Mike Miller Eismeier

Ritt Assistant Professor
Department of Mathematics, Columbia

Office: Math 427.
Office Hours: TBA this semester
Email: mmiller@math.columbia.edu Please email me if you have questions about anything!

I received my PhD in Mathematics in June 2019 from UCLA; my advisor was Ciprian Manolescu.


Fall 2019
Calculus III

Spring 2020
Calculus III

Summer 2020
Calculus III

Fall 2020
Calculus IV


Spring 2021
Linear Algebra


My research is in the field of instanton gauge theory. Using partial differential equations coming from physics, the goal of this field is to assign 'invariants' to 3- and 4-dimensional shapes.
These invariants might be numbers, or they might be groups, or even more complicated objects.
We want these because they help us tell shapes apart, and often contain interesting information about the shapes themselves that was hard to find just from looking at the shape.

In fancier language, I am interested in equivariant instanton homology of 3-manifolds, and its application to topology.
It is my hope and expectation that these new invariants will help unify some disparate ideas in the field.


Equivariant instanton homology ~ current as of 8/19/19 ~ comments welcome!
There are some small differences between this version and the arXiv version.

In this paper (which constituted my thesis), I develop some analysis of instanton moduli spaces, and present algebra related to the equivariant (co)homology of differential graded algebras and their modules.
Using these tools, I define four invariants of rational homology spheres that deserve to be called "equivariant instanton homology" and have some formal properties similar to those seen in Heegaard Floer and monopole Floer homology.

Image by Ryan Armand.