	$木($ Wood）	金（Metal）	土（Earth）	
	\uparrow	\downarrow	\downarrow	\downarrow	\uparrow	
月	火星	水星	木星	金星	土星	太阳

- 星期（Star period），星（Star）
- Direct correspondence only for Sunday（日（Day／Sun））
－Only the planets are named after the elements
－The other days are numbered！

Some history

Need historical evidence

Some history

Need historical evidence

- Antiquity (before 2000 B.C.): $E \leftrightarrow---\rightarrow L_{z h}$ established in China (10-day week)

Some history

Need historical evidence

- Antiquity (before 2000 B.C.): $E \leftrightarrow---L_{z h}$ established in China (10-day week)
- 4th century: Planetary days already known in China (unknown route)

Some history

Need historical evidence

- Antiquity (before 2000 B.C.): $E \leftrightarrow---L_{z h}$ established in China (10-day week)
- 4th century: Planetary days already known in China (unknown route)
- 8th century: Known routes
- through the Persian Empire, by the Manichaeans
- through India, by Buddhist monks

Some history

Need historical evidence

- Antiquity (before 2000 B.C.): $E \leftrightarrow---L_{z h}$ established in China (10-day week)
- 4th century: Planetary days already known in China (unknown route)
- 8th century: Known routes
- through the Persian Empire, by the Manichaeans
- through India, by Buddhist monks
- 806: Many Buddhist texts brought to Japan (10-day week)

Some history

Need historical evidence

- Antiquity (before 2000 B.C.): $E \leftrightarrow-\cdots L_{z h}$ established in China (10-day week)
- 4th century: Planetary days already known in China (unknown route)
- 8th century: Known routes
- through the Persian Empire, by the Manichaeans
- through India, by Buddhist monks
- 806: Many Buddhist texts brought to Japan (10-day week)
- In both countries, planetary days only used for astrology/astronomy

Some history

Need historical evidence

- Antiquity (before 2000 B.C.): $E \leftrightarrow---L_{z h}$ established in China (10-day week)
- 4th century: Planetary days already known in China (unknown route)
- 8th century: Known routes
- through the Persian Empire, by the Manichaeans
- through India, by Buddhist monks
- 806: Many Buddhist texts brought to Japan (10-day week)
- In both countries, planetary days only used for astrology/astronomy
- 1876: Due to Western influence, Japan adopts 7-day calendar and planetary days

Some history

Need historical evidence

- Antiquity (before 2000 B.C.): $E \leftrightarrow-\cdots L_{z h}$ established in China (10-day week)
- 4th century: Planetary days already known in China (unknown route)
- 8th century: Known routes
- through the Persian Empire, by the Manichaeans
- through India, by Buddhist monks
- 806: Many Buddhist texts brought to Japan (10-day week)
- In both countries, planetary days only used for astrology/astronomy
- 1876: Due to Western influence, Japan adopts 7-day calendar and planetary days
- 1911: Republic of China established, adopts 7-day calendar but with numbered days

Another application

Another application

Someone who knows Chinese

Another application

Someone who knows Chinese and (say) French

Another application

Someone who knows Chinese and (say) French can figure out the days of the week in Japanese.

Example：How do you say 星期四（Star period 4）in Japanese？

Example：How do you say 星期四（Star period 4）in Japanese？

＂星期四＂

－＂星期四＂（Star period 4）

Example：How do you say 星期四（Star period 4）in Japanese？

－＂星期四＂（Star period 4）
－No direct path．．．but the diagram commutes！

Example：How do you say 星期四（Star period 4）in Japanese？

－＂星期四＂（Star period 4）
－No direct path．．．but the diagram commutes！

Example：How do you say 星期四（Star period 4）in Japanese？

－＂星期四＂（Star period 4）
－No direct path．．．but the diagram commutes！

Example：How do you say 星期四（Star period 4）in Japanese？

－＂星期四＂（Star period 4）
－No direct path．．．but the diagram commutes！

Example：How do you say 星期四（Star period 4）in Japanese？

－＂星期四＂（Star period 4）
－No direct path．．．but the diagram commutes！
－＂木星＂（Wood star）

Example：How do you say 星期四（Star period 4）in Japanese？

－＂星期四＂（Star period 4）
－No direct path．．．but the diagram commutes！
－＂木星＂（Wood star），木（Wood）

Example：How do you say 星期四（Star period 4）in Japanese？

－＂星期四＂（Star period 4）
－No direct path．．．but the diagram commutes！
－＂木星＂（Wood star），木（Wood）

Example：How do you say 星期四（Star period 4）in Japanese？

－＂星期四＂（Star period 4）
－No direct path．．．but the diagram commutes！

- ＂木星＂（Wood star），木（Wood）
- Answer：＂木曜日＂（Wood luminary day）

Goal 2: Order on L

Goal 2: Order on L

We want to relate the order on L induced from $D \longleftrightarrow L$

Monday	Tuesday	Wednesday	Thursday	Friday	Saturday
Sunday					
Moon	\uparrow	\uparrow	\uparrow	\uparrow	\uparrow
Mars	Mercury	Jupiter	Venus	Saturn	Sun

Goal 2: Order on L

We want to relate the order on L induced from $D \longleftrightarrow L$

Monday	Tuesday	Wednesday	Thursday	Friday	Saturday
§ Sunday					
Moon	\uparrow	\uparrow	\uparrow	\uparrow	\uparrow
	Mars	Mercury	Jupiter	Venus	Saturn
Sun					

to some natural order on L.

Goal 2: Order on L

We want to relate the order on L induced from $D \longleftrightarrow L$

Monday	Tuesday	Wednesday	Thursday	Friday	Saturday
§ Sunday					
Moon	\uparrow	\uparrow	\uparrow	\uparrow	\uparrow
	Mars	Mercury	Jupiter	Venus	Saturn
Sun					

to some natural order on L.
Obvious candidate, from the farthest to the closest to the Sun...
Saturn Jupiter Mars Moon Venus Mercury Sun

Goal 2: Order on L

We want to relate the order on L induced from $D \longleftrightarrow L$

Monday	Tuesday	Wednesday	Thursday	Friday	Saturday
§ Sunday					
Moon	\uparrow	\uparrow	\uparrow	\uparrow	\uparrow
	Mars	Mercury	Jupiter	Venus	Saturn
Sun					

to some natural order on L.
Obvious candidate, from the farthest to the closest to the Sun...
Saturn Jupiter Mars Moon Venus Mercury Sun
...has no obvious relation.

Goal 2: Order on L

We want to relate the order on L induced from $D \longleftrightarrow L$

Monday	Tuesday	Wednesday	Thursday	Friday	Saturday
Sunday					
Moon	\uparrow	\uparrow	\uparrow	\uparrow	\uparrow
	Mars	Mercury	Jupiter	Venus	Saturn
Sun					

to some natural order on L.
Obvious candidate, from the farthest to the closest to the Sun...
Saturn Jupiter Mars Moon Venus Mercury Sun
...has no obvious relation.

- What order did the ancients think L was in?

Goal 2: Order on L

We want to relate the order on L induced from $D \longleftrightarrow L$

Monday	Tuesday	Wednesday	Thursday	Friday	Saturday
Sunday					
Moon	$\uparrow \downarrow$	\uparrow	\uparrow	\uparrow	\uparrow
	Mars	Mercury	Jupiter	Venus	Saturn
Sun					

to some natural order on L.
Obvious candidate, from the farthest to the closest to the Sun...
Saturn Jupiter Mars Moon Venus Mercury Sun
...has no obvious relation.

- What order did the ancients think L was in?
- Earth in the center!

Goal 2: Order on L

We want to relate the order on L induced from $D \longleftrightarrow L$

Monday	Tuesday	Wednesday	Thursday	Friday	Saturday	Sunday
\downarrow	\uparrow	\downarrow	\uparrow	\uparrow	\uparrow	\downarrow
Moon	Mars	Mercury	Jupiter	Venus	Saturn	Sun

to some natural order on L.
Obvious candidate, from the farthest to the closest to the Sun...
Saturn Jupiter Mars Moon Venus Mercury Sun
...has no obvious relation.

- What order did the ancients think L was in?
- Earth in the center!
- Need to figure out the ancients' order on L from the farthest to the closest to the Earth

Reverse-engineering the planetary day system

Reverse-engineering the planetary day system

Reverse-engineering the planetary day system

Reverse-engineering the planetary day system

Modern: Saturn Jupiter Mars Moon Venus Mercury Sun

Reverse-engineering the planetary day system

Modern: Saturn Jupiter Mars Moon Venus Mercury Sun
Ancients:

Reverse-engineering the planetary day system

| Modern: Saturn Jupiter Mars Moon Venus Mercury Sun | | | | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Ancients: | Saturn | | | | |

Reverse-engineering the planetary day system

Modern:	Saturn Jupiter Mars Moon Venus Mercury	Sun				
Ancients:	Saturn	Jupiter				

Reverse-engineering the planetary day system

Modern:	Saturn	Jupiter	Mars	Moon	Venus	Mercury	Sun
Ancients:	Saturn	Jupiter					Moon

Reverse-engineering the planetary day system

Modern:	Saturn	Jupiter	Mars	Moon	Venus	Mercury	Sun
Ancients:	Saturn	Jupiter	$?$	$?$	$?$	$?$	Moon

Reverse-engineering the planetary day system

Modern:	Saturn	Jupiter	Mars	Moon	Venus	Mercury	Sun
Ancients:	Saturn	Jupiter	$?$	$?$	$?$	$?$	Moon

Continue the pattern: move 5 each time

Reverse-engineering the planetary day system

Modern:	Saturn	Jupiter	Mars	Moon	Venus	Mercury	Sun
Ancients:	Saturn	Jupiter	Mars?	$?$	$?$	$?$	Moon

Continue the pattern: move 5 each time

Reverse-engineering the planetary day system

Modern:	Saturn	Jupiter	Mars	Moon	Venus	Mercury	Sun
Ancients:	Saturn	Jupiter	Mars?	Sun?	$?$	$?$	Moon

Continue the pattern: move 5 each time

Reverse-engineering the planetary day system

Modern:	Saturn	Jupiter	Mars	Moon	Venus	Mercury	Sun
Ancients:	Saturn	Jupiter	Mars?	Sun?	Venus?	$?$	Moon

Continue the pattern: move 5 each time

Reverse-engineering the planetary day system

Modern:	Saturn	Jupiter	Mars	Moon	Venus	Mercury	Sun
Ancients:	Saturn	Jupiter	Mars?	Sun?	Venus?	Mercury?	Moon

Continue the pattern: move 5 each time

Reverse-engineering the planetary day system

Modern:	Saturn	Jupiter	Mars	Moon	Venus	Mercury	Sun
Ancients:	Saturn	Jupiter	Mars?	Sun?	Venus?	Mercury?	Moon

Continue the pattern: move 5 each time

- Consistent with the modern order: orbital period

Reverse-engineering the planetary day system

Modern:	Saturn	Jupiter	Mars	Moon	Venus	Mercury	Sun
Ancients:	Saturn	Jupiter	Mars	Sun	Venus	Mercury	Moon

Continue the pattern: move 5 each time

- Consistent with the modern order: orbital period
- This is in fact e.g. Ptolemy's order

Schema huius pramiffx diuifionis Sphxrarum.

Figure: The Celestial Spheres (Peter Apian, Cosmographia, Antwerp, 1524)

Explanation: The planetary hour system

Explanation: The planetary hour system

- Why move 5 ? Still seems arbitrary

Explanation: The planetary hour system

- Why move 5 ? Still seems arbitrary
- Answer: planetary days come from the Roman planetary hours

	1	2	3	\cdots	24
Saturday	Saturn	Jupiter	Mars	\cdots	Mars
Sunday	Sun	Venus	Mercury	\cdots	Mercury
Monday	Moon	Saturn	Jupiter	\cdots	Jupiter

Explanation: The planetary hour system

- Why move 5 ? Still seems arbitrary
- Answer: planetary days come from the Roman planetary hours

	1	2	3	\cdots	24
Saturday	Saturn	Jupiter	Mars	\cdots	Mars
Sunday	Sun	Venus	Mercury	\cdots	Mercury
Monday	Moon	Saturn	Jupiter	\cdots	Jupiter

- Explanation for "move 5":

Explanation: The planetary hour system

- Why move 5 ? Still seems arbitrary
- Answer: planetary days come from the Roman planetary hours

	1	2	3	\cdots	24
Saturday	Saturn	Jupiter	Mars	\cdots	Mars
Sunday	Sun	Venus	Mercury	\cdots	Mercury
Monday	Moon	Saturn	Jupiter	\cdots	Jupiter

- Explanation for "move 5":

$$
24 \equiv 3 \bmod 7
$$

Explanation: The planetary hour system

- Why move 5 ? Still seems arbitrary
- Answer: planetary days come from the Roman planetary hours

	1	2	3	\cdots	24
Saturday	Saturn	Jupiter	Mars	\cdots	Mars
Sunday	Sun	Venus	Mercury	\cdots	Mercury
Monday	Moon	Saturn	Jupiter	\cdots	Jupiter

- Explanation for "move 5":

$$
\begin{aligned}
24 & \equiv 3 \bmod 7 \\
3 & \equiv 5^{-1} \bmod 7 \quad(\text { i.e. } 3 \cdot 5 \equiv 1 \bmod 7)
\end{aligned}
$$

What does the planetary hour system tell you, really?

What does the planetary hour system tell you, really?

- Earlier: Constructed $D \longleftrightarrow L$ using one or more languages

What does the planetary hour system tell you, really?

- Earlier: Constructed $D \longleftrightarrow L$ using one or more languages
- Question: Does knowing

What does the planetary hour system tell you, really?

- Earlier: Constructed $D \longleftrightarrow L$ using one or more languages
- Question: Does knowing
- the ancients' order on L

What does the planetary hour system tell you, really?

- Earlier: Constructed $D \longleftrightarrow L$ using one or more languages
- Question: Does knowing
- the ancients' order on L
- and the planetary hour system

What does the planetary hour system tell you, really?

- Earlier: Constructed $D \longleftrightarrow L$ using one or more languages
- Question: Does knowing
- the ancients' order on L
- and the planetary hour system
let you construct $D \longleftrightarrow L$ without going through any language?

What does the planetary hour system tell you, really?

- Earlier: Constructed $D \longleftrightarrow L$ using one or more languages
- Question: Does knowing
- the ancients' order on L
- and the planetary hour system
let you construct $D \longleftrightarrow L$ without going through any language?
- Answer: Almost, but not quite

What does the planetary hour system tell you, really?

- Earlier: Constructed $D \longleftrightarrow L$ using one or more languages
- Question: Does knowing
- the ancients' order on L
- and the planetary hour system
let you construct $D \longleftrightarrow L$ without going through any language?
- Answer: Almost, but not quite
- Need to make precise the structures involved and what the planetary hour system says about them

Relevant structure: Cyclically ordered sets

Relevant structure: Cyclically ordered sets

- D, L are no longer plain sets

Relevant structure: Cyclically ordered sets

- D, L are no longer plain sets
- Extra structure: A cyclically ordered set $(S,+1)$

Relevant structure: Cyclically ordered sets

- D, L are no longer plain sets
- Extra structure: A cyclically ordered set $(S,+1)$
- A set S

Relevant structure: Cyclically ordered sets

- D, L are no longer plain sets
- Extra structure: A cyclically ordered set $(S,+1)$
- A set S together with a cyclic permutation $+1: S \longrightarrow S$

Relevant structure: Cyclically ordered sets

- D, L are no longer plain sets
- Extra structure: A cyclically ordered set $(S,+1)$
- A set S together with a cyclic permutation $+1: S \longrightarrow S$
- Examples: $(D,+1)$ and $(L,+1)$

Relevant structure: Cyclically ordered sets

- D, L are no longer plain sets
- Extra structure: A cyclically ordered set $(S,+1)$
- A set S together with a cyclic permutation $+1: S \longrightarrow S$
- Examples: $(D,+1)$ and $(L,+1)$

- $+1: D \longrightarrow D$ sends each day to the next

Relevant structure: Cyclically ordered sets

- D, L are no longer plain sets
- Extra structure: A cyclically ordered set $(S,+1)$
- A set S together with a cyclic permutation $+1: S \longrightarrow S$
- Examples: $(D,+1)$ and $(L,+1)$

- $+1: D \longrightarrow D$ sends each day to the next
- $+1: L \longrightarrow L$ sends each luminary to the one one closer to the Earth (according to the ancients)

Relevant structure: Cyclically ordered sets

- D, L are no longer plain sets
- Extra structure: A cyclically ordered set $(S,+1)$
- A set S together with a cyclic permutation $+1: S \longrightarrow S$
- Examples: $(D,+1)$ and $(L,+1)$

- $+1: D \longrightarrow D$ sends each day to the next
- $+1: L \longrightarrow L$ sends each luminary to the one one closer to the Earth (according to the ancients)
- May as well consider $(D,+1)$ and $(L,+3)$

Planetary hour system

Planetary hour system

Planetary hour system

The planetary hour system is a correspondence $(D,+1) \longleftrightarrow(L,+3)$ of cyclically ordered sets.

Planetary hour system

The planetary hour system is a correspondence $(D,+1) \longleftrightarrow(L,+3)$ of cyclically ordered sets.

- A correspondence of sets $D \stackrel{\Phi}{\longleftrightarrow} L$

Planetary hour system

The planetary hour system is a correspondence $(D,+1) \longleftrightarrow(L,+3)$ of cyclically ordered sets.

- A correspondence of sets $D \stackrel{\Phi}{\longleftrightarrow} L$
- such that $+1: D \rightarrow D$ and $+3: L \rightarrow L$ correspond ("the cycles correspond")

Planetary hour system

The planetary hour system is a correspondence $(D,+1) \longleftrightarrow(L,+3)$ of cyclically ordered sets.

- A correspondence of sets $D \stackrel{\Phi}{\longleftrightarrow} L$
- such that $+1: D \rightarrow D$ and $+3: L \rightarrow L$ correspond ("the cycles correspond"), i.e. the following diagram commutes

Planetary hour system

The planetary hour system is a correspondence $(D,+1) \longleftrightarrow(L,+3)$ of cyclically ordered sets.

- A correspondence of sets $D \stackrel{\Phi}{\longleftrightarrow} L$
- such that $+1: D \rightarrow D$ and $+3: L \rightarrow L$ correspond ("the cycles correspond"), i.e. the following diagram commutes

$$
\begin{array}{rl}
D & L \\
+1 \downarrow & \downarrow+3 \\
D & L
\end{array}
$$

Planetary hour system

The planetary hour system is a correspondence $(D,+1) \longleftrightarrow(L,+3)$ of cyclically ordered sets.

- A correspondence of sets $D \stackrel{\Phi}{\longleftrightarrow} L$
- such that $+1: D \rightarrow D$ and $+3: L \rightarrow L$ correspond ("the cycles correspond"), i.e. the following diagram commutes

$$
\begin{aligned}
& D \stackrel{\Phi}{\longleftrightarrow} \\
&+1 \downarrow \\
& D \stackrel{4}{\leftrightarrows} \\
& L+3
\end{aligned}
$$

Planetary hour system

The planetary hour system is a correspondence $(D,+1) \longleftrightarrow(L,+3)$ of cyclically ordered sets.

Planetary hour system

The planetary hour system is a correspondence $(D,+1) \longleftrightarrow(L,+3)$ of cyclically ordered sets.

- There are 7 such correspondences

Planetary hour system

The planetary hour system is a correspondence $(D,+1) \longleftrightarrow(L,+3)$ of cyclically ordered sets.

- There are 7 such correspondences
- To know which is right, must know it for at least one element

Planetary hour system

The planetary hour system is a correspondence $(D,+1) \longleftrightarrow(L,+3)$ of cyclically ordered sets.

- There are 7 such correspondences
- To know which is right, must know it for at least one element
- (Not cyclic group; no distinguished identity element!)

Planetary hour system

The planetary hour system is a correspondence $(D,+1) \longleftrightarrow(L,+3)$ of cyclically ordered sets.

- There are 7 such correspondences
- To know which is right, must know it for at least one element
- (Not cyclic group; no distinguished identity element!)
- Portuguese has none: out of luck

Planetary hour system

The planetary hour system is a correspondence $(D,+1) \longleftrightarrow(L,+3)$ of cyclically ordered sets．
－There are 7 such correspondences
－To know which is right，must know it for at least one element
－（Not cyclic group；no distinguished identity element！）
－Portuguese has none：out of luck
－Chinese has exactly one：星期日（Star period Day）\longleftrightarrow 太阳（Sun）

Application 2 revisited

So by knowing the planetary hour system, someone who only knows Chinese can still figure out the order of the days of the week in Japanese.

Application 2 revisited

So by knowing the planetary hour system, someone who only knows Chinese can still figure out the order of the days of the week in Japanese.

Application 2 revisited

So by knowing the planetary hour system, someone who only knows Chinese can still figure out the order of the days of the week in Japanese.

Example：How do you say 星期四（Star period 4）in Japanese？

Example：How do you say 星期四（Star period 4）in Japanese？

Want to find the luminary corresponding to 星期四（Star period 4）

Example：How do you say 星期四（Star period 4）in Japanese？

Want to find the luminary corresponding to 星期四（Star period 4）

$$
\text { 星期四 }(\text { Star period } 4)=\text { 星期日 }(\text { Star period Day }) \underbrace{+1+\cdots+1}_{4 \text { times }}
$$

Example：How do you say 星期四（Star period 4）in Japanese？

Want to find the luminary corresponding to 星期四（Star period 4）

$$
\text { 星期四 }(\text { Star period } 4)=\text { 星期日 }(\text { Star period Day }) \underbrace{+1+\cdots+1}_{4 \text { times }}
$$

so look at the following commutative diagram given by the planetary hour system：

$$
\begin{gathered}
\text { 星期日 }(\text { Star period Day }) \stackrel{\Phi}{\longleftrightarrow} \text { 太阳(Sun) } \\
\begin{array}{l}
(+1)^{4} \downarrow \\
\\
\text { 星期四(Star period 4) } \\
\\
\hline
\end{array}{ }_{\Phi}(+3)^{4}
\end{gathered}
$$

Example：How do you say 星期四（Star period 4）in Japanese？

So the luminary corresponding to 星期四（Star period 4）is

Example：How do you say 星期四（Star period 4）in Japanese？

So the luminary corresponding to 星期四（Star period 4）is

$$
\text { 太阳 }(\text { Sun }) \underbrace{+3+\cdots+3}_{4 \text { times }}
$$

Example：How do you say 星期四（Star period 4）in Japanese？

So the luminary corresponding to 星期四（Star period 4）is

$$
\text { 太阳 }(\text { Sun }) \underbrace{+3+\cdots+3}_{4 \text { times }}=太 \text { 太阳 }(\text { Sun })+12
$$

Example：How do you say 星期四（Star period 4）in Japanese？

So the luminary corresponding to 星期四（Star period 4）is

$$
\begin{aligned}
太 \text { 太阳 }(\text { Sun }) \underbrace{+3+\cdots+3}_{4 \text { times }} & =\text { 太阳 }(\text { Sun })+12 \\
& =\text { 太阳 }(\text { Sun })-2
\end{aligned}
$$

Example：How do you say 星期四（Star period 4）in Japanese？

So the luminary corresponding to 星期四（Star period 4）is

$$
\begin{aligned}
太 \text { 太阳(Sun) } \underbrace{+3+\cdots+3}_{4 \text { times }} & =\text { 太阳(Sun) }+12 \\
& =\text { 太阳(Sun) }-2 \\
& =\text { 木星(Wood star). }
\end{aligned}
$$

Example：How do you say 星期四（Star period 4）in Japanese？

So the luminary corresponding to 星期四（Star period 4）is

$$
\begin{aligned}
& \text { 太阳 (Sun) } \underbrace{+3+\cdots+3}_{4 \text { times }}=\text { 太阳 }(\text { Sun })+12 \\
& =\text { 太阳 (Sun) - } 2 \\
& =\text { 木星 (Wood star). }
\end{aligned}
$$

As before，using the element 木（Wood），the answer is 木曜日（Wood luminary day）

Conclusion

Conclusion

- Lots of other languages!

Conclusion

- Lots of other languages!
- Eastern Europe, Middle East, Asia, Africa

Conclusion

- Lots of other languages!
- Eastern Europe, Middle East, Asia, Africa
- Why did some correspondences disappear? Religious, political, linguistic reasons

Conclusion

- Lots of other languages!
- Eastern Europe, Middle East, Asia, Africa
- Why did some correspondences disappear? Religious, political, linguistic reasons
- See M. Falk, Astronomical names for the days of the week, Journal of the Royal Astronomical Society of Canada 93 (1999), no.3, 122-133

Conclusion

- Lots of other languages!
- Eastern Europe, Middle East, Asia, Africa
- Why did some correspondences disappear? Religious, political, linguistic reasons
- See M. Falk, Astronomical names for the days of the week, Journal of the Royal Astronomical Society of Canada 93 (1999), no.3, 122-133
- Math?

Conclusion

- Lots of other languages!
- Eastern Europe, Middle East, Asia, Africa
- Why did some correspondences disappear? Religious, political, linguistic reasons
- See M. Falk, Astronomical names for the days of the week, Journal of the Royal Astronomical Society of Canada 93 (1999), no.3, 122-133
- Math?
- Commutative diagrams as an organizing language

Conclusion

- Lots of other languages!
- Eastern Europe, Middle East, Asia, Africa
- Why did some correspondences disappear? Religious, political, linguistic reasons
- See M. Falk, Astronomical names for the days of the week, Journal of the Royal Astronomical Society of Canada 93 (1999), no.3, 122-133
- Math?
- Commutative diagrams as an organizing language
- Which constructions are natural? Which ones involve an arbitrary choice?

Conclusion

- Lots of other languages!
- Eastern Europe, Middle East, Asia, Africa
- Why did some correspondences disappear? Religious, political, linguistic reasons
- See M. Falk, Astronomical names for the days of the week, Journal of the Royal Astronomical Society of Canada 93 (1999), no.3, 122-133
- Math?
- Commutative diagrams as an organizing language
- Which constructions are natural? Which ones involve an arbitrary choice?
- Make precise the structures involved

Thank you

