Exponential sums and equidistribution

1 02/13 (Kevin): Gauss sums and Kloosterman sums: Kloosterman sheaves

Setup: \mathbb{F}_q is a finite field. ψ an additive character $\mathbb{F}_q \to \overline{\mathbb{Q}_\ell}^{\times}$ non-trivial and a multiplicative character $\chi: \mathbb{F}_q^{\times} \to \overline{\mathbb{Q}_\ell}^{\times}$.

Gauss sums are given by

$$g(\psi,\chi) = \sum_{a \in \mathbb{F}_q^{\times}} \psi(a)\chi(a).$$

Kloosterman sums are given by

$$\mathrm{Kl}(\psi;\chi_1,\ldots,\chi_n)(\mathbb{F}_q,a)=\sum_{x_1\cdots x_n=a}\psi\left(\sum x_j\right)\chi_1(x_1)\cdots\chi_n(x_n)$$

with $a \in \mathbb{F}_q^{\times}$.

Let's discuss the Fourier transform next! It takes a function $f: \mathbb{F}_q^{\times} \to \overline{\mathbb{Q}_{\ell}}$ to another function $\hat{f}: \mathbb{F}_q^{\times} \to \overline{\mathbb{Q}_{\ell}}$, where we identify the second \mathbb{F}_q^{\times} with $\operatorname{Hom}\left(\mathbb{F}_q^{\times}, \overline{\mathbb{Q}_{\ell}}^{\times}\right)$, taking χ to $\sum_{a \in \mathbb{F}_q^{\times}} f(a)\chi(a)$.

Recall that the convolution f * g sends a to $\sum_{xy=a} f(x)g(y)$.

For example,

f(a)	$\widehat{f}(\chi)$
$\psi(a)$	$g\left(\psi,\chi ight)$
$\sum_{x_1\cdots x_n=a}\psi(x_1)\cdots\psi(x_n) = \operatorname{Kl}(\psi;1,1,\ldots,1)$	$g(\psi,\chi)^n$
$\mathrm{Kl}(\psi;\chi_1,\ldots,\chi_n)(\mathbb{F}_q,a)$	$\prod g(\psi, \chi\chi_i)$

Let's recall the function-sheaf correspondence:

Given a sheaf \mathcal{F} on \mathbb{G}_m over \mathbb{F}_q , then there is a corresponding function $\mathbb{F}_q^{\times} \to \overline{\mathbb{Q}_\ell}$ by viewing \mathbb{F}_q^{\times} as $\mathbb{G}_m(\mathbb{F}_q)$. Take $a \in \mathbb{G}_m(\mathbb{F}_q)$, then map it to $\operatorname{Tr}(\operatorname{Fr} | \mathcal{F}_a)$. A Kloosterman sheaf is something on the left hand side such that the corresponding function is a Kloosterman sum.

Next time, we'll geometrize convolution, which will allow us to define a Kloosterman sheaves Kl as the n-fold convolutions of sheaves.

This time, let's just describe the case n = 1, which will come from an Artin-Schreier sheaf. To geometrize ψ and χ , we'll need Lang torsors.

Definition 1. Let G be a connected algebraic group over \mathbb{F}_q , e.g. \mathbb{G}_a or \mathbb{G}_m . Then, consider

$$0 \to G(\mathbb{F}_q) \to G \to G \to 0,$$

where the surjective map is $x \mapsto x - Fr(x)$.

Let $\rho: G(\mathbb{F}_q) \to \overline{\mathbb{Q}_\ell}^{\times}$ be a character. Then the Lang torsor \mathcal{L}_ρ is the rank one local system on G with descent data given by ρ .

Remark 2. A more concrete way to think about \mathcal{L}_{ρ} (which is a rank one lisse sheaf, or alternatively as we have defined it in this seminar, a one-dimensional representation of $\pi_1(G)$) is as the composition $\pi_1(G) \to G(\mathbb{F}_q) \to \operatorname{GL}_1(\mathbb{C})$, where the second map is ρ and the first map is the canonical surjection: recall that the $\pi_1(G)$ is an inverse limit of automorphism groups of finite etale covers of G, and since $G \to G$ given by $x \mapsto x - \operatorname{Fr}(x)$ above is an example of a finite etale cover, this is simply the projection of an inverse limit onto one of its components (the automorphism group of $G \to G$, which is $G(\mathbb{F}_q)$).

Example 3.

- (i) For $G = \mathbb{G}_a$, \mathcal{L}_{ψ} is the Artin-Schreier sheaf.
- (ii) For $G = \mathbb{G}_m$, \mathcal{L}_{χ} is the Kummer sheaf.

Lemma 4.

- (i) For $x \in G(\mathbb{F}_{q^r})$, we have $\operatorname{Tr}(\operatorname{Fr} | \mathcal{L}_{\rho,x}) = \rho(\operatorname{Tr} x)$, where $\operatorname{Tr}: \mathbb{F}_{q^r} \to \mathbb{F}_q$. In particular, this geometrizes $\psi(-)$ and $\chi(-)$. Moreover, $\mathcal{L}_{\psi} \otimes \mathcal{L}_{\chi}$ geometrizes $\psi\chi$.
- (ii) $Sw_{\infty}(\mathcal{L}_{\psi}) = 1$ (wild ramification).
- (iii) \mathcal{L}_{χ} is tame, and in fact Sw₀ and Sw_{∞} are 0.

Next time, we'll prove the following existence theorem:

Theorem 5. There exists a local system $Kl(\psi; \chi_1, \ldots, \chi_m)$ on \mathbb{G}_m such that

- (i) Kl has rank n.
- (ii) Tr(Fr|Kl) = Kl, where the RHS is as we defined it earlier.
- (iii) $Sw_{\infty}(Kl) = 1$ and Kl is totally wild at ∞ .
- (iv) $Sw_0(Kl) = 0$.