Exponential sums and equidistribution

1 02/20 (Vidhu): Convolution

 $k = \mathbb{F}_q$ with q a power of p, A is an ℓ -adic coefficient ring and is K/\mathbb{Q}_ℓ a finite extension or \mathcal{O}_K or \mathbb{F}_q .

Let $C \coloneqq \{$ lisse sheaves of free A-modules of finite rank on $\mathbb{G}_m \otimes k$ s.t. F is tame at 0, totally wild at $\infty \}$. We have a multiplication map

$$\pi: (\mathbb{G}_m \otimes k) \times (\mathbb{G}_m \otimes k) \to \mathbb{G}_m \otimes k.$$

Take $F, G \in C$ and consider the box product $F \boxtimes G = p_1^*F \otimes p_2^*G$ where p_1, p_2 are the two projections.

We consider π_1 ($F \boxtimes G$), and we will write $F * G = R^1 \pi_1$ ($F \boxtimes G$) $\in C$.

Theorem 1.

- (i) F * G is bi-exact compatible with base extension of coefficient rings.
- (ii) $R\pi_*(F \boxtimes G)$ commutes with passage to fibers and we have the natural map $R\pi_!(F \boxtimes G) \to R\pi_*(F \boxtimes G)$ is an isomorphism.
- (iii) $F^{\vee} = \operatorname{Hom}_A(F, A) \in C$ and $(F * G) * (F^{\vee} * G^{\vee}) \cong A(-1)$
- (iv) $\operatorname{rk}(F * G) = \operatorname{rk} F \cdot \operatorname{Sw}_{\infty}(G) + \operatorname{rk} G \cdot \operatorname{Sw}_{\infty}(F)$.
- (v) $\operatorname{Sw}_{\infty}(F * G) = \operatorname{Sw}_{\infty}(F) \operatorname{Sw}_{\infty}(G)$.
- (vi) $H_c^1(F * G) \cong H_c^1(F) \otimes_A H_c^1(G)$, $H^1(F * G) \cong H^1(F) \otimes_A H^1(G)$ with a corresponding commutative diagram given by forgetting supports.
- (vii) If F, G are pure of weights w(F) and w(G), then F * G is also pure of weight 1 + w(F) + w(G).
- (viii) $a \in \mathbb{F}_q^{\times} = \mathbb{G}_m(\mathbb{F}_q)$, write $\operatorname{Tr}_F(a) = \operatorname{Tr}(\operatorname{Fr}_a | F_a)$, and $\operatorname{Tr}_{F*G} = -\operatorname{Tr}_F * \operatorname{Tr}_G$, where the latter is convolution as functions.
- (ix) Let $\chi: \mathbb{F}_q^{\times} \to A^{\times}$ be a multiplicative character and let FT be the multiplicative Fourier transform, so that FT $(\operatorname{Tr}_F(\chi)) = -\operatorname{Tr}\left(\operatorname{Fr}|H_c^1\left(\mathbb{G}_m \otimes \overline{\mathbb{F}_q}, F \otimes L_{\chi}\right)\right)$.
- (x) The map $[N]: \mathbb{G}_m \to \mathbb{G}_m$ is compatible with convolution, and similarly for translation by a.

(xi) $N \leq 1$ and an integer, then $[N]^* (F * G) \hookrightarrow [N]^* F * [N]^* G$ and has an A-flat cokernel.

Let's give some idea of how this is proved.

Proposition 2. $R^i \pi_! (F \boxtimes G)$ is lisse on $\mathbb{G}_m \otimes k$ and commutes with passage to fibers.

Proof. Take $\mathbb{G}_m \times \mathbb{G}_m \to \mathbb{G}_m \times \mathbb{G}_m$ with $(x, y) \mapsto (x, xy)$ and let's try to understand the second projection. In particular, $F \boxtimes G$ becomes $F_x \boxtimes G_{t/x}$. Take the injection $j: \mathbb{G}_m \times \mathbb{G}_m \to \mathbb{P}^1 \times \mathbb{G}_m$ and take the second projection down to \mathbb{G}_m .

We have $R^i \pi_! (F \boxtimes G) = R^i p_2 j_! (F_x \boxtimes G_{t/x})$. Deligne's semicontinuity theorem tells us that it suffices to show that the $Sw_0 (F_x \boxtimes G_{t/x}) + Sw_\infty (F_x \boxtimes G_{t/x})$ is constant as a function of t. This is not too bad to check.

The commuting with passage to fibers claim follows from proper base change. $\hfill \odot$

Proposition 3. $R^1\pi_!(F \boxtimes G)$ is tame at 0.

Let's check that $\operatorname{Tr}_{F*G} = -\operatorname{Tr}_F * \operatorname{Tr}_G$. The former is

$$\operatorname{Tr}\left(\operatorname{Fr}_{a}|H_{c}^{1}\left(X=\left\{xy=a\right\}\subset\mathbb{G}_{m}\times\mathbb{G}_{m},F\boxtimes G\right)\right)=-\sum_{z\in X(\mathbb{F}_{q})}\operatorname{Tr}\left(\operatorname{Fr}_{(x,y)}|F\otimes G\right)$$

by Grothendieck-Lefschetz, the key point being that most of the higher pushforwards vanish. The latter is evidently the convolution.

Finally, we'll be able to define the Kloosterman sheaf. Let $\psi: \mathbb{F}_q \to A^{\times}$ additive and $\chi: \mathbb{F}_q^{\times} \to A^{\times}$ multiplicative.

Let $b \in \mathbb{Z}$. We define [b] as the map $\mathbb{G}_m \to \mathbb{G}_m$ as the *b*th power map. Then, define $\mathrm{Kl}(\psi, \chi, b) = [b]_* (L_{\psi} \otimes L_{\chi})$, and the Kloosterman sheaf in general as the *n*-wise convolution of these. Let's denote this by $\mathrm{Kl}(\psi, \chi_1, \ldots, \chi_n, b_1, \ldots, b_n)$.

Note that $[N]_*(F * G) = [N]_*F * [N]_*G$, which implies that $[N]_* Kl = Kl(\psi, \chi_1, \dots, \chi_n, Nb_1, \dots, Nb_n)$.

Proposition 4. Suppose N|q-1 and n a natural number. Let χ_1, \ldots, χ_n be multiplicative characters of \mathbb{F}_a^{\times} . Then, there is an isomorphism of lisse sheaves on \mathbb{G}_m

$$[N]_* \operatorname{Kl}(\psi_N = \psi(N-), \chi_1^N, \dots, \chi_n^N, 1, \dots, 1) \otimes \left[\prod_{i=1}^N (-g(\psi, \rho_i)^n)\right]^{\operatorname{deg}} \cong \operatorname{Kl}(\psi, \chi \rho_1, \dots, \chi \rho_N; 1, \dots, 1),$$

where $[\varepsilon]^{\text{deg}}$ means the constant sheaf with Frobenius acts by $\varepsilon^{\text{deg }x}$.