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Abstract

Browning and Vishe studied the moduli space of smooth genus zero curves of fixed de-
gree on a smooth low-degree hypersurface using the circle method, a technique from ana-
lytic number theory. I’ll explain how their strategy can be interpreted completely algebro-
geometrically, and then use this perspective to generalize their results to the higher genus
setting. Time permitting, I’ll also discuss some applications to Geometric Manin’s conjecture
and terminal singularities of these moduli spaces, the latter of which is joint work with Jakob
Glas.

1 Introduction

Let X ↪ Pn
C be a smooth hypersurface of degree d, say defined by F (x0, . . . , xn) = 0.

The “naive” moduli space of rational curves of degree e on X , denoted by More (P1,X), can
be thought of as tuples (f0(u, v), . . . , fn(u, v)) of homogeneous polynomials with no common
roots, with each fi of degree e, and such that F (f0, . . . , fn) vanishes identically.
Its expected dimension is given by the (n + 1) (e + 1) conditions to choose coefficients for the
fi’s, minus the de + 1 conditions defined by the vanishing, minus one more for scaling:

(n + 1) (e + 1) − (de + 1) − 1.

Two related spaces areM0,0 (X,e), which are the degree e morphisms up to automorphisms of
P1, and its Kontsevich compactificationM0,0 (X,e). These have the expected dimension

(n + 1) (e + 1) − (de + 1) − 1 − 3.

Coskun-Harris-Starr conjectured the following:

Conjecture 1. Suppose X is a general hypersurface, d ≥ 3, and n ≥ d + 1. Then,M0,0 (X,e) (and
henceM0,0 (X,e)) is irreducible and has the expected dimension.

For general X :

• Harris-Roth-Starr ’04 for d < (n + 1)/2.
• Beheshti-Kumar ’13 for d < 2n/3 and n ≥ 20.
• Riedl-Yang ’14 for n ≥ d + 2.
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In the direction of arbitrary X :

• Coskun-Starr ’09 for any smooth cubic X and n ≥ 5. But for n = 4, you have the right
dimension but two irreducible components.

Browning-Vishe ’17 showed the following result, using analytic number theory over function
fields:

Theorem 2. For n ≥ 2d−1 (5d − 4), e ≥ 1, and X smooth of degree d,M0,0 (X,e) is irreducible
and has the expected dimension.

To do this, they work with the spaceMore (P1,X).

• Originally proposed by Ellenberg-Venkatesh.
• Pugin’s thesis ’11 for diagonal cubic hypersurfaces.
• Browning-Sawin ’18 improved this to n ≥ 2d (d − 1/2).

2 What did I do?

(i) Re-interpreted Browning-Vishe analytic strategy geometrically.

(ii) Extension to higher genus:

Theorem 3. Let C be a smooth projective curve of genus g ≥ 1 and X ↪ Pn a smooth
hypersurface of degree d, both defined over C. Suppose the following holds:

n > 2d (d − 1) + 1, e ≥ C(d, g)
for some explicit but large constant C(d, g) depending only on d and g.

Then, the mapping space More (C,X) is irreducible and of the expected dimension (n +
1)(e − g + 1) − (de − g + 1) + g. Similarly, Mg (X,e) is irreducible and of the expected
dimension.

Remark 4. The constant C(d, g) is necessary: for e small compared to d and g, we can
construct maps C →X that factor through P1 as hyperelliptic covers C → P1 that give you
many more maps than expected!

Remark 5. Mg (X,e) pretty much always has larger than expected dimension for d ≥ 3, so
this strategy can’t be made to work for the compactification.

(iii) Converse to Geometric Manin’s conjecture:
For a fixed smooth projective variety X/C, the “a-numbers” of a subvariety V ⊂ X are
roughly expected to control the components ofMor (P1,X) that have larger than expected
dimension. Specifically, work of Lehman-Riedl-Sengupta-Tanimoto predicts that if a(V ) <
1 for all proper subvarieties V ⊂X , then each component ofMor (P1,X) has the expected
dimension.
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Corollary 6. If X ↪ Pn a smooth hypersurface of degree d such that n > 2d (d − 1), then
for any proper subvariety V ⊂X , we have a(V ) < 1.

(iv) Application to terminal singularities (joint work with Glas):

Theorem7. Using the same assumptions as Theorem 3 butwithn > 2d−2 (d − 1) (4d2 − 4d + 3),
the moduli spaceMg (X,e) has at worst terminal singularities.

For the rest of the talk, I want to discuss this geometric interpretation of Browning-Vishe’s ana-
lytic strategy.

(i) Reduction to characteristic p and point-counting.

(ii) Expressing the point-counts by integrating S(α), ranging over α ∈“circle,” where S(α) is
an exponential sum associated to each α.

(iii) Dividing up the circle in major and minor arcs.

(iv) Major arc contribution: a direct computation using PIE.

(v) Minor arc contribution:

(a) Relating S(α) to a “linearized” N(α) via “Weyl differencing.”

(b) Bounding N(α) via the “shrinking lemma.”

Step 1: Reduction to characteristic p and point-counting

To go to characteristic p, the idea is to spread out and realizeMore (C,X) as the generic fiber of
some family over SpecΛ, where Λ is obtained by adjoining all the coefficients needed to define
More (C,X) to Z. Every residue field of any maximal ideal of Λ is a finite field, so proving the
irreducibility + expected dimension over finite fields implies the result for the generic fiber.

This is the two-sentence explanation for the reduction to characteristic p.

How do we relate this to point-counting? Let µ be the expected dimension. Suppose that C and
X are defined over Fq for p sufficiently large. Then, if we can show that

#More (C,X) (Fqℓ)
qℓµ

→ 1

as ℓ→∞, then the Lang-Weil bounds imply that#More (C,X) is both irreducible and of the ex-
pected dimension. Indeed, the Lang-Weil bounds tell us that the number of Fqℓ-points of a variety
is roughly the number of geometrically irreducible components times (qℓ)dim of the variety

.

So we’ve reduced to a point-counting problem, namely bounding #More (C,X) (Fqℓ).

Step 2: Point-counts as exponential sums

Let L be a degree e line bundle on C . The “circle” is defined as the space of linear funtion-
als H0 (C,L⊗d)∨. For α ∈ H0 (C,L⊗d)∨, we define the exponential sum associated to α as fol-
lows:
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S(α) ∶= ∑
x⃗∈H0(C,L)n+1

ψ (α (F (x⃗))) ,

where ψ be a non-trivial additive character Fq → C×. This expression makes sense because F can
be viewed as a map H0 (C,L)n+1 →H0 (C,L⊗d).
Then the “igniting spark” of the circle method is the observation that

∑
α∈H0(C,L⊗d)

∨

S(α) = ∑
x⃗∈H0(C,L)n+1

∑
α∈H0(C,L⊗d)

∨

ψ (α (F (x⃗)))

= ∑
x⃗∈H0(C,L)n+1

⎧⎪⎪⎨⎪⎪⎩

0 if F (x⃗) ≠ 0,
#H0 (C,L⊗d)∨ else

=#H0 (C,L⊗d)∨#{(x0, . . . , xn) ∈H0 (C,L)n+1 ∶ F (x0, . . . , xn) = 0}
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

almost More(C,X)

.

The term “almost More (C,X)” is basicallyMore (C,X), except that we remember the line bun-
dle L and forget the base-point free conditions on the sections x0, . . . , xn. But otherwise we can
basically express point-counts ofMore (C,X) in terms of ∑α∈H0(C,L⊗d)

∨ S(α).

Since#H0 (C,L⊗d)∨ = qde−g+1, the point-counting bound we’d like to show now looks like

∑α∈H0(C,L⊗d)
∨ S(α)

q(n+1)(e−g+1)
→ 1.

Step 3: Major and minor arcs

To define the major and minor arcs, we consider subschemes of C for which α factors through—
this is the analog of Dirichlet approximation.

• Any α factors through a closed subscheme of degree at most de/2 + 1.
• Let deg(α) be the smallest degree of a subscheme α factors through.
• Major arcs: α such that deg(α) ≤ e − 2g + 1.
• Minor arcs: all other α.

A direct computation shows

∑degα≤e−2g+1 S(α)
q(n+1)(e−g+1)

→ 1.

So it suffices to prove that

∑degα>e−2g+1 S(α)
q(n+1)(e−g+1)

→ 0,

for which it suffices to show each S(α) is small.
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Step 5a: “Linearizing” S(α) (Weyl differencing)

Note that if α ○ F was linear, then

∑
x⃗∈H0(C,L)n+1

ψ (α (F (x⃗))) =
⎧⎪⎪⎨⎪⎪⎩

#H0 (C,L)n+1 α ○ F = 0
0 otherwise

.

Slogan: Weyl differencing allows you to reduce to the linear situation.

There are certain multilinear formsΨj (x⃗(1), . . . , x⃗(d−1)) that depend on the equationF . Repeated
application of Cauchy-Schwarz gives:

∣S(α)∣2
d−1

≤ (#H0 (C,L)n+1)2
d−1
−d+1

N(α),
where N(α) is the number of tuples

(x⃗(1), . . . , x⃗(d−1)) ∈ (H0 (C,L)n+1)d−1

such that α (Ψj (x(1), . . . , x(d−1))x) vanishes as a function of x ∈H0 (C,L).
This is the part of the argument (namely applying Cauchy-Schwarz a bunch of times) that gives
an exponential lower bound on n.

Step 5b: “Shrinking” N(α)

Slogan: bound N(α) in terms of a related quantity Ns(α) by interpreting both geomet-
rically.

Define Ns(α) as the number of tuples

(x⃗(1), . . . , x⃗(d−1)) ∈ (H0 (C,L(−s))n+1)d−1

such that α (Ψj (x(1), . . . , x(d−1))x) vanishes as a function of x ∈H0 (C,L ((d − 1) s)).
The geometry of numbers over function fields gives the following inequality:

N(α)
Ns(α)

≤ qsomething in terms of d,n,s

(Browning-Vishe) Arithmetically, this comes from analyzing a certain lattice and its successive
minima, and expressing N(α) as the number of norm-bounded elements of the lattice.

Geometrically, in the case of genus zero, a lattice is a locally-free module over A1 and a choice
of norm from∞—this is equivalent to a vector bundle over P1 by the Beauville-Laszlo theorem.
By Birkhoff-Grothendieck, these vector bundles split into O(a)’s, which are analogous to the
successive minima.
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For a smooth projective curveC , Beauville-Laszlo tells you that a vector bundle onC is equivalent
to choosing a vector bundle on C −∞, a vector bundle on Ô∞, and an isomorphism of these two
on Frac (Ô∞). Vector bundles don’t typically split, so we use the slopes coming from the Harder-
Narasimhan filtration instead.

Then, the quantities N(α) and Ns(α) can be expressed in terms of global sections of vector
bundles, which can be analyzed and compared using these slopes and Riemann-Roch.

(End of talk) Final remarks
Thanks for listening/reading(?), and hopefully I’ve kind of convinced you that the circle method
can be done with just algebraic geometry and no analytic number theory. There are also many
further applications and variants: singularities, cohomology, different targets like complete in-
tersections, and different sources like higher-dimensional things.

3 (Extra stuff) Application to Fujita invariants

Fix a smooth projective varietyX/C. For a subvariety V , let Y → V be a resolution of singulari-
ties.

Let KX ,KY be the canonical divisors. The Fujita invariant

a(V ) ∶=min{t ∈ R ∶ t [−KX ∣Y ] + [KY ] is pseudo-effective} .

Lehmann-Tanimoto showed for a smooth projective (weak) Fano variety, there is a proper closed
subset ofX that is the closure of all subvarieties V with a (V ) larger than a (X). Moreover, any
component ofMor (P1,X) parametrizing a curve not in V has the expected dimension.

Conversely, it is expected that the converse is true: a subvariety with larger a-value will contain
families of rational curves with dimension higher than the expected dimension in X .

Corollary 8. Let X be a smooth hypersurface in Pn of degree d satisfying n ≥ 2d(d − 1) + 1.
Then, if V is a proper subvariety of X , we have a (V ) < 1 = a (X).
The general strategy for the corollary is to show there is a smooth projective curve C such
that dimMore (C,V ) > dimMore′ (C,X), which is a contradiction; our main result gives up-
per bounds on the latter, and we always have lower bounds on the former.

The assumption on large Fujita invariant implies KY −KX ∣Y is not pseudo-effective.

It is a hard theorem (Boucksom-Demailly-Păun-Peternell ’04) that for a smooth projective variety
Y /C that if a line bundle L is not pseudo-effective, then for a general point in Y , we can find a
curve passing through Y such that the intersection of L and the curve is negative.

Applying this to KY −KX ∣Y produces a curve that intersects negatively with KY −KX ∣Y , but
we have little control over its degree. By passing to finite characteristic, replacing the curve with
an Artin-Schreier cover to increase genus, and increasing the degree without changing genus by
using the Frobenius (like in the bend-and-break lemmas), we can find a curve C that gives us our
desired contradiction.
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