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Abstract

Multiple Dirichlet series were originally defined as multi-variate Dirichlet series satisfy-
ing certain functional equations with conjecturally nice analytic properties that would give
precise asymptotics for moments of L-functions. Generalizing an observation of Chinta,
Sawin recently gave an axiomatic characterization of a general class of multiple Dirichlet
series over function fields that is independent of their functional equations. Moreover, he
proved their existence as formal power series by exhibiting the coefficients as trace functions
of explicit perverse sheaves.

In this talk, I’ll explain how to 1. prove analyticity of these series in a suitable non-empty
region of convergence, and 2. establish some (but not all) of the functional equations that
they satisfy. The methods for both are completely geometric: analyticity is a consequence
of bounding the cohomology of local systems on a compactification of a configuration space,
and the functional equations follow from a density trick for irreducible perverse sheaves.

1 Introduction

Recall that a Dirichlet series is a series of the form

L (s, a) =
∞
∑
n=1

a(n)
ns

,

where a(n) ∈ C satisfy a multiplicativity condition: a(mn) = a(m)a(n) for gcd(m,n) = 1.

For interesting examples such as a(n) = ( nm), the Legendre symbol, these Dirichlet series satisfy
functional equations that relate L(s, a) and L(1 − s, a).

Consider a natural multi-variate generalization of this:

L (s1, . . . , sk, a) =
∞
∑

n1,...,nk=1

a (n1, . . . , nk)
ns1
1 ⋯n

sk
k

,

where a (n1, . . . , nk) ∈ C satisfy a twisted multiplicativity condition:

a (n1m1, . . . , nkmk) = a (n1, . . . , nk)a (m1, . . . ,mk) ∏
1≤i,j≤k

( ni

mj

)
cij

for gcd (n1⋯nk,m1⋯mk) = 1.
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Example 1. Consider

∑
n1,n2,n3,n4

(n1n2

n3n4

)n−s11 n−s22 n−s33 n−s44 = ∑
n1,n2

L (s3, χn1n2)L (s4, χn1n2)n−s11 n−s22 .

Why care about this?

(i) Applications to moments of L-functions: In the example, set s3 = s4 = 1/2 and n1 = n2,
which says something about the second moment of quadratic L-functions weighted by the
number of divisors of the conductor.

(ii) Intrinsically interesting: For what kinds of interesting examples do we get (many) func-
tional equations?

It turns out that the coefficients (n1n2

n3n4
) should be replaced with coefficients an1,...,n4 that typically

agree (i.e. when the ni are square-free and co-prime to each other) so that the modified series has
better analytic properties, which are obtained from satisfying functional equations.

Using this better-behaved modified series, one can then go back and say something about mo-
ments of L-functions.

These multi-variate series with good analytic properties are roughly called multiple Dirichlet
series (MDS). Some prior work:

• Diaconu, Goldfeld, and Hoffstein ’03: applied to conjectures on asymptotics for moments
of L-functions, defined MDS in terms of functional equations and twisted multiplicativity.

• Chinta, Friedberg, and Hoffstein ’06: discovered a certain local-to-global property in the
function field setting.

• Diaconu and Pasol ’18: gave a more restrictive definition of function field MDS in terms
of local-to-global properties, proved uniqueness and existence for a specific family of cases
corresponding to moments of quadratic Dirichlet L-series.

• Whitehead ’14: obtained expected functional equations in the Diaconu-Pasol setting and
established meromorphic continuation to a certain region.

• Sawin ’22: generalized and simplified Diaconu and Pasol’s work by using the language of
perverse sheaves.

There is much much more out there, and I’m definitely omitting many key developments and
related advances!

What did I do?
Sawin’s “general multiple Dirichlet series” are purely formal. I proved the following:

(i) They are genuine analytic functions (have some radius of convergence).

(ii) They satisfy some functional equations.

Both are proved geometrically:
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(i) Analyticity follows from bounding the coefficients, which is done by bounding cohomology
of sheaves on the Kontsevich space of stable maps.

(ii) The functional equations follow from establishing the result first for a dense subset of tu-
ples, and then using properties of perverse sheaves to extend it to all tuples. More specif-
ically, the key point is to generalize to the multi-variate situation the identity relating the
Fourier transform of a Dirichlet character to its conjugate.

2 Sawin’s general multiple Dirichlet series

Let Fq[t]+ be the set of monic polynomials and χ∶F×q → C× a character of order n.

The resultant Res (f, g) of f, g ∈ Fq[T ] is defined as the product of values of f at the roots of g.
In particular, Res (f, g) = 0 iff f and g share a common root.

Sawin defined the following:

Definition 2. Let M be a symmetric m ×m matrix with integer entries. A general multiple
Dirichlet series is a multi-variate series

L (s1, . . . , sm;M) = ∑
f1,...,fm∈Fq[t]+

a (f1, . . . , fm)
m

∏
i=1

q−si deg fi

= ∑
d1,...,dm≥0

⎛
⎝ ∑
deg(fi)=di

a (f1, . . . , fm;M)
⎞
⎠

m

∏
i=1

q−sidi

satisfying twisted multiplicativity and a local-to-global property relating the coefficients of the
two series representations:

(i) (twisted multiplicativity)

a (f1g1,⋯, fmgm;M) = a (f1,⋯, fm;M)a (g1,⋯, gm;M)∏
i,j

(fi
gj
)
Mij

χ

for gcd (f1⋯fm, g1⋯gm) = 1, with (fg )χ = χ (Res (f, g)).

(ii) (local-to-global) For a prime π, the value of a (πd1 , . . . , πdm ;M) is related to the value of
the sum ∑deg(fi)=di a (f1, . . . , fm;M).

Note that Ad
Fq

can be viewed as a moduli space for monic polynomials of degree d. Indeed, for an
Fq-algebra R, Ad

Fq
(R) = Rd = {(rd−1, . . . , r0) ∶ ri ∈ R}, which we identify with the set of monic

single-variable polynomials over R of degree d: {td + rd−1td−1 +⋯ + r0 ∶ ri ∈ R}.

Consequently, for non-negative integers d1, . . . , dm, we can view ∏m
i=1A

di
Fq

as a moduli space for
tuples of monic polynomials of fixed degrees d1, . . . , dm.

Sawin’s idea is to construct a sheaf on ∏m
i=1A

di
Fq

and realize the coefficients a (f1, . . . , fm;M) as
the trace of Frobenius acting on the stalk of this sheaf at the point (f1, . . . , fm) ∈∏m

i=1A
di
Fq
.

Let me quickly describe how this sheaf is defined:
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(i) Define the polynomial function

Fd1,...,dm =
m

∏
i=1

Res (f ′i , fi)
Mi,i ∏

1≤i<j≤r
Res (fi, fj)Mi,j

on∏m
i=1Adi .

(ii) Let U be the open subset for which Fd1,...,dm is invertible, i.e. Fd1,...,dm defines a morphism
∏m

i=1Adi → A1 and U is the preimage of Gm ⊂ A1.

(iii) Gm has a locally constant sheaf called the Kummer sheaf, which can be understood using
the correspondence between locally constant sheaves on Gm and representations of the
fundamental group of Gm: Lχ is defined as the composition π1 (Gm)↠ F×q

χ→ C×.

(iv) Pulling back Lχ along Fd1,...,dm ∶U → Gm gives a sheaf called Lχ (Fd1,...,dm) on U whose
trace function is χ (Fd1,...,dm).

(v) Let j∶U ↪ ∏m
i=1Adi be the inclusion. There is a “best extension” of Lχ (Fd1,...,dm) on U to

∏m
i=1Adi , denoted by Kd1,...,dm ∶= j!∗Lχ (Fd1,...,dm), i.e. j∗j!∗Lχ (Fd1,...,dm) = Lχ (Fd1,...,dm).

Remark 3. If you’re familiar with etale cohomology, there is an abelian category of “perverse
sheaves” inside the derived category of ℓ-adic sheaves, which is given by the heart of a certain
t-structure. There are two important relevant examples of perverse sheaves:

(i) If X is a smooth variety and L is a lisse sheaf on X , then L [dimX] is perverse.

(ii) If X is a variety, j∶U ⊂ X is the inclusion of an open subset, and A is a perverse sheaf on
U , then there is a perverse sheaf j!∗A onX , called the intermediate extension ofA, defined
as the unique extension of A that has no non-trivial sub-objects or quotients supported on
X/U .

Combining these two examples, j!∗ (Lχ (Fd1,...,dm) [d1 +⋯ + dm]) is a perverse sheaf on∏m
i=1Adi ,

and Sawin defines

Kd1,...,dm = j!∗ (Lχ (Fd1,...,dm) [d1 +⋯ + dm]) [−d1 −⋯ − dm] ,

shifted up so that generically Kd1,...,dm agrees with Lχ (Fd1,...,dm).

From this sheaf, Sawin constructs the a-coefficient as follows:

Given a tuple (f1, . . . , fm) ∈∏m
i=1Adi , let

a (f1, . . . , fm;M) = Tr (Frq, (Kd1,...,dm)(f1,...,fm)) ,

where Frq is the geometric Frobenius.

The main result of Sawin’s paper is the following:

Theorem 4. The axioms—local-to-global and twisted multiplicativity—of a MDS uniquely char-
acterize a (f1, . . . , fm;M), whose existence can be realized as the trace of Frobenius on (Kd1...,dm)(f1,...,fm).
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3 Analyticity

Theorem 5. Sawin’s MDS L (s1, . . . , sm;M) is an analytic function with a non-empty region of
convergence.

LetMd denote the set of monic polynomials of degree d. Let

λ (d1, . . . , dm;M) = ∑
deg f1=d1,...,deg fm=dm

a (f1, . . . , fm;M) .

The general strategy is as follows:

(i) The local-to-global axiom relates λ (d1, . . . , dm;M) to a (f1, . . . , fm;M), allowing you to
bound the latter in terms of the former.

(ii) Apply the Grothendieck-Lefschetz trace formula to see that

λ (d1, . . . , dm;M) =∑
i

(−1)iTr(Frq,H i
c (

m

∏
j=1

Adj ,Kd1,...,dm)) .

(iii) Use Deligne’s theory of weights to see that

∣λ (d1, . . . , dm)∣ ≤
2r

∑
i=0
(dimH i

c (
m

∏
j=1

Adj ,Kd1,...,dm)) qi/2.

(iv) Compactify ∏m
j=1Adj using a quotient by Sd1 × ⋯ × Sdm of the Konstevich moduli space

M0,d1+⋯+dm (P1,1) (call thisM), and use the decomposition theorem to expressH i
c (∏m

j=1Adj ,Kd1,...,dm)
as a direct summand of H i

c (M,L) for some sheaf L onM.

(v) Use a “comparison trick” to relate dimH i
c (M,L) to the analogous setting in characteristic

zero.

(vi) Bound dimH i
c (M,L) by finding a cell structure onM, and bounding the number of cells

(something exponential inm)!

4 Functional equations

Write L (s1, . . . , sm;M) as

∑
d1,...,dm≥0

∑
deg f1=d1,...,deg fm=dm

a (f1, . . . , fm,M) q−s1d1⋯q−smdm

and write Lmod (s1, . . . , sm;M) as a slight variant of this.

Theorem 6. IfM1,1 = 0,M1,2, . . . ,M1,m ≠ 0, and n even, there is a functional equation relating

L (s1, . . . , sm,M)

to sums of
Lmod (1 − s1, ω2 (s1 + s2) . . . , ωm (s1 + sm) ,M ′)

ranging over certain roots of unity ωi, where M ′ is a slight modification ofM .
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The general strategy is as follows:

(i) By definition, we have

a (f1, . . . , fm;M) = ∏
j>i≥1
(fi
fj
)
Mij

χ

∏
i≥1
(
f ′i
fi
)
Mii

χ

for the open subset U where Fd1,...,dm is invertible. We first show that this identity is still
true for the slightly larger open subset X where we do not assume (f1, fi) = 1 for any i
by describing the intermediate extension j!∗ as a sheaf! The idea is that the complement
of U in X is a divisor with normal crossings, i.e. locally looks like a union of coordinate
hyperplanes.

(ii) Recall the relationship between the conjugate Dirichlet character χ∶ (Fq[t]/g)× → C× and
the Fourier transform:

χ(f) = constant(χ) ⋅ ∑
h∈Fq[t]/g

χ(h)e(fh
g
)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
Fourier transform

,

where e(a) = e
2πiTrFq/Fp (a1)

p and a1 is the residue of a, i.e. a non-trivial additive character.

(iii) Mimic the above:

a (f1, . . . , fm;M ′) = constant (di,M) ⋅ ∑
degh=d2+⋯+dm

a (h, f2, . . . , fm;M) e(
hf1

f2⋯fm
)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
Fourier transform

.

This is an easy computation for the open subset X above. To extend:

(a) Express both sides as trace functions ofK1 and K2.

(b) Check thatK1 and K2 are irreducible perverse sheaves.

(c) On an open subset, K1,K2 are irreducible and lisse with the same trace function, so
K1,K2 are intermediate extensions of the same sheaf.
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