### A Commutative Diagram of the Heavens

Shotaro Makisumi

Stanford University

Math Day at the Beach, 2014

### Question

#### Why are the days of the week in the following order?

| Monday | Tuesday | Wednesday | Thursday | Friday | Saturday | Sunday |  |
|--------|---------|-----------|----------|--------|----------|--------|--|
|--------|---------|-----------|----------|--------|----------|--------|--|

| Question                                             |         |           |          |        |          |        |
|------------------------------------------------------|---------|-----------|----------|--------|----------|--------|
| Why are the days of the week in the following order? |         |           |          |        |          |        |
| Monday                                               | Tuesday | Wednesday | Thursday | Friday | Saturday | Sunday |

• Only care about the cyclic order (no "first" day)

| Question                                             |           |          |        |          |        |  |
|------------------------------------------------------|-----------|----------|--------|----------|--------|--|
| Why are the days of the week in the following order? |           |          |        |          |        |  |
| Monday Tuesday                                       | Wednesday | Thursday | Friday | Saturday | Sunday |  |

- Only care about the cyclic order (no "first" day)
- A leisurely stroll across languages, for a mathematical audience

### Question

Why are the days of the week in the following order?

| Monday Tue | sday Wednesday | Thursday | Friday | Saturday | Sunday |
|------------|----------------|----------|--------|----------|--------|
|------------|----------------|----------|--------|----------|--------|

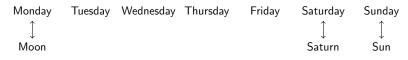
- Only care about the cyclic order (no "first" day)
- A leisurely stroll across languages, for a mathematical audience
- Everything here is well known; any originality is only in the presentation

### Question

Why are the days of the week in the following order?

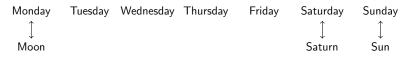
| Monday Tuesday Wednesday Thursday | Friday | Saturday | Sunday |
|-----------------------------------|--------|----------|--------|
|-----------------------------------|--------|----------|--------|

- Only care about the cyclic order (no "first" day)
- A leisurely stroll across languages, for a mathematical audience
- Everything here is well known; any originality is only in the presentation
- Inspired in part by conversations with Brian Lawrence (Stanford)


Shotaro Makisumi (Stanford University) A Commutative Diagram of the Heavens Math Day at the Beach, 2014 3 / 1

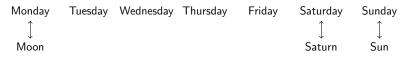
Look at etymology

Look at etymology


| Monday | Tuesday | Wednesday | Thursday | Friday | Saturday | Sunday |
|--------|---------|-----------|----------|--------|----------|--------|
|--------|---------|-----------|----------|--------|----------|--------|

#### Look at etymology




• Monday, Saturday, Sunday correspond to Moon, Saturn, Sun

#### Look at etymology



- Monday, Saturday, Sunday correspond to Moon, Saturn, Sun
- Sun, Moon, and the five visible planets (Mercury, Venus, Mars, Jupiter, Saturn) form the **"seven luminaries"** of antiquity.

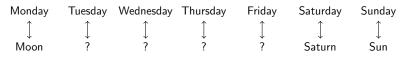
### Look at etymology



- Monday, Saturday, Sunday correspond to Moon, Saturn, Sun
- Sun, Moon, and the five visible planets (Mercury, Venus, Mars, Jupiter, Saturn) form the **"seven luminaries"** of antiquity.
- The luminaries have (at least one) natural order

### Look at etymology




• Monday, Saturday, Sunday correspond to Moon, Saturn, Sun

- Sun, Moon, and the five visible planets (Mercury, Venus, Mars, Jupiter, Saturn) form the "**seven luminaries**" of antiquity.
- The luminaries have (at least one) natural order

### Goal 1

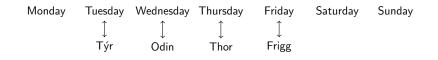
There is a correspondence between the days of the week and the seven luminaries extending the above

### Look at etymology



• Monday, Saturday, Sunday correspond to Moon, Saturn, Sun

- Sun, Moon, and the five visible planets (Mercury, Venus, Mars, Jupiter, Saturn) form the "**seven luminaries**" of antiquity.
- The luminaries have (at least one) natural order


### Goal 1

There is a correspondence between the days of the week and the seven luminaries extending the above

### Goal 2

The order of the days comes from some natural order on the luminaries

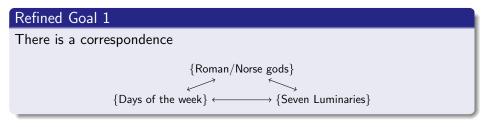
Monday Tuesday Wednesday Thursday Friday Saturday Sunday




• The other days "correspond" to Norse gods



- The other days "correspond" to Norse gods
- Mercury, Venus, Mars, Jupiter, Saturn are Roman gods




- The other days "correspond" to Norse gods
- Mercury, Venus, Mars, Jupiter, Saturn are Roman gods





- The other days "correspond" to Norse gods
- Mercury, Venus, Mars, Jupiter, Saturn are Roman gods



• Remark: Gods don't have a natural order

3

#### French

| lundi | mardi | mercredi | jeudi | vendredi | samedi | dimanche |
|-------|-------|----------|-------|----------|--------|----------|
|       |       |          |       |          |        |          |

3

э

#### French

| lundi | mardi | mercredi | jeudi | vendredi | samedi | dimanche |
|-------|-------|----------|-------|----------|--------|----------|
|       |       |          |       |          |        |          |
|       |       |          |       |          |        |          |
|       |       |          |       |          |        |          |
|       |       |          |       |          |        |          |

#### • Saturday and Sunday are from religious terms (Sabbath, Dominicus)

#### French

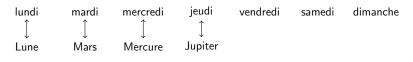
| lundi | mardi | mercredi | jeudi | vendredi | samedi | dimanche |
|-------|-------|----------|-------|----------|--------|----------|
|       |       |          |       |          |        |          |
|       |       |          |       |          |        |          |
|       |       |          |       |          |        |          |
|       |       |          |       |          |        |          |
|       |       |          |       |          |        |          |

Saturday and Sunday are from religious terms (Sabbath, Dominicus)
"-di" = "-day"

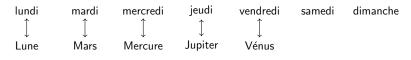
| lu | ndi | mardi | mercredi | jeudi | vendredi | samedi | dimanche |
|----|-----|-------|----------|-------|----------|--------|----------|
|    |     |       |          |       |          |        |          |
|    |     |       |          |       |          |        |          |
|    |     |       |          |       |          |        |          |
|    |     |       |          |       |          |        |          |
|    |     |       |          |       |          |        |          |

- Saturday and Sunday are from religious terms (Sabbath, Dominicus)
  "-di" = "-day"
- The weekdays correspond exactly to the missing luminaries!

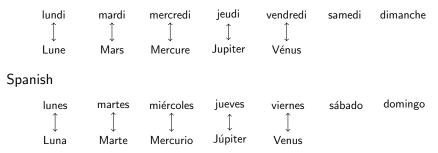



- Saturday and Sunday are from religious terms (Sabbath, Dominicus)
  "-di" = "-day"
- The weekdays correspond exactly to the missing luminaries!
- Monday again corresponds to the Moon

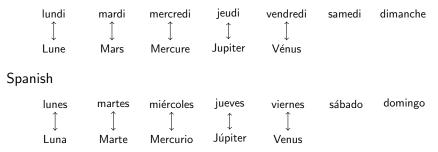



- Saturday and Sunday are from religious terms (Sabbath, Dominicus)
  "-di" = "-day"
- The weekdays correspond exactly to the missing luminaries!
- Monday again corresponds to the Moon




- Saturday and Sunday are from religious terms (Sabbath, Dominicus)
  "-di" = "-day"
- The weekdays correspond exactly to the missing luminaries!
- Monday again corresponds to the Moon




- Saturday and Sunday are from religious terms (Sabbath, Dominicus)
  "-di" = "-day"
- The weekdays correspond exactly to the missing luminaries!
- Monday again corresponds to the Moon



- Saturday and Sunday are from religious terms (Sabbath, Dominicus)
  "-di" = "-day"
- The weekdays correspond exactly to the missing luminaries!
- Monday again corresponds to the Moon



- Saturday and Sunday are from religious terms (Sabbath, Dominicus)
  "-di" = "-day"
- The weekdays correspond exactly to the missing luminaries!
- Monday again corresponds to the Moon
- Same in Spanish



- Saturday and Sunday are from religious terms (Sabbath, Dominicus)
- "-di" = "-day"
- The weekdays correspond exactly to the missing luminaries!
- Monday again corresponds to the Moon
- Same in Spanish
- Probably not a coincidence; part of a *single* system of **planetary\_days**

| Monday | Tuesday | Wednesday | Thursday | Friday | Saturday | Sunday |
|--------|---------|-----------|----------|--------|----------|--------|
| Moon   | Mars    | Mercury   | Jupiter  | Venus  | Saturn   | Sun    |



using English



• using English and (say) French



• using English and (say) French

 $\bullet$  Monday  $\longleftrightarrow$  Moon through both English and French

So we can construct a correspondence between the days and the luminaries



- using English and (say) French
- $\bullet \ \mathsf{Monday} \longleftrightarrow \mathsf{Moon through both English and French}$
- Sloppy

So we can construct a correspondence between the days and the luminaries



- using English and (say) French
- $\bullet \ \mathsf{Monday} \longleftrightarrow \mathsf{Moon through both English and French}$
- Sloppy
  - What does "correspond" mean?

So we can construct a correspondence between the days and the luminaries



- using English and (say) French
- $\bullet \ \mathsf{Monday} \longleftrightarrow \mathsf{Moon through both English and French}$
- Sloppy
  - What does "correspond" mean?
  - Should differentiate between an object or concept and its name

Shotaro Makisumi (Stanford University) A Commutative Diagram of the Heavens Math Day at the Beach, 2014 7 / 1

3

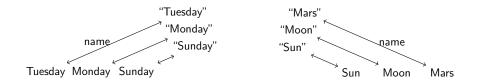
-

Tuesday Monday Sunday

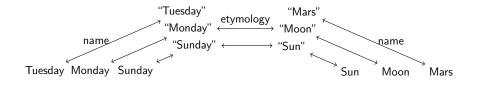
3

Tuesday Monday Sunday

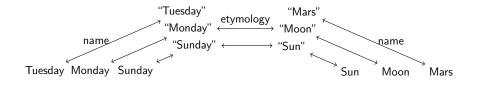
Sun Moon Mars


3

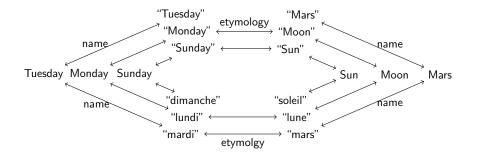
Tuesday Monday Sunday


Sun Moon Mars

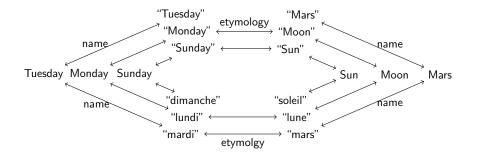
3


#### • No direct Days (concepts) $\leftrightarrow$ Luminaries (objects)




- No direct Days (concepts) ↔ Luminaries (objects)
- Express in a language




- No direct Days (concepts) ↔ Luminaries (objects)
- Express in a language then use etymology



- No direct Days (concepts) ↔ Luminaries (objects)
- Express in a language then use etymology
- Can't realize Tuesday  $\longleftrightarrow$  Mars through English



- No direct Days (concepts) ↔ Luminaries (objects)
- Express in a language then use etymology
- $\bullet$  Can't realize Tuesday  $\longleftrightarrow$  Mars through English or Sunday  $\longleftrightarrow$  Sun through French



- No direct Days (concepts) ↔ Luminaries (objects)
- Express in a language then use etymology
- $\bullet$  Can't realize Tuesday  $\longleftrightarrow$  Mars through English or Sunday  $\longleftrightarrow$  Sun through French
- Consistent: Monday  $\longleftrightarrow$  Moon through either language

э

• The planetary day system was likely only invented once

- The planetary day system was likely only invented once
- Should be able to realize the correspondence through a single language

- The planetary day system was likely only invented once
- Should be able to realize the correspondence through a single language
- Should also take into account the gods

- The planetary day system was likely only invented once
- Should be able to realize the correspondence through a single language
- Should also take into account the gods

A satisfactory answer involves more languages and more complicated diagrams.

- The planetary day system was likely only invented once
- Should be able to realize the correspondence through a single language
- Should also take into account the gods

A satisfactory answer involves more languages and more complicated diagrams.

• Need better way to express correspondences

- The planetary day system was likely only invented once
- Should be able to realize the correspondence through a single language
- Should also take into account the gods

A satisfactory answer involves more languages and more complicated diagrams.

- Need better way to express correspondences
- Use commutative diagrams

Shotaro Makisumi (Stanford University) A Commutative Diagram of the Heavens Math Day at the Beach, 2014 9 / 1

э

$$\begin{split} \mathbb{N} &= \{1,2,\ldots\} \\ \mathbb{Z} &= \{\ldots,-2,-1,0,1,2,\ldots\} \end{split}$$

э

$$\begin{split} \mathbb{N} &= \{1,2,\ldots\} \\ \mathbb{Z} &= \{\ldots,-2,-1,0,1,2,\ldots\} \end{split}$$

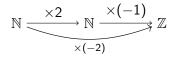
Draw functions between sets as an arrow:

3

$$\begin{split} \mathbb{N} &= \{1,2,\ldots\} \\ \mathbb{Z} &= \{\ldots,-2,-1,0,1,2,\ldots\} \end{split}$$

Draw functions between sets as an arrow:

$$\mathbb{N} \xrightarrow{\times 2} \mathbb{N}$$


$$\begin{split} \mathbb{N} &= \{1,2,\ldots\} \\ \mathbb{Z} &= \{\ldots,-2,-1,0,1,2,\ldots\} \end{split}$$

Draw functions between sets as an arrow:

$$\mathbb{N} \xrightarrow{\quad \times 2 \quad \mathbb{N} \xrightarrow{\quad \times (-1)} \mathbb{Z}}$$

$$\begin{split} \mathbb{N} &= \{1,2,\ldots\} \\ \mathbb{Z} &= \{\ldots,-2,-1,0,1,2,\ldots\} \end{split}$$

Draw functions between sets as an arrow:



Can compose functions.

æ

A diagram **commutes** if any two "paths" between two objects compose to the same function.

A diagram **commutes** if any two "paths" between two objects compose to the same function.

• Example: Both paths give  $\times 6$ .



A diagram **commutes** if any two "paths" between two objects compose to the same function.

• Example: Both paths give  $\times 6$ .



• Non-Example: The order in which you add and multiply matters.

$$\begin{array}{c} \mathbb{Z} \xrightarrow{\times 2} \mathbb{Z} \\ +3 \downarrow \qquad \qquad \downarrow +3 \\ \mathbb{Z} \xrightarrow{\times 2} \mathbb{Z} \end{array}$$

A diagram **commutes** if any two "paths" between two objects compose to the same function.

• Example: Both paths give  $\times 6$ .



• Non-Example: The order in which you add and multiply matters.

$$\begin{array}{cccc} & \mathbb{Z} & \xrightarrow{\times 2} & \mathbb{Z} & & 1 & \longmapsto 2 \\ +3 & & \downarrow +3 & & \downarrow & \downarrow \\ \mathbb{Z} & \xrightarrow{\times 2} & \mathbb{Z} & & 4 & \longmapsto 8 \neq 5 \end{array}$$

Shotaro Makisumi (Stanford University) A Commutative Diagram of the Heavens Math Day at the Beach, 2014 11 /

э

 $D = \{ \mathsf{Days of the week (concept)} \} = \{ \mathsf{Monday}, \mathsf{Tuesday}, \ldots \}$ 

$$D = \{ \text{Days of the week (concept)} \} = \{ \text{Monday, Tuesday, } ... \}$$
$$L = \{ \text{Seven Luminaries (object)} \} = \{ \text{Moon, Mars, } ... \}$$

3

$$\begin{split} D &= \{ \mathsf{Days of the week (concept)} \} = \{ \mathsf{Monday}, \mathsf{Tuesday}, \ldots \} \\ L &= \{ \mathsf{Seven Luminaries (object)} \} = \{ \mathsf{Moon}, \mathsf{Mars}, \ldots \} \\ D_{en} &= \{ \mathsf{``Monday''}, \mathsf{``Tuesday''}, \ldots \}, L_{en} = \{ \mathsf{``Moon''}, \mathsf{``Mars''}, \ldots \} \end{split}$$

3

$$\begin{split} D &= \{ \text{Days of the week (concept)} \} = \{ \text{Monday, Tuesday, } \ldots \} \\ L &= \{ \text{Seven Luminaries (object)} \} = \{ \text{Moon, Mars, } \ldots \} \\ D_{en} &= \{ \text{``Monday'', ``Tuesday'', } \ldots \}, L_{en} = \{ \text{``Moon'', ``Mars'', } \ldots \} \\ D_{fr} &= \{ \text{``lundi'', ``mardi'', } \ldots \}, L_{fr} = \{ \text{``lune'', ``Mars'', } \ldots \} \end{split}$$

Goal: Draw the "right" commutative diagram

$$\begin{split} D &= \{ \mathsf{Days of the week (concept)} \} = \{ \mathsf{Monday}, \mathsf{Tuesday}, \ldots \} \\ L &= \{ \mathsf{Seven Luminaries (object)} \} = \{ \mathsf{Moon}, \mathsf{Mars}, \ldots \} \\ D_{en} &= \{ \mathsf{``Monday''}, \mathsf{``Tuesday''}, \ldots \}, L_{en} = \{ \mathsf{``Moon''}, \mathsf{``Mars''}, \ldots \} \\ D_{fr} &= \{ \mathsf{``lundi''}, \mathsf{``mardi''}, \ldots \}, L_{fr} = \{ \mathsf{``lune''}, \mathsf{``Mars''}, \ldots \} \\ \mathsf{etc.} \end{split}$$

Goal: Draw the "right" commutative diagram

$$\begin{split} D &= \{ \mathsf{Days of the week (concept)} \} = \{ \mathsf{Monday, Tuesday, } \ldots \} \\ L &= \{ \mathsf{Seven Luminaries (object)} \} = \{ \mathsf{Moon, Mars, } \ldots \} \\ D_{en} &= \{ \mathsf{``Monday'', ``Tuesday'', } \ldots \}, L_{en} = \{ \mathsf{``Moon'', ``Mars'', } \ldots \} \\ D_{fr} &= \{ \mathsf{``lundi'', ``mardi'', } \ldots \}, L_{fr} = \{ \mathsf{``lune'', ``Mars'', } \ldots \} \\ \mathsf{etc.} \end{split}$$

X ← Y means a correspondence, i.e. a bijection X → Y
X ← ---→ Y means a partial correspondence

# New diagram

Shotaro Makisumi (Stanford University) A Commutative Diagram of the Heavens Math Day at the Beach, 2014 12 / 3

3

< 🗇 🕨

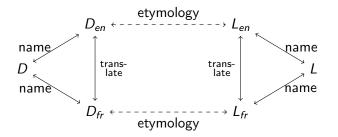
# New diagram

D

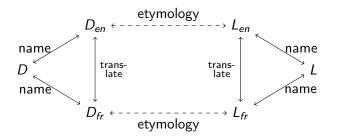
L

< 🗇 🕨

A B F A B F


3




æ



• The two triangles commute (definition of translation)



- The two triangles commute (definition of translation)
- The rectangle commutes (i.e. consistent on Monday  $\leftrightarrow$  moon)



- The two triangles commute (definition of translation)
- The rectangle commutes (i.e. consistent on Monday  $\leftrightarrow$  moon)
- Planetary days  $D \longleftrightarrow L$  obtained by combining the two partial correspondences

Latin

æ

**A** ►

★ 3 > < 3 >

#### Latin

| dies Lūnae | dies Martis | dies Mercuriī | dies lovis | dies Veneris | dies Saturnī | dies Sōlis |
|------------|-------------|---------------|------------|--------------|--------------|------------|
|------------|-------------|---------------|------------|--------------|--------------|------------|

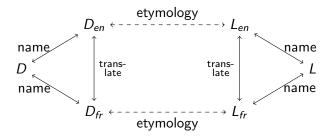
æ

**A** ►

★ 3 > < 3 >

#### Latin

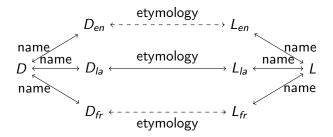



• Can realize the correspondence  $D \longleftrightarrow L$  through Latin alone

э

#### Latin

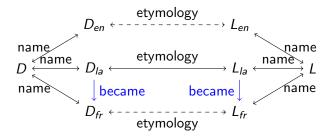



• Can realize the correspondence  $D \longleftrightarrow L$  through Latin alone



#### Latin



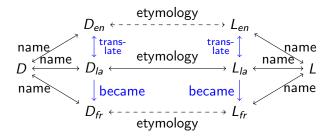

• Can realize the correspondence  $D \longleftrightarrow L$  through Latin alone



#### Latin



• Can realize the correspondence  $D \longleftrightarrow L$  through Latin alone




 $\bullet$  Translation refined to descendant relation Ia  $\longrightarrow$  fr

#### Latin



• Can realize the correspondence  $D \longleftrightarrow L$  through Latin alone



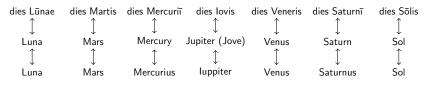
Translation refined to descendant relation la → fr
 la ↔ en is still mysterious

æ

< 17 ▶

( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( )

#### Latin

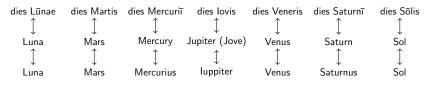

| dies Lūnae | dies Martis | dies Mercuriī | dies lovis | dies Veneris | dies Saturnī | dies Sōlis |
|------------|-------------|---------------|------------|--------------|--------------|------------|
|            |             |               |            |              |              |            |
|            |             |               | 1          |              | 6.1          | <b>C</b> 1 |
| Luna       | Mars        | Mercurius     | luppiter   | Venus        | Saturnus     | Sol        |

æ

< 17 ▶

A B A A B A

#### Latin




• D and L were named after Roman gods

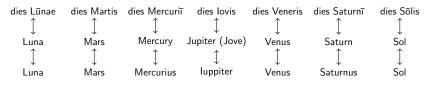
 $G_R = \{$ Roman gods used to name D and  $L\}$ 

3


#### Latin



• D and L were named after Roman gods


 $G_R = \{$ Roman gods used to name D and  $L\}$ 

Triangle



3

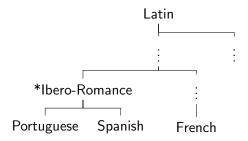
#### Latin



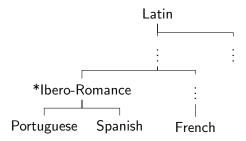
• D and L were named after Roman gods

 $G_R = \{$ Roman gods used to name D and  $L\}$ 

Triangle

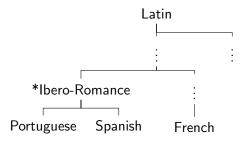



• This can be traced through languages


Shotaro Makisumi (Stanford University) A Commutative Diagram of the Heavens Math Day at the Beach, 2014 15 / 3

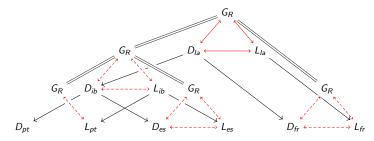
3

A very simplified family tree of Romance languages:

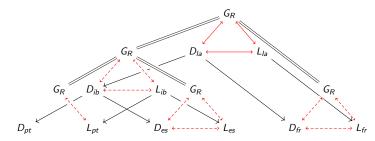



A very simplified family tree of Romance languages:



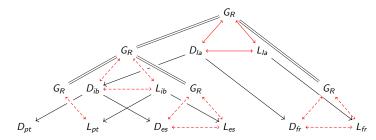

• All descended from Latin

A very simplified family tree of Romance languages:




- All descended from Latin
- (\*Ibero-Romance may not actually have existed)

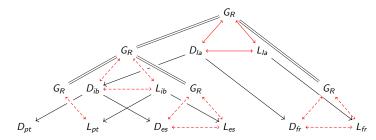
Triangle at each language in the tree:




Triangle at each language in the tree:



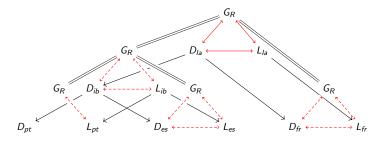
Correspondences can only weaken


Triangle at each language in the tree:



Correspondences can only weaken

• Lost for Saturday and Sunday in French, Spanish


Triangle at each language in the tree:



Correspondences can only weaken

- Lost for Saturday and Sunday in French, Spanish
- Days numbered in Portuguese (only such Romance language)

Triangle at each language in the tree:



Correspondences can only weaken

- Lost for Saturday and Sunday in French, Spanish
- Days numbered in Portuguese (only such Romance language)
- Partial correspondences for \*Ibero-Romance must have been at least as strong as for Spanish

Shotaro Makisumi (Stanford University) A Commutative Diagram of the Heavens Math Day at the Beach, 2014 17 / 1

2

э

• English is a Germanic language, not a descendant of Latin

- English is a Germanic language, not a descendant of Latin
- Most other Germanic languages follow English's pattern

- English is a Germanic language, not a descendant of Latin
- Most other Germanic languages follow English's pattern

Swedish



- English is a Germanic language, not a descendant of Latin
- Most other Germanic languages follow English's pattern

Swedish



• Can track names of Germanic gods and of days through the tree

- English is a Germanic language, not a descendant of Latin
- Most other Germanic languages follow English's pattern

#### Swedish



- Can track names of Germanic gods and of days through the tree
  - \*Proto-Germanic \*Wōdanaz, Proto-Norse Wōdin, Old Norse Ōdhinn
  - OHG Wôdan/Wuotan, Old English Wōden

- English is a Germanic language, not a descendant of Latin
- Most other Germanic languages follow English's pattern

#### Swedish



- Can track names of Germanic gods and of days through the tree
  - \*Proto-Germanic \*Wōdanaz, Proto-Norse Wōdin, Old Norse Ōdhinn
  - OHG Wôdan/Wuotan, Old English Wōden
- Without history, can't say where the triangle originated, but it must already have existed in proto-Germanic

### Some history

Shotaro Makisumi (Stanford University) A Commutative Diagram of the Heavens Math Day at the Beach, 2014 18 / 1

3

(日) (同) (三) (三)

• 7-day calendar and planetary days already used by the Romans

3

- 7-day calendar and planetary days already used by the Romans
- $\bullet \ {\sim}1st$  century A.D.: Germanic peoples borrow planetary days

- 7-day calendar and planetary days already used by the Romans
- $\sim$ 1st century A.D.: Germanic peoples borrow planetary days
  - Translated Sun and Moon

- 7-day calendar and planetary days already used by the Romans
- $\sim$ 1st century A.D.: Germanic peoples borrow planetary days
  - Translated Sun and Moon
  - Gods:



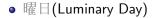
- 7-day calendar and planetary days already used by the Romans
- $\sim$ 1st century A.D.: Germanic peoples borrow planetary days
  - Translated Sun and Moon
  - Gods:

| Mars         | Mercury | luppiter | Venus        | Saturn |
|--------------|---------|----------|--------------|--------|
| $\downarrow$ | Ļ       | Ļ        | $\downarrow$ |        |
| Týr          | Odin    | Thor     | Frigg        | Saturn |

• Choice: How did they choose the corresponding Germanic god?

- 7-day calendar and planetary days already used by the Romans
- $\sim$ 1st century A.D.: Germanic peoples borrow planetary days
  - Translated Sun and Moon
  - Gods:




- Choice: How did they choose the corresponding Germanic god?
- Interpretatio germanica: "[T]he practice by the Germanic peoples of identifying Roman gods with the names of Germanic deities." (Wikipedia)

Shotaro Makisumi (Stanford University) A Commutative Diagram of the Heavens Math Day at the Beach, 2014 19 /

æ

-

#### 月曜日 火曜日 水曜日 木曜日 金曜日 土曜日 日曜日



3



#### • 曜日(Luminary Day), 星(Star)

э



- 曜日(Luminary Day), 星(Star)
- Direct for Monday ( $\exists$  (Moon)) and Sunday ( $\exists$  (Day/Sun))

### A surprising language: Japanese



• 曜日(Luminary Day), 星(Star)

- Direct for Monday ( $\exists$  (Moon)) and Sunday ( $\exists$  (Day/Sun))
- Other days and luminaries:  $E = \{ Five Elements of Chinese thought \}$

### A surprising language: Japanese



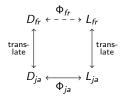
• 曜日(Luminary Day), 星(Star)

- Direct for Monday ( $\exists$  (Moon)) and Sunday ( $\exists$  (Day/Sun))
- Other days and luminaries:  $E = \{ Five Elements of Chinese thought \}$

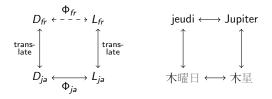



### A surprising language: Japanese

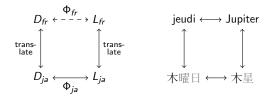



• 曜日(Luminary Day), 星(Star)

- Direct for Monday ( $\exists$  (Moon)) and Sunday ( $\exists$  (Day/Sun))
- Other days and luminaries:  $E = \{ Five Elements of Chinese thought \}$

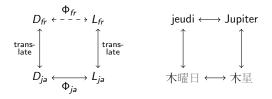



• This is the same correspondence  $D \longleftrightarrow L!$ 

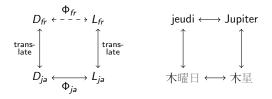

3



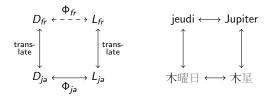
æ




3



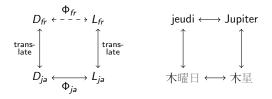

Too good to be a coincidence


э



- Too good to be a coincidence
- E has an order (unlike  $G_R$ ), but unrelated to the order on D

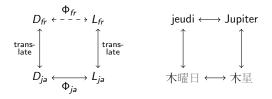



- Too good to be a coincidence
- E has an order (unlike  $G_R$ ), but unrelated to the order on D
- Most likely related to the Western planetary day system

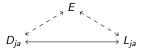


- Too good to be a coincidence
- E has an order (unlike  $G_R$ ), but unrelated to the order on D
- Most likely related to the Western planetary day system




#### • $E \longleftrightarrow L_{ja}$ from China

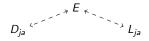



- Too good to be a coincidence
- E has an order (unlike  $G_R$ ), but unrelated to the order on D
- Most likely related to the Western planetary day system



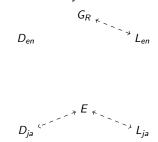
•  $E \longleftrightarrow L_{ja}$  from China •  $D_{ja} \longleftrightarrow L_{ja}$  from the West (somehow)



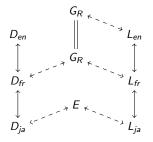

- Too good to be a coincidence
- E has an order (unlike  $G_R$ ), but unrelated to the order on D
- Most likely related to the Western planetary day system



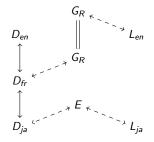
E ←→ L<sub>ja</sub> from China
D<sub>ja</sub> ←→ L<sub>ja</sub> from the West (somehow)
E ←→ D<sub>ja</sub> only as a consequence (unlike with G<sub>R</sub>)


æ

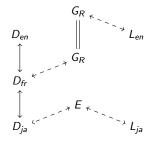
-




• Native Japanese speaker

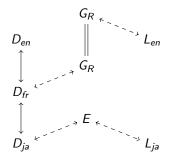

э




• Native Japanese speaker who knows English



• Native Japanese speaker who knows English and French




- Native Japanese speaker who knows English and French
- Never had to translate planet names

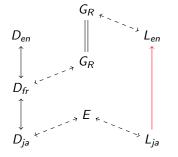


- Native Japanese speaker who knows English and French
- Never had to translate planet names
- Know the order of the planets only in Japanese

• Use mnemonic to get "木星"(Wood star) in Japanese



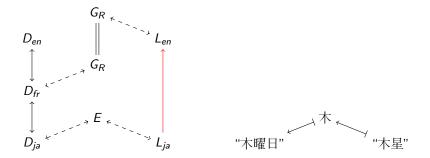



• Use mnemonic to get "木星"(Wood star) in Japanese



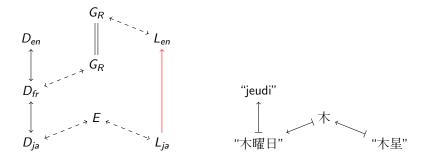


• No direct path...but the diagram commutes!


• Use mnemonic to get "木星"(Wood star) in Japanese

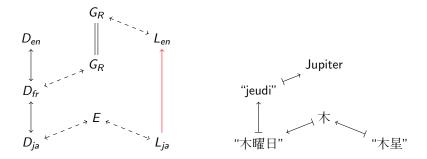





No direct path...but the diagram commutes!
木(Wood)

• Use mnemonic to get "木星"(Wood star) in Japanese

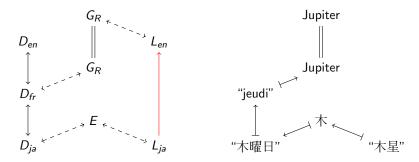



No direct path...but the diagram commutes!
木(Wood), 木曜日(Wood luminary day)

• Use mnemonic to get "木星"(Wood star) in Japanese



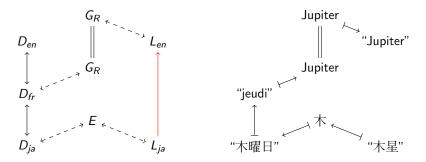
No direct path...but the diagram commutes!
木(Wood), 木曜日(Wood luminary day)


• Use mnemonic to get "木星"(Wood star) in Japanese



No direct path...but the diagram commutes!
木(Wood), 木曜日(Wood luminary day)

# Example: What's the name of the 5th planet from the Sun in English?


• Use mnemonic to get "木星"(Wood star) in Japanese



No direct path...but the diagram commutes!
木(Wood), 木曜日(Wood luminary day)

# Example: What's the name of the 5th planet from the Sun in English?

• Use mnemonic to get "木星"(Wood star) in Japanese



- No direct path...but the diagram commutes!
- 木(Wood), 木曜日(Wood luminary day)
- Answer: "Jupiter"

э

Through China. But in Chinese:

Through China. But in Chinese:

星期一 星期二 星期三 星期四 星期五 星期六 星期日

• 星期(Star period)

э

#### Through China. But in Chinese:

星期一 星期二 星期三 星期四 星期五 星期六 星期日

- 月 火星 水星 木星 金星 土星 太阳
- 星期(Star period), 星(Star)

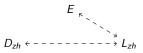
#### Through China. But in Chinese:



- 星期(Star period), 星(Star)
- Direct correspondence only for Sunday (⊟(Day/Sun))

#### Through China. But in Chinese:

- 星期
   一 星期
   二 星期
   星
   星
   星
   星
   星
   星
   星
   星
   星
   星
   星
   星
   星
   星
   星
   星
   星
   星
   星
   星
   星
   星
   星
   星
   星
   星
   星
   星
   星
   星
   星
   星
   星
   星
   星
   星
   星
   星
   星
   星
   星
   星
   星
   星
   星
   星
   星
   星
   星
   星
   星
   星
   星
   星
   星
   星
   星
   星
   星
   星
   星
   星
   星
   星
   星
   星
   星
   星
   星
   星
   星
   星
   星
   星
   星
   星
   星
   星
   星
   星
   星
   星
   星
   星
   星
   星
   星
   星
   星
   星
   星
   星
   星
   星
   星
   星
   星
   星
   星
   星
   星
   星
   星
   星
   星
   星
   星
   星
   星
   星
   星
   星
   星
   星
   星
   星
   星
   星
   星
   星
   星
   星
   星
   星
   星
   星
   星
   星
   星
   星
   星
   星
   星
   星
   星
   星
   星
   星
   星
   星
   星
   星
   星
   星
   星
   星
   星
   星
   星
   星
   星
   星
   星
   星
   星
   星
   星
   星
   星
   星
   星
   星
   星
   星
   星
   星
   星
   星
   星
   星
   星
   星
   星
   星
   星
   星
   星
   星
   星
   星
   星
   星
   星
   星
   星
   星
   星
   星
   星
   星
   星
   星
   星
   星
   星
   星
   星
   星
   星
   星
   星
   星
   星
   星
   星
   星
   星
   星
   星
   星
   星
   星
   星
   星
   星
   星
   星
   星
   星
   星
   星
   星
   星
   星
   星
   星
   星
   星
   星
   星
   星
   星
   星
   星
   星
   星
   星
   星
   星
- 星期(Star period), 星(Star)
- Direct correspondence only for Sunday (⊟(Day/Sun))
- Only the planets are named after the elements


Through China. But in Chinese:

2 1 3 4 5 6 星期一 星期二 星期三 星期四 星期五 星期六 星期H 火(Fire) 水(Water) 木(Wood) 金(Metal) 土(Earth) 1 Î Î Ĵ 1 火星 水星 木星 金星 土星 月 太阳

- 星期(Star period), 星(Star)
- Direct correspondence only for Sunday ( $\square(Day/Sun)$ )
- Only the planets are named after the elements
- The other days are numbered!

Through China. But in Chinese:

- 2 1 3 4 5 6 星期五 星期六 星期一 星期二 星期三 星期四 星期H 木(Water) 木(Wood) 金(Metal) 土(Earth) 火(Fire) 1 ↓ ↓ Ĵ 月 火星 水星 木星 金星 土星 太阳
- 星期(Star period), 星(Star)
- Direct correspondence only for Sunday ( $\exists$ (Day/Sun))
- Only the planets are named after the elements
- The other days are numbered!



### Some history

Need historical evidence

æ

3 → 4 3

### Some history

Need historical evidence

Antiquity (before 2000 B.C.): E ←---→ L<sub>zh</sub> established in China (10-day week)

- 4 ⊒ →

- Antiquity (before 2000 B.C.): E ←---→ L<sub>zh</sub> established in China (10-day week)
- 4th century: Planetary days already known in China (unknown route)

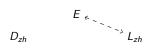
- Antiquity (before 2000 B.C.): E ←---→ L<sub>zh</sub> established in China (10-day week)
- 4th century: Planetary days already known in China (unknown route)
- 8th century: Known routes
  - through the Persian Empire, by the Manichaeans
  - through India, by Buddhist monks

- Antiquity (before 2000 B.C.): E ←---→ L<sub>zh</sub> established in China (10-day week)
- 4th century: Planetary days already known in China (unknown route)
- 8th century: Known routes
  - through the Persian Empire, by the Manichaeans
  - through India, by Buddhist monks
- 806: Many Buddhist texts brought to Japan (10-day week)

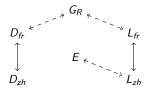
- Antiquity (before 2000 B.C.): E ←---→ L<sub>zh</sub> established in China (10-day week)
- 4th century: Planetary days already known in China (unknown route)
- 8th century: Known routes
  - through the Persian Empire, by the Manichaeans
  - through India, by Buddhist monks
- 806: Many Buddhist texts brought to Japan (10-day week)
  - In both countries, planetary days only used for astrology/astronomy

- Antiquity (before 2000 B.C.): E ←---→ L<sub>zh</sub> established in China (10-day week)
- 4th century: Planetary days already known in China (unknown route)
- 8th century: Known routes
  - through the Persian Empire, by the Manichaeans
  - through India, by Buddhist monks
- 806: Many Buddhist texts brought to Japan (10-day week)
  - In both countries, planetary days only used for astrology/astronomy
- 1876: Due to Western influence, Japan adopts 7-day calendar and planetary days

- Antiquity (before 2000 B.C.): E ←---→ L<sub>zh</sub> established in China (10-day week)
- 4th century: Planetary days already known in China (unknown route)
- 8th century: Known routes
  - through the Persian Empire, by the Manichaeans
  - through India, by Buddhist monks
- 806: Many Buddhist texts brought to Japan (10-day week)
  - In both countries, planetary days only used for astrology/astronomy
- 1876: Due to Western influence, Japan adopts 7-day calendar and planetary days
- 1911: Republic of China established, adopts 7-day calendar but with numbered days

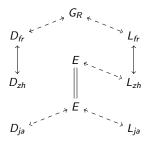

くほと くほと くほと

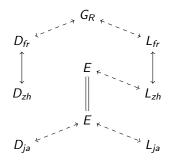
### Another application

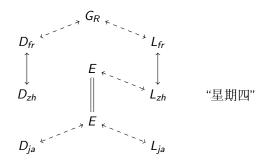

Shotaro Makisumi (Stanford University) A Commutative Diagram of the Heavens Math Day at the Beach, 2014 25 / 1

2

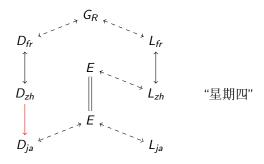
Someone who knows Chinese



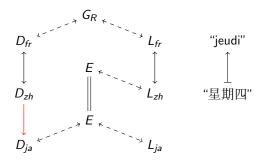


#### Someone who knows Chinese and (say) French



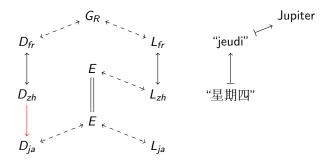

æ


Someone who knows Chinese and (say) French can figure out the days of the week in Japanese.

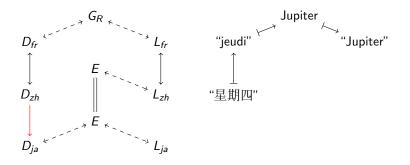




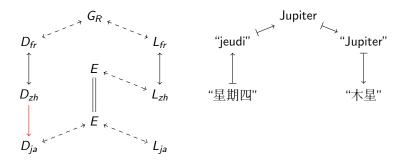




• "星期四"(Star period 4)

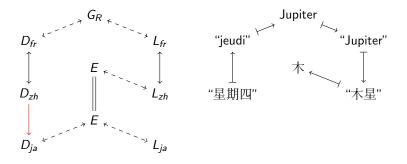



- "星期四"(Star period 4)
- No direct path...but the diagram commutes!

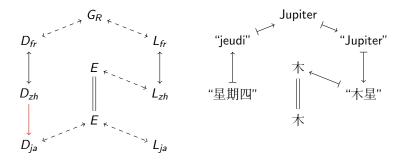



- "星期四"(Star period 4)
- No direct path...but the diagram commutes!

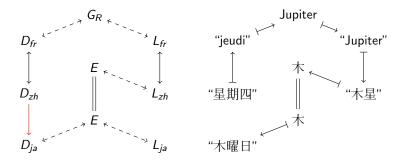



- "星期四"(Star period 4)
- No direct path...but the diagram commutes!




- "星期四"(Star period 4)
- No direct path...but the diagram commutes!




- "星期四"(Star period 4)
- No direct path...but the diagram commutes!
- "木星"(Wood star)



- "星期四"(Star period 4)
- No direct path...but the diagram commutes!
- "木星"(Wood star), 木(Wood)



- "星期四"(Star period 4)
- No direct path...but the diagram commutes!
- "木星"(Wood star), 木(Wood)



- "星期四"(Star period 4)
- No direct path...but the diagram commutes!
- "木星"(Wood star), 木(Wood)
- Answer: "木曜日" (Wood luminary day)

### Goal 2: Order on L

Shotaro Makisumi (Stanford University) A Commutative Diagram of the Heavens Math Day at the Beach, 2014 27 / 1

3

(日) (周) (三) (三)

## Goal 2: Order on L

We want to relate the order on L induced from  $D \longleftrightarrow L$ 



→

## Goal 2: Order on L

We want to relate the order on L induced from  $D \longleftrightarrow L$ 



to some natural order on L.

We want to relate the order on L induced from  $D \longleftrightarrow L$ 



to some natural order on L.

Obvious candidate, from the farthest to the closest to the Sun...

| Saturn | Jupiter | Mars | Moon | Venus | Mercury | Sun |
|--------|---------|------|------|-------|---------|-----|
|--------|---------|------|------|-------|---------|-----|



to some natural order on L.

Obvious candidate, from the farthest to the closest to the Sun...

Saturn Jupiter Mars Moon Venus Mercury Sun

3

| Monday     | Tuesday | Wednesday  | Thursday   | Friday     | Saturday   | Sunday     |
|------------|---------|------------|------------|------------|------------|------------|
| $\uparrow$ | Ĵ       | $\uparrow$ | $\uparrow$ | $\uparrow$ | $\uparrow$ | $\uparrow$ |
| Moon       | Mars    | Mercury    | Jupiter    | Venus      | Saturn     | Sun        |

to some natural order on L.

Obvious candidate, from the farthest to the closest to the Sun...

| Saturn | Jupiter | Mars | Moon | Venus | Mercury | Sun |
|--------|---------|------|------|-------|---------|-----|
|--------|---------|------|------|-------|---------|-----|

...has no obvious relation.

• What order did the ancients think L was in?

| Monday     | Tuesday    | Wednesday  | Thursday   | Friday     | Saturday   | Sunday |
|------------|------------|------------|------------|------------|------------|--------|
| $\uparrow$ | $\uparrow$ | $\uparrow$ | $\uparrow$ | $\uparrow$ | $\uparrow$ | Ĵ      |
| Moon       | Mars       | Mercury    | Jupiter    | Venus      | Saturn     | Sun    |

to some natural order on L.

Obvious candidate, from the farthest to the closest to the Sun...

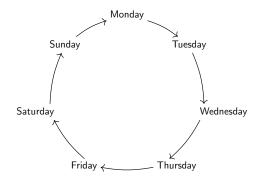
| Saturn | Jupiter | Mars | Moon | Venus | Mercury | Sun |
|--------|---------|------|------|-------|---------|-----|
|--------|---------|------|------|-------|---------|-----|

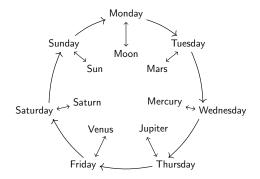
...has no obvious relation.

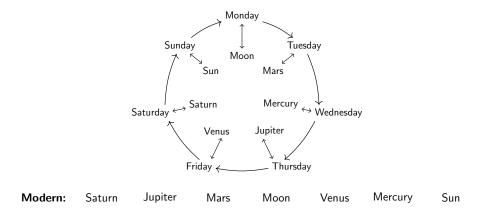
- What order did the ancients think L was in?
  - Earth in the center!

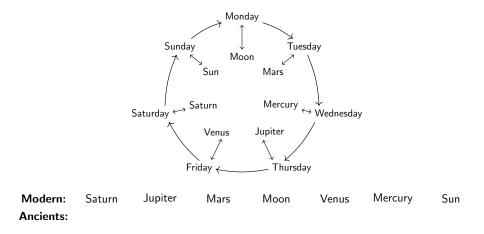
| Monday | Tuesday | Wednesday | Thursday | Friday | Saturday | Sunday |
|--------|---------|-----------|----------|--------|----------|--------|
| ↓      | ↓       | ↓         | ↓        | ↓      | ↓        | ↓      |
| Moon   | Mars    | Mercury   | Jupiter  | Venus  | Saturn   | Sun    |

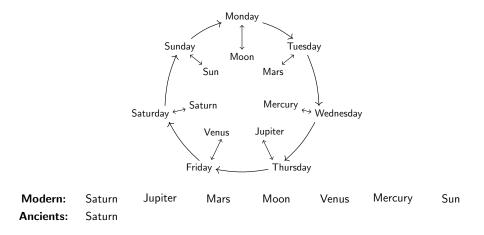
to some natural order on L.

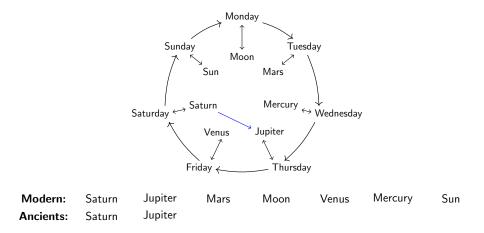

Obvious candidate, from the farthest to the closest to the Sun...

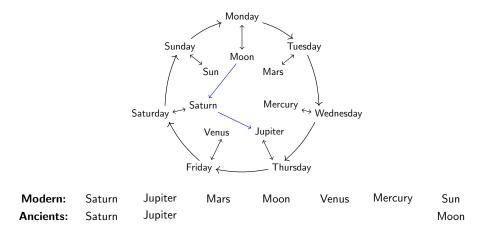

| Saturn | Jupiter | Mars | Moon | Venus | Mercury | Sun |
|--------|---------|------|------|-------|---------|-----|
|--------|---------|------|------|-------|---------|-----|

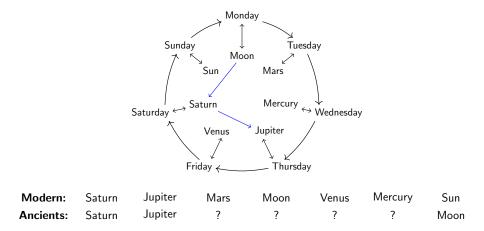

...has no obvious relation.

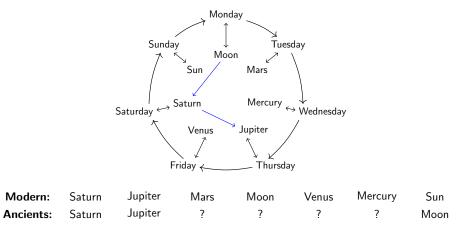

- What order did the ancients think L was in?
  - Earth in the center!
  - Need to figure out the ancients' order on *L* from the farthest to the closest to the Earth

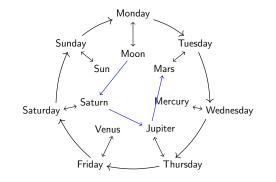

э



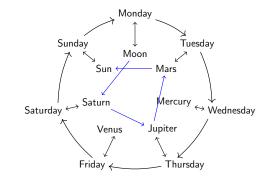



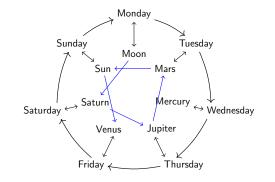



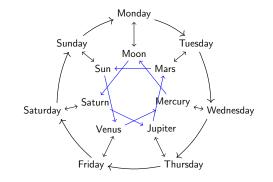


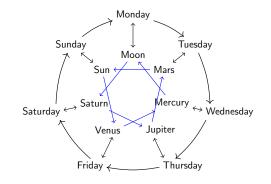






| Modern:   | Saturn | Jupiter | Mars  | Moon | Venus | Mercury | Sun  |
|-----------|--------|---------|-------|------|-------|---------|------|
| Ancients: | Saturn | Jupiter | Mars? | ?    | ?     | ?       | Moon |

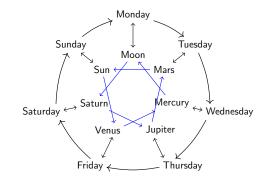



| Modern:   | Saturn | Jupiter | Mars  | Moon | Venus | Mercury | Sun  |
|-----------|--------|---------|-------|------|-------|---------|------|
| Ancients: | Saturn | Jupiter | Mars? | Sun? | ?     | ?       | Moon |



| Modern:   | Saturn | Jupiter | Mars  | Moon | Venus  | Mercury | Sun  |
|-----------|--------|---------|-------|------|--------|---------|------|
| Ancients: | Saturn | Jupiter | Mars? | Sun? | Venus? | ?       | Moon |




| Modern:   | Saturn | Jupiter | Mars  | Moon | Venus  | Mercury  | Sun  |
|-----------|--------|---------|-------|------|--------|----------|------|
| Ancients: | Saturn | Jupiter | Mars? | Sun? | Venus? | Mercury? | Moon |



| Modern:   | Saturn | Jupiter | Mars  | Moon | Venus  | Mercury  | Sun  |
|-----------|--------|---------|-------|------|--------|----------|------|
| Ancients: | Saturn | Jupiter | Mars? | Sun? | Venus? | Mercury? | Moon |

Continue the pattern: move 5 each time

• Consistent with the modern order: orbital period



| Modern:   | Saturn | Jupiter | Mars | Moon | Venus | Mercury | Sun  |
|-----------|--------|---------|------|------|-------|---------|------|
| Ancients: | Saturn | Jupiter | Mars | Sun  | Venus | Mercury | Moon |

- Consistent with the modern order: orbital period
- This is in fact e.g. Ptolemy's order

Schema huius præmissæ diuifionis Sphærarum.



Figure : The Celestial Spheres (Peter Apian, Cosmographia, Antwerp, 1524)

3

• Why move 5? Still seems arbitrary

- Why move 5? Still seems arbitrary
- Answer: planetary days come from the Roman planetary hours

|          | 1      | 2       | 3       | •••   | 24      |
|----------|--------|---------|---------|-------|---------|
| Saturday | Saturn | Jupiter | Mars    | • • • | Mars    |
| Sunday   | Sun    | Venus   | Mercury | • • • | Mercury |
| Monday   | Moon   | Saturn  | Jupiter | • • • | Jupiter |

- Why move 5? Still seems arbitrary
- Answer: planetary days come from the Roman planetary hours

|          | 1      | 2       | 3       |       | 24      |
|----------|--------|---------|---------|-------|---------|
| Saturday | Saturn | Jupiter | Mars    | • • • | Mars    |
| Sunday   | Sun    | Venus   | Mercury | • • • | Mercury |
| Monday   | Moon   | Saturn  | Jupiter | • • • | Jupiter |

• Explanation for "move 5":

- Why move 5? Still seems arbitrary
- Answer: planetary days come from the Roman planetary hours

|          | 1      | 2       | 3       | •••   | 24      |
|----------|--------|---------|---------|-------|---------|
| Saturday | Saturn | Jupiter | Mars    | • • • | Mars    |
| Sunday   | Sun    | Venus   | Mercury | • • • | Mercury |
| Monday   | Moon   | Saturn  | Jupiter | •••   | Jupiter |

• Explanation for "move 5":

 $24\equiv 3 \text{ mod } 7$ 

- Why move 5? Still seems arbitrary
- Answer: planetary days come from the Roman planetary hours

|          | 1      | 2       | 3       | •••   | 24      |
|----------|--------|---------|---------|-------|---------|
| Saturday | Saturn | Jupiter | Mars    | • • • | Mars    |
| Sunday   | Sun    | Venus   | Mercury | • • • | Mercury |
| Monday   | Moon   | Saturn  | Jupiter | •••   | Jupiter |

• Explanation for "move 5":

$$24 \equiv 3 \mod 7$$
  
$$3 \equiv 5^{-1} \mod 7 \quad (i.e. \ 3 \cdot 5 \equiv 1 \mod 7)$$

# What does the planetary hour system tell you, really?

#### • **Earlier:** Constructed $D \leftrightarrow L$ using one or more languages

- **Earlier:** Constructed  $D \leftrightarrow L$  using one or more languages
- Question: Does knowing

- **Earlier:** Constructed  $D \leftrightarrow L$  using one or more languages
- **Question:** Does knowing
  - the ancients' order on L

- **Earlier:** Constructed  $D \leftrightarrow L$  using one or more languages
- Question: Does knowing
  - the ancients' order on L
  - and the planetary hour system

- **Earlier:** Constructed  $D \leftrightarrow L$  using one or more languages
- Question: Does knowing
  - the ancients' order on L
  - and the planetary hour system

let you construct  $D \longleftrightarrow L$  without going through any language?

- **Earlier:** Constructed  $D \leftrightarrow L$  using one or more languages
- Question: Does knowing
  - the ancients' order on L
  - and the planetary hour system

let you construct  $D \leftrightarrow L$  without going through any language?

• Answer: Almost, but not quite

- **Earlier:** Constructed  $D \leftrightarrow L$  using one or more languages
- Question: Does knowing
  - the ancients' order on L
  - and the planetary hour system

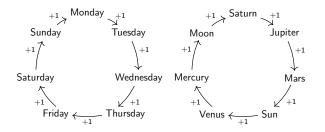
let you construct  $D \longleftrightarrow L$  without going through any language?

- Answer: Almost, but not quite
- Need to make precise the **structures involved** and what the planetary hour system says about them

#### Relevant structure: Cyclically ordered sets

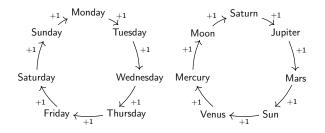
Shotaro Makisumi (Stanford University) A Commutative Diagram of the Heavens Math Day at the Beach, 2014 32 / 1

æ


• D, L are no longer plain sets

- D, L are no longer plain sets
- Extra structure: A cyclically ordered set (S, +1)

- D, L are no longer plain sets
- Extra structure: A cyclically ordered set (S,+1)
  - A set S


- D, L are no longer plain sets
- Extra structure: A cyclically ordered set (S, +1)
  - A set S together with a cyclic permutation  $+1: S \longrightarrow S$

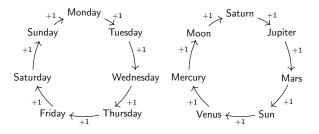
D, L are no longer plain sets
Extra structure: A cyclically ordered set (S, +1)
A set S together with a cyclic permutation +1 : S → S
Examples: (D, +1) and (L, +1)



E A E A E AQA

D, L are no longer plain sets
Extra structure: A cyclically ordered set (S, +1)
A set S together with a cyclic permutation +1 : S → S
Examples: (D, +1) and (L, +1)



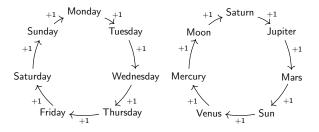

•  $+1: D \longrightarrow D$  sends each day to the next

E A E A E AQA

D, L are no longer plain sets
Extra structure: A cyclically ordered set (S, +1)

A set S together with a cyclic permutation +1 : S → S

Examples: (D, +1) and (L, +1)

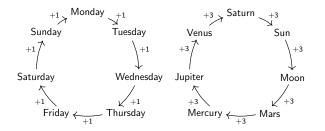



- $+1: D \longrightarrow D$  sends each day to the next
- +1 : L → L sends each luminary to the one one closer to the Earth (according to the ancients)

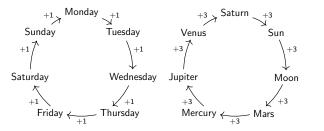
D, L are no longer plain sets
Extra structure: A cyclically ordered set (S,+1)

A set S together with a cyclic permutation +1 : S → S

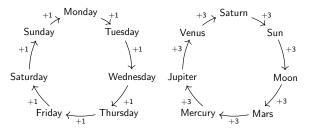
Examples: (D,+1) and (L,+1)




- $+1: D \longrightarrow D$  sends each day to the next
- +1 : L → L sends each luminary to the one one closer to the Earth (according to the ancients)

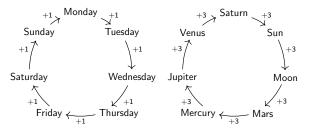

• May as well consider (D, +1) and (L, +3)

2

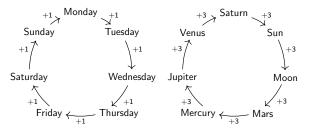

э



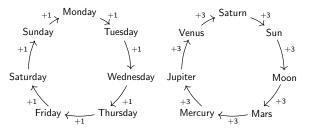
ヨト イヨト ニヨ




The planetary hour system is a correspondence  $(D, +1) \leftrightarrow (L, +3)$  of cyclically ordered sets.

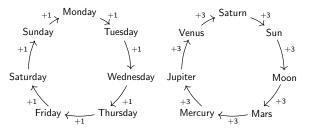



The planetary hour system is a correspondence  $(D, +1) \leftrightarrow (L, +3)$  of cyclically ordered sets.


• A correspondence of sets  $D \stackrel{\Phi}{\longleftrightarrow} L$ 

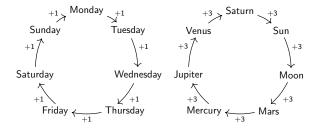


- A correspondence of sets  $D \stackrel{\Phi}{\longleftrightarrow} L$
- such that  $+1: D \to D$  and  $+3: L \to L$  correspond ("the cycles correspond")



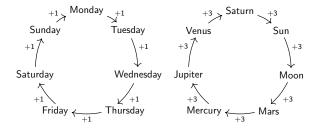

- A correspondence of sets  $D \stackrel{\Phi}{\longleftrightarrow} L$
- such that  $+1: D \rightarrow D$  and  $+3: L \rightarrow L$  correspond ("the cycles correspond"), i.e. the following diagram commutes




- A correspondence of sets  $D \stackrel{\Phi}{\longleftrightarrow} L$
- such that  $+1: D \rightarrow D$  and  $+3: L \rightarrow L$  correspond ("the cycles correspond"), i.e. the following diagram commutes

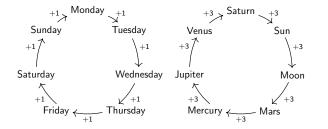




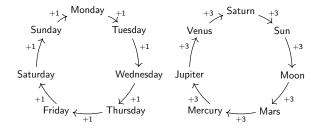

- A correspondence of sets  $D \stackrel{\Phi}{\longleftrightarrow} L$
- such that  $+1: D \rightarrow D$  and  $+3: L \rightarrow L$  correspond ("the cycles correspond"), i.e. the following diagram commutes



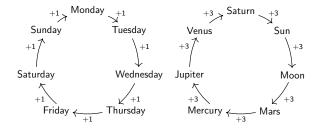



The planetary hour system is a correspondence  $(D, +1) \leftrightarrow (L, +3)$  of cyclically ordered sets.

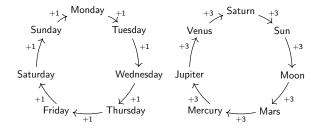
3




The planetary hour system is a correspondence  $(D, +1) \leftrightarrow (L, +3)$  of cyclically ordered sets.

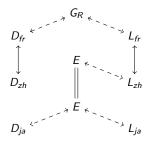

• There are 7 such correspondences



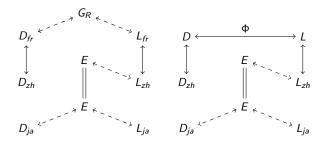

- There are 7 such correspondences
- To know which is right, must know it for at least one element



- There are 7 such correspondences
- To know which is right, must know it for at least one element
- (Not cyclic group; no distinguished identity element!)




- There are 7 such correspondences
- To know which is right, must know it for at least one element
- (Not cyclic group; no distinguished identity element!)
  - Portuguese has none: out of luck




- There are 7 such correspondences
- To know which is right, must know it for at least one element
- (Not cyclic group; no distinguished identity element!)
  - Portuguese has none: out of luck
  - Chinese has exactly one: 星期日(Star period Day)  $\longleftrightarrow$  太阳(Sun)

So by knowing the planetary hour system, someone who only knows Chinese can still figure out the order of the days of the week in Japanese. So by knowing the planetary hour system, someone who only knows Chinese can still figure out the order of the days of the week in Japanese.



So by knowing the planetary hour system, someone who only knows Chinese can still figure out the order of the days of the week in Japanese.



3

Want to find the luminary corresponding to 星期四(Star period 4)

Want to find the luminary corresponding to 星期四(Star period 4)

星期四(Star period 4) = 星期日(Star period Day) $\underbrace{+1 + \dots + 1}_{4 \text{ times}}$ 

Want to find the luminary corresponding to 星期四(Star period 4)

so look at the following commutative diagram given by the planetary hour system:

星期日(Star period Day) ← 太阳(Sun)  
(+1)<sup>4</sup>↓ ↓ ↓(+3)<sup>4</sup>  
星期四(Star period 4) ← 
$$\Phi$$
 ?

太阳(Sun)
$$\underbrace{+3+\cdots+3}_{4 \text{ times}}$$

$$\underline{\mathrm{KH}}(\mathsf{Sun})\underbrace{+3+\cdots+3}_{4 \text{ times}} = \underline{\mathrm{KH}}(\mathsf{Sun}) + 12$$

So the luminary corresponding to 星期四(Star period 4) is

太阳(Sun)
$$\underbrace{+3+\dots+3}_{4 \text{ times}} =$$
太阳(Sun) + 12  
= 太阳(Sun) - 2  
= 木星(Wood star).

As before, using the element  $\pi(\mathsf{Wood}),$  the answer is  ${\bf \pi}{\bf \pi}{\bf \Pi}(\mathsf{Wood})$  luminary day)

### Conclusion

Shotaro Makisumi (Stanford University) A Commutative Diagram of the Heavens Math Day at the Beach, 2014 38 / 3

3

(日) (同) (三) (三)

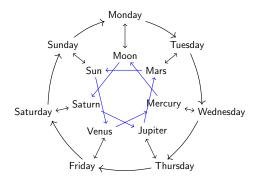
• Lots of other languages!

2

- Lots of other languages!
  - Eastern Europe, Middle East, Asia, Africa

э

- Lots of other languages!
  - Eastern Europe, Middle East, Asia, Africa
  - Why did some correspondences disappear? Religious, political, linguistic reasons


- Lots of other languages!
  - Eastern Europe, Middle East, Asia, Africa
  - Why did some correspondences disappear? Religious, political, linguistic reasons
  - See M. Falk, Astronomical names for the days of the week, Journal of the Royal Astronomical Society of Canada **93** (1999), no.3, 122–133

- Lots of other languages!
  - Eastern Europe, Middle East, Asia, Africa
  - Why did some correspondences disappear? Religious, political, linguistic reasons
  - See M. Falk, Astronomical names for the days of the week, Journal of the Royal Astronomical Society of Canada **93** (1999), no.3, 122–133
- Math?

- Lots of other languages!
  - Eastern Europe, Middle East, Asia, Africa
  - Why did some correspondences disappear? Religious, political, linguistic reasons
  - See M. Falk, Astronomical names for the days of the week, Journal of the Royal Astronomical Society of Canada **93** (1999), no.3, 122–133
- Math?
  - Commutative diagrams as an organizing language

- Lots of other languages!
  - Eastern Europe, Middle East, Asia, Africa
  - Why did some correspondences disappear? Religious, political, linguistic reasons
  - See M. Falk, Astronomical names for the days of the week, Journal of the Royal Astronomical Society of Canada **93** (1999), no.3, 122–133
- Math?
  - Commutative diagrams as an organizing language
  - Which constructions are natural? Which ones involve an arbitrary choice?

- Lots of other languages!
  - Eastern Europe, Middle East, Asia, Africa
  - Why did some correspondences disappear? Religious, political, linguistic reasons
  - See M. Falk, Astronomical names for the days of the week, Journal of the Royal Astronomical Society of Canada **93** (1999), no.3, 122–133
- Math?
  - Commutative diagrams as an organizing language
  - Which constructions are natural? Which ones involve an arbitrary choice?
  - Make precise the structures involved



Thank you