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1 Motivations

Homology is a powerful tool from algebraic topology that is useful not only for
characterizing topological spaces, but also for proving some important theorems that
themselves have lots of applications. A classical theorem from fixed-point theory is
Brouwer’s fixed point theorem. It states that any continuous map from Dn to itself
has at least one fixed-point, which is a point that gets mapped to itself.

One application of Brouwer’s fixed point theorem is in proving the Perron-
Frobenius theorem, which states that a real square matrix with non-negative entries
has a maximum eigenvalue and a corresponding eigenvector with all non-negative
components (MacCluer 494). The Perron-Frobenius theorem is immensly useful in
real-life applications involving some process that evolves through time. For example,
the theorem shows that any finite stationary Markov chain possesses a stationary
distribution (MacCluer 489).

Theorem 1.1 (Brouwer fixed point theorem in 2 dimensions). Every continuous map
f : D2 → D2 has a fixed point, that is, there exists a point x ∈ D2 with f(x) = x.

Proof. Suppose there were a continuous map f : D2 → D2 with no fixed point, then
f(x) 6= x for all x ∈ D2. Then we can define a map r : D2 → S1 by taking r(x) to
be the intersection of the boundary circle S1 with the ray in R2 starting at f(x) and
passing through x. Note that r is not well-defined if f has a fixed point.

Since f is continuous, a small change in x produces a small change in f(x),
which amounts to a small change in the ray between these two points. Thus, r is
continuous. Also, if x ∈ S1, then any ray passing through x will intersect the circle
at x, so r(x) = x. Therefore, r is a retraction of D2 onto S1.
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Figure 1: The retraction r

We would like to show that no such retraction exists by using the fact that the
fundamental group of S1 is nontrivial, which means that not all loops in S1 are
based-homotopic to a constant loop. Let γ : S1 → S1 be a loop in S1, then in D2,
there is a based-homotopy from γ to a constant loop at x0 given by the linear map
Ft(s) = (1−t)γ(s)+tx0. Now since r is a retraction, r is the identity when we restrict
it to S1. Then rFt is a based-homotopy from rF0 = F0 = γ to rF1 = rcx0 = cx0 .
This means that any loop in S1 is based-homotopic to a constant loop, which is a
contradiction.

This theorem also holds for continuous maps from Dn to Dn for any n, and
a proof of it uses the same ideas as above. We can still construct the retraction
r : Dn → Sn−1 using a ray in Rn, but then we need to modify our proof a little to
show that such a retraction doesn’t exist.

Indeed, we proved in class that the fundamental group of Sn for n ≥ 2 is trivial.
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We could use the higher-dimensional analogoues of the fundamental group, namely
the higher-homotopy groups πn, which are defined to be the based-homotopy classes
of maps from Sn. However, these are difficult to compute. Recall that we ran into
a similar conundrum when proving that the interior and boundary of a topological
manifold are disjoint; we were only able to show this for 2-manifolds.

Instead, we demonstrate how a different kind of group, called homology groups,
can serve a similar function as the fundamental group, while remaining computa-
tionally accessible.

2 Axioms of Homology Groups

Before we get to homology, there are a couple group-theoretic concepts we will need
to become familiar with.

Definition 2.1. Let G,H,K be groups, and α : G → H, β : H → K be homomor-

phisms. Then we say that the pair of homomorphisms G
α−−→ H

β−−→ K is exact (at
H) if imα = ker β.

A sequence

· · · → Gn−1
αn−−−→ Gn

αn+1−−−−→ Gn+1 → · · ·

of homomorphisms is an exact sequence if it is exact at every Gn between a pair of
homomorphisms, that is, imαn = kerαn+1.

Definition 2.2. Let I be any nonempty index set and let Gi be a group for each
i ∈ I. Then the direct sum of the groups Gi, denoted ⊕i∈IGi, is the subgroup of
the direct product consisting of the set of elements which are the identity in all but
finitely many components.

Note that when I is finite, the direct sum is the same as the direct product.
For our goal of proving Brouwer’s fixed-point theorem, it is more convenient to

abstract away the details of homology groups and simply work with their properties.
There are different category-theoretical systems of axioms for a homology theory on
topological spaces and continuous maps. For example, the Eilenberg-Steenrod-Milnor
axioms for homology deal with pairs of topological spaces and relative homology
(Bredon 183).

Here, we will present a less general set of properties, which we will consider
axioms, that can be derived from these more general axioms. In a later section, we
will actually construct homology groups and prove that they satisfy these axioms.
Notationally, we will use h̃n to refer to the abstract reduced homology groups in the
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axioms, and we will use H̃n to refer to the (reduced) singular homology groups of
our construction.

For any topological space X and n ∈ Z≥0, we can assign an abelian group h̃n(X).

Axiom 2.3. If Y is also a topological space with f : X → Y continuous, then we
can assign to f, n a homomorphism f∗ : h̃n(X)→ h̃n(Y ) satisfying (fg)∗ = f∗g∗ and
(idX)∗ = idh̃n(X).

Axiom 2.4 (Homotopy axiom). Let X and Y be topological spaces, and f, g : X → Y
continuous maps such that f is homotopic to g. Then f∗ = g∗.

Definition 2.5. Let X be a space, and A ⊂ X, then we say that (X,A) is a good
pair if A is nonempty, closed, and is a deformation-retract of some open U ⊂ X.

Axiom 2.6 (Exactness axiom). Let X be a space, and (X,A) be a good pair. Then

there are boundary homomorphisms ∂′ : h̃n(X/A) → h̃n−1(A) where we get the fol-
lowing long exact sequence

· · · ∂′−−→ h̃n(A)
i∗−−→ h̃n(X)

p∗−−→ h̃n(X/A)
∂′−−→ h̃n−1(A)

i∗−−→· · ·

where i is the inclusion map and p is the projection map.

Axiom 2.7 (Dimension axiom). For a one-point space ∗, h̃n(∗) = 0 is the trivial
group for all n ≥ 0.

The next axiom will not be needed in any of our proofs, but we include it here for
completeness. We will omit the proof and refer the details to Hatcher (126) (however,
note that for unreduced homology, the wedge sum must be replaced with the disjoint
union).

Axiom 2.8 (Additivity axiom). For a wedge sum X =
∨
αXα, where each

(X,Xα) are good pairs, and inclusions iα : Xα ↪→ X, the direct sum map

⊕αiα∗ : ⊕αh̃n(Xα)→ h̃n(X) is an isomorphism for each n.

Axiom 2.9 (Coefficient axiom). h̃0(S0) = Z and h̃n(S0) = 0 for all n 6= 0.

A theory with only axioms 2.3, 2.4, 2.6, and 2.8 is called a generalized homology
theory, and can have groups for n < 0 that are nontrivial. Adding the dimension
axiom almost uniquely determines the homology theory, and the homology groups
for essentially all spaces are uniquely determined once we add the coefficient axiom.
We could have chosen the coefficient group h̃0(S0) to be any abelian group, but it
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is conventional to have it be Z. We will take all of these axioms together so we can
talk about, up to isomorphism, the one value of H̃n(X) for any space X.

This next proposition and its proof are exactly analogous to the case of the
fundamental group.

Proposition 2.10. If f : X → Y is a homotopy equivalence, then
f∗ : h̃n(X)→ h̃n(Y ) are isomorphisms for all n.

Proof. If f : X → Y is a homotopy equivalence with homotopy inverse g, then gf is
homotopic to idX and fg is homotopic to idY . From the Homotopy axiom,

(gf)∗ = g∗f∗ = (idX)∗ = idh̃n(X),

and
(fg)∗ = f∗g∗ = (idY )∗ = idh̃n(Y ),

therefore f∗ : h̃n(X)→ h̃n(Y ) are isomorphisms with inverses g∗.

3 Examples

Using these properties, we can compute homology groups for some important spaces.
As is the case for the fundamental group, the homology groups of any contractible
space are trivial, as illustrated by the following example.

Example 3.1. H̃i(D
n) = 0 for all i ≥ 0.

Proof. X = Dn is contractible, so by the homotopy axiom, H̃i(D
n) = H̃i(∗) for ∗

a one-point space. Thus, by the dimension axiom, H̃i(D
n) = 0 is trivial for any

i ≥ 0.

As mentioned in the introduction, we will need to find a nontrivial homology
group of Sn in order to prove Brouwer’s fixed point theorem. To do this, we make use
of the exactness axiom. Specifically, we will use that H̃i(D

n) = 0 and Dn/Sn−1 = Sn

to come up with a bunch of isomorphisms, and then we will use induction to push
from S0 to Sn.

Example 3.2. H̃n(Sn) ∼= Z and H̃i(S
n) = 0 for i 6= n.

Proof. For n > 0, consider the pair (Dn, Sn−1). This is a good pair because Sn−1 is
nonempty, closed, and we can take U to be the annulus U = Dn \ B1/2(0), which is
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open in Dn. Then Sn−1 ⊂ U and U deformation retracts to Sn−1 by a straight-line
homotopy on radial lines. Also, Dn/Sn−1 ∼= Sn.

By the exactness axiom, we obtain the following exact sequence:

H̃i(D
n)

p∗−−→ H̃i(D
n/Sn−1)

∂−−→ H̃i−1(Sn−1)
i∗−−→ H̃i−1(Dn).

We know that H̃i(D
n) is trivial for all i, and Dn/Sn−1 ∼= Sn means

H̃i(D
n/Sn−1) ∼= H̃i(S

n)

by Proposition 2.10. By exactness of the sequence, we see that ker ∂ = im p∗ = 0
since H̃i(D

n) = 0, and also im ∂ = ker i∗ is the whole group since H̃i−1(Dn) = 0.
Therefore,

∂ : H̃i(D
n/Sn−1)→ H̃i−1(Sn−1)

is an isomorphism, which means H̃i(S
n) ∼= H̃i−1(Sn−1) for all n ≥ 1.

Using that H̃0(S0) = Z and H̃i(S
0) = 0 for i 6= 0, we see by induction that

H̃n(Sn) ∼= Z and H̃i(S
n) = 0 for all i 6= n.

4 Applications

Now that we have some calculations, we are ready to prove Brouwer’s fixed-point
theorem. As mentioned in the introduction, the proof will follow the same outline
as the 2-dimensional case, except we replace the fundamental group with homology
groups.

Theorem 4.1 (Brouwer’s Fixed-Point Theorem). There is no retraction from Dn to
its boundary Sn−1. Thus, every continuous map f : Dn → Dn has a fixed point.

Proof. Suppose there were a continuous map f : Dn → Dn with no fixed point, then
f(x) 6= x for all x ∈ Dn. Then we can define a map r : Dn → Sn−1 by taking r(x) to
be the intersection of the boundary circle Sn−1 with the ray in Rn starting at f(x)
and passing through x. As before, this is continuous and is a retraction.

Now suppose we have a retraction r : Dn → Sn−1, then ri = idSn−1 for
i : Sn−1 → Dn the inclusion map. We consider the induced maps of i and r on
homology groups:

H̃n−1(Sn−1)
i∗−−→H̃n−1(Dn)

r∗−−→H̃n−1(Sn−1).

Since r∗i∗ = (ri)∗ = id∗, this means that r∗i∗ is the identity map on H̃n−1(Sn−1) ∼= Z.

However, since H̃n−1(Dn) = 0, r∗ and i∗ are both the trivial homomorphism, so r∗i∗
is the trivial homomorphism. This is a contradiction since Z is nontrivial.
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We can also address the problem we mentioned in the introduction about proving
that the interior and boundary of a topological manifold are disjoint. The proof of
this is almost exactly the same as the proof for surfaces, except we replace the
fundamental groups with homology groups.

Theorem 4.2. Let M be a topological n-manifold with boundary, then the interior
of M and the boundary of M are disjoint.

Proof. Suppose that x ∈ M is both in the interior and the boundary of M .
Then there are neighborhoods H,U of x with homeomorphisms φ : U → Rn and
ψ : H → Rn−1 × [0,∞); we can arrange for φ(x) = ψ(x) = 0.

Let Hm = ψ−1(S1/m(0)) where S1/m(0) = {x ∈ Rn−1 × [0,∞) | ||x|| < 1/m}.
Then since H ∩ U ⊂ H is open and contains x, and ψ is a homeomorphism,
ψ(H ∩ U) ⊂ Rn−1 × [0,∞) is an open subset containing 0. Thus, for some m
large enough, Hm ⊂ U .

In the same way, let Uk = φ−1(B1/k(0)), then since Hm ∩ U ⊂ U is open and
contains x, and φ is a homeomorphism, φ(Hm∩U) ⊂ Rn is an open subset containing
0. Thus, for some k large enough, Uk ⊂ Hm ⊂ U .

We consider the homomorphisms induced by the inclusion maps

H̃n−1(Uk \ {x})
i1∗−−−→ H̃n−1(Hm \ {x})

i2∗−−−→ H̃n−1(U \ {x}).

By construction, Uk \ {x} and U \ {x} are homeomorphic to Rn \ {0}, which is
homotopy equivalent to Sn−1. Thus, these spaces have homotopy groups isomor-
phic to Z. On the other hand, Hm \ {x} is homeomorphic to Rn−1 × [0,∞) \ {0},
which is contractible (e.g. by a straight line homotopy to (0, 0, . . . , 1)). Hence,

H̃n−1(Hm \ {x}) = 0.
Clearly, the composition of the inclusion maps i2i1 is an inclusion from Uk to U ,

which induces the identity homomorphism. However, i1∗ and i2∗ are zero maps since
H̃n−1(Hm \ {x}) = 0. This contradicts the axiom about compositions of induced
homomorphisms. Thus, there is no point that is in both the interior and boundary
of M .

Another theorem that can be proven using homology is the invariance of domain
theorem, which is important in the study of topological manifolds. In order to prove
this theorem, we will need a couple of technical lemmas. We will provide sketches
of their proofs (deferring the proof of the Mayer-Vietoris sequence to Section 5), but
complete proofs can be found in Hatcher (149-50, 169-70).
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Theorem 4.3 (Mayer-Vietoris sequence). Let A,B ⊂ X such that X is the union
of the interiors of A and B, then there is an exact sequence

· · · → H̃n(A ∩B)
Φ−−→ H̃n(A)⊕ H̃n(B)

Ψ−−→ H̃n(A ∪B)
∂−−→ H̃n−1(A ∩B) → · · · .

Lemma 4.4. For any topological embedding f : Dk → Sn, H̃i(S
n \ f(Dk)) = 0 for

all i.
For any topological embedding f : Sk → Sn with k < n, H̃i(S

n \ f(Sk)) is Z for
i = n− k − 1 and 0 otherwise.

Proof. The proof of the first part uses induction on k. For k = 0, Sn \ f(D0)
is the sphere with a point deleted, which we know is homeomorphic to Rn, so
H̃i(S

n \ f(D0)) = 0. For the inductive step, we replace Dk by the cube Ik, where
I = [0, 1], which allows us to decompose Ik = (Ik−1 × [0, 1/2]) ∪ (Ik−1 × [1/2, 1]).

This decomposition gives us a natural way to construct a Mayer-Vietoris sequence.
Take A = Sn\f(Ik−1×[0, 1/2]) and B = Sn\f(Ik−1×[1/2, 1]), then A∩B = Sn\f(Ik)
and A∪B = Sn\f(Ik−1×{1/2}). Clearly, we can consider h restricted to Ik−1×{1/2}
as an embedding from Ik−1, so by the inductive hypothesis H̃i(A ∪ B) = 0 for all i.
Thus, we obtain the following portion of the Mayer-Vietoris sequence

H̃i+1(A ∪B)→ H̃i(A ∩B)
Φ−−→ H̃i(A)⊕ H̃i(B) → H̃i(A ∪B)

for all i. Since the terms on either end are 0, we get that
Φ : H̃i(S

n \ f(Ik))→ H̃i(A)⊕ H̃i(B) is an isomorphism.

Suppose that we have some nontrivial element of H̃i(S
n \f(Ik)), then it must get

mapped to something nontrivial in at least one of H̃i(A) or H̃i(B). Without loss of
generality, assume it is A. Notice that Ik−1 × [0, 1/2] is just Ik but with a shorter
interval in the last coordinate, which means we can repeat the same argument as
above on A.

Continuing this process, we get a sequence of intervals I = I0 ⊃ I1 ⊃ I2 ⊃ · · ·
where Ij has length 2−j, and α maps to some αj 6= 0 in H̃i(S

n \ f(Ik−1 × Ij)).
Essentially, we take this process to infinity, and since the intervals Ij are nonempty
and compact,

∞⋂
j=0

Ij = {x}

for some point x ∈ I. It takes some work to make the idea of homology groups for
limits of spaces precise, but after working things out, we get α mapping to a nontrivial
element in H̃i(S

n \ f(Ik−1×{x})), which is trivial by the inductive hypothesis. This
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is a contradiction, so there is no nontrivial element of H̃i(S
n \ f(Ik)), i.e. this group

is trivial.
The proof of the second part also uses induction on k. For k = 0, Sn \ f(S0) is

the sphere with two points deleted, which is homeomorphic to Sn−1 × R, which is
homotopy-equivalent to Sn−1. Thus, the statement follows from our calculations of
the homology groups of Sn.

For the inductive step, we decompose Sk into two closed hemispheres Dk
+ and

Dk
−, which intersect in a great circle Sk−1. Each hemisphere is homeomorphic to a

disc Dk by flattening. Thus, we can take A = Sn \ f(Dk
+) and B = Sn \ f(Dk

−),

then by the first part, H̃i(A) and H̃i(B) are trivial. Therefore, the Mayer-Vietoris
sequence gives isomorphisms

H̃i(S
n \ f(Sk)) ∼= H̃i+1(Sn \ f(Sk−1)).

Hence, by induction, H̃i(S
n \ f(Sk)) is isomorphic to Z when i = n − k − 1, and is

trivial otherwise.

The first part of this lemma tells us that Sn \ f(Dk) is path-connected. The
second part of this lemma is known as the Generalized Jordan Curve Theorem, and
it generalizes the notion that any loop in the plane has an ”inside” and an ”outside”.
As a special case of this theorem, if we have an embedding f : Sn−1 → Sn, then
H̃0(Sn \ f(Sn−1)) ∼= Z, so the unreduced homology group H0(Sn \ f(Sn−1)) ∼= Z⊕Z.
One can show that this means Sn \ f(Sn−1) consists of exactly two path components
(see Bredon 172).

Theorem 4.5 (Invariance of Domain). Let M be a topological n-manifold and
f : M → Rn a continuous injection, then f is an open mapping.

Proof. Let x ∈ M , then we can find an open neighborhood U of x, and a disk
Dn ⊂ U with center x. We want to show that f(Dn \ ∂Dn) ⊂ f(U) is open in
Rn, which would mean that f(U) is a neighborhood of f(x). Considering the one-
point compactification of Rn, which is homeomorphic to Sn, it suffices to show that
f(Dn \ ∂Dn) is open in Sn.

Because f is a continuous injection, its restrictions to Dn and ∂Dn = Sn−1 are
embeddings, so by the previous lemma, Sn \ f(∂Dn) has two path-components. We
can figure out exactly what these path-components are: they are f(Dn \ ∂Dn) and
Sn \ f(Dn). The first space is homeomorphic to Dn \ ∂Dn, which is clearly path-
connected, the second is path-connected by the lemma, and these spaces are disjoint.
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Since Sn \ f(∂Dn) is open in Sn, its path-components are exactly its connected
components. For a space with finitely many connected components, each connected
component is open, hence f(Dn\∂Dn) is open in Sn\f(∂Dn), so it is open in Sn.

Theorem 4.6. Rm is homeomorphic to Rn if and only if n = m.

Proof. Obviously, Rn is homeomorphic to Rn. Suppose for m < n that f : Rn → Rm

is a homeomorphism. We have the embedding g : Rm → Rn given by
g(x) = x + 0em+1 + · · · + 0en for ei the standard basis vectors. Clearly, g(Rm)
is not open in Rn.

We know that the composition fg : Rm → Rm is an embedding, so it is an
open map. However, (fg)(Rm) is not open, and Rm is open in itself, which is a
contradiction.

In fact, it is true that if a topologicalm-manifold is homeomorphic to a topological
n-manifold, then n = m. All we need to do is to construct an embedding from Rm

to any n-manifold such that the image of Rm is not open, and to generalize the
invariance of domain theorem to work when the codomain is a topological n-manifold
instead of Rn. The details of this can be found in Bredon (235).

5 Definition of Homology

Now is the part where we must come back down to earth and actually construct a
homology theory satisfying the axioms. This construction is called singular homology.

Definition 5.1. An n-simplex is the smallest convex set in Rn containing a collection
of n + 1 points v0, . . . , vn such that v1 − v0, . . . , vn − v0 form a linearly independed
set. This is independent of the choice of v0. We denote this simplex by [v0, . . . , vn].

Definition 5.2. The standard n-simplex ∆n is the set

{(t0, . . . , tn) ∈ Rn+1 |
∑
i

ti = 1, ti ≥ 0}.

Visually, this is just the n-dimensional analog of the triangle, where the vertices
are the unit vectors ei. The specific ordering of the vertices matters when we define
homology.

Definition 5.3. A singular n-simplex in a space X is a continuous map σ : ∆n → X.
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Figure 2: The standard 2-simplex and its faces

Definition 5.4. We define Cn(X) to be the free abelian group with basis the set of
singular n-simplices in X. Elements of Cn(X) are called n-chains, and each n-chain
is just a finite formal sum

∑
i niσi for ni ∈ Z and σi : ∆n → X.

Definition 5.5. If σ is a singular n-simplex, and i is an integer with 0 ≤ i ≤ n,
then we define the i-th face of σ, denoted σi, to be the singular (n− 1)-simplex in X
given by

σi(t0, . . . , tn−1) = σ(t0, . . . , ti−1, 0, ti, . . . , tn−1).

Essentially what is happening here is that we take a (n − 1)-simplex, embed it
into an n-simplex as its i-th face, and then embed that into X through the map σ.

Definition 5.6. A boundary map ∂n : Cn(X)→ Cn−1(X) is defined by the formula

∂n(σ) =
n∑
i=0

(−1)iσi.

This is a homomorphism.

Specifically, if we identify [v0, . . . , vn] as ∆n, then we can write this formula as

∂n(σ) =
n∑
i=0

(−1)iσ | [v0, . . . , v̂i, . . . , vn].
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The hat over vi means that we omit this vertex, so [v0, . . . , v̂i, . . . , vn] is an (n− 1)-
simplex, and is the i-th face of ∆n. Thus, the formula means that we sum over the
restrictions of σ to the i-th face of ∆n. The alternating signs are to account for
the orientations of faces. Sometimes, when the index n is clear from context or is
unimportant, we omit the subscript and just write ∂ for ∂n.

Proposition 5.7. Let ∂n : Cn(X) → Cn−1(X) and ∂n+1 : Cn+1(X) → Cn(X) be
boundary homomorphisms. Then their composition ∂n∂n+1 = 0.

The proof of this is just computations using the formula, so I will leave the details
to Hatcher (108).

Definition 5.8. The singular homology group Hn(X) is defined to be ker ∂n/ im ∂n+1.

Basically, Cn(X) is too big of a group to be useful, so we restrict ourselves to
cycles, which are n-chains with 0 boundary, modulo the relationship where two cycles
are equivalent if taking the difference of the two gives us the boundary of an n+ 1-
chain. Historically, these terms come from Poincaré’s work in developing the concept
of homology; our definitions formalize his ideas by making his notions of ”cycle” and
”boundary” algebraic (Dieudonné 17).

The point of these definitions is that we want to study a space X by seeing what
sort of ways there are to map from the standard n-simplex to X. The reason why
working with simplices is easier than working with n-spheres, as in the case of higher
homotopy groups, is that we have this nice notion of the boundary of an n-simplex,
which is itself a collection of (n − 1)-simplices. This boundary map and the ability
to add and subtract singular simplices means that we can effectively break up and
reassemble a map from ∆n in any order.

Proposition 5.9. If X is a point, then Hn(X) = 0 for n > 0 and H0(X) ∼= Z.

Proof. For each n, there is only one singular n-simplex σn, which sends every point
to the single point in X. Thus, Cn(X) is the free abelian group generated by one
element, so it is isomorphic to Z.

Now examining the boundary map ∂n, we see that ∂n(σ) is an alternating sum of
n+ 1 terms which are all equal. Therefore, ∂n = 0 if n is odd, and ∂n(σn) = σn−1 if
n is even and greater than 0. Therefore, we have a sequence of homomorphisms

· · · → Z ∂4−−→ Z ∂3−−→ Z ∂2−−→ Z ∂1−−→ Z→ 0

where the boundary maps alternate between isomorphisms and trivial maps.
It is clear that ker ∂0

∼= Z while im ∂1 = 0, hence H0(X) ∼= Z. Otherwise, for n
odd, ker ∂n = Z while im ∂n+1 = Z, and if n is even, ker ∂n = 0. Thus, Hn(X) = 0
for n > 0.

12



It is convenient to make the homology groups of a point trivial in all dimensions,
and we can do that by using reduced homology groups H̃n(X). For X nonempty,
these are constructed by adding a copy of Z in the sequence

· · · → C2(X)
∂2−−→ C1(X)

∂1−−→ C0(X)
ε−→ Z→ 0

where ε(
∑

i niσi) =
∑

i ni. This does not change the homology groups for n ≥ 1, but

for n = 0, we simply have H0(X) ∼= H̃0(X)⊕ Z.

Example 5.10. Let’s try to understand all these notions for X = S1. First of all,
∆0 is just a single point, so a 0-simplex σ in S1 is just a point in S1. Thus, a 0-
chain is just a formal sum

∑
x nxx where nx = 0 except for a finite number of points

x ∈ S1. By convention, ∂0 = 0, so any 0-chain is a 0-cycle.
Next, ∆1 is a line segment [e0, e1], so a 1-simplex σ can be considered a path in

S1. The boundary map ∂1σ = σ | [e0]− σ | [e1] is just the difference of the endpoints
of σ. Thus, any loop in S1 is a 1-cycle. This also shows that any two 0-chains differ
by a boundary, since we can take σ : ∆1 → S1 to be the path from one point to the
other point.

Let’s consider σ1 to be the loop starting at 1 that winds once counterclockwise
around the circle, σ2 the half loop that goes counterclockwise from 1 to −1, and σ3

the half loop that goes counterclockwise from −1 to 1. Then σ1 is a 1-cycle, and
σ2 + σ3 is also a 1-cycle because

∂1(σ2 + σ3) = (σ2 + σ3) | [e0]− (σ2 + σ3) | [e1]

= (1 + (−1))− ((−1) + 1)

= (1− 1) + ((−1)− (−1)) = 0.

We claim that σ1 and σ2 + σ3 differ by a boundary: first, consider the singular
2-simplex σ4 : ∆2 → S1 which is σ2 on the edge [e0, e1], σ3 on the edge [e1, e2] and
extended to the rest of ∆2 by having σ4 be constant on the lines perpendicular to
[e0, e2]. Then we get the concatenation σ2 ∗ σ3 on edge [e0, e2], which means

∂2σ4 = σ2 − (σ2 ∗ σ3) + σ3.

Hence, σ2 + σ3 and σ2 ∗ σ3 differ by a boundary. But notice that σ2 ∗ σ3 is equal to
σ1, so σ1 and σ2 + σ3 represent the same element in H1(S1).

We still need to talk about induced homomorphisms between homology groups.
For a map f : X → Y , we define an induced homomorphism f# : Cn(X) → Cn(Y )
by composition f#(σ) = fσ, then extending linear to get the formula

f#(
∑
i

niσi) =
∑
i

nifσi.
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Figure 3: σ1, σ2, σ3, and σ4

We can verify that f#∂ = ∂f# by the formulae.
If σ is a cycle, that is ∂σ = 0, then ∂(f#σ) = f#(∂σ) = 0, so f#σ is a cycle. If σ

is a boundary, meaning σ = ∂β for some β, then f#(σ) = f#(∂β) = ∂(f#β), which
means f#σ is a boundary. Therefore, f# preserves cycles and boundaries, so f#

induces a homomorphism f∗ : Hn(X) → Hn(Y ), and likewise for reduced homology

groups f∗ : H̃n(X)→ H̃n(Y ).
From this, we can verify that (fg)∗ = f∗g∗ from associativity of compositions

∆n σ−−→ X
g−−→ Y

f−−→ Z. Also, it is clear that the identity map induces the identity
homomorphism on homology groups id∗ = id.

As one can see, the definition of singular homology is quite technical, and unfor-
tunately, the proofs of the axioms of homology are no less technical. We shall sketch
the proofs and leave the details to be found in Hatcher.

Theorem 5.11. If two maps f, g : X → Y are homotopic, then they induce the
same homomorphism f∗ = g∗ : H̃n(X)→ H̃n(Y ).
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Proof. Let F : X× [0, 1]→ Y be a homotopy from f to g, then for a singular simplex
σ : ∆n → X we can form a prism operator P : Cn(X)→ Cn+1(Y ) that satisfies the
relation

(*) ∂P = g# − f# − P∂.

What this prism operator does is it takes a prism ∆n × I and breaks it up into
(n + 1)-simplices. The picture to keep in mind is we have one copy of ∆n given by
∆n×{0} with vertices [v0, . . . , vn], and another copy of ∆n above it given by ∆n×{1}
with vertices [w0, . . . , wn].

Figure 4: The prism ∆2 × I and the 3-simplex [v0, v1, v2, w2]

If we move one vertex of [v0, . . . , vn] up to get [v0, . . . , vn−1, wn], then the region
between these two n-simplices is an (n + 1)-simplex given by [v0, . . . , vn−1, vn, wn].
The prism operator repeats this process of creating (n + 1)-simplices and pushing
them through F to get the formula

P (σ) =
∑
i

(−1)iF (σ × idI) | [v0, . . . , vi, wi, . . . , wn].
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Proving the relation (*) amounts to some calculation with the formula, which we
leave to Hatcher (112).

Given this prism operator, we see that if α ∈ Cn(X) is a cycle, then

g#(α)− f#(α) = ∂P (α) + P∂(α) = ∂P (α)

since ∂α = 0. This means that g#(α) − f#(α) is a boundary. Hence, when we
quotient by im ∂n+1, we consider f#(α) and g#(α) to be the same element, so f#(α)
and g#(α) determine the same homology class. Therefore, f∗ = g∗.

Theorem 5.12. Let (X,A) be a good pair, then there is an exact sequence

· · · ∂−−→ H̃n(A)
i∗−−→ H̃n(X)

p∗−−→ H̃n(X/A)
∂′−−→ H̃n−1(A)

i∗−−→· · · .

Proof. For each n, there is a short exact sequence

0→ Cn(A)
i−→ Cn(X)

p−−→ Cn(X/A)→ 0,

where i and p are the inclusion and projection maps, respectively. We also have the
boundary map ∂ to pass from Cn of these spaces to Cn−1. Stacking these sequences
on top of each other, we have the following commutative diagram:y y y

0→ Cn+1(A)
i−→ Cn+1(X)

p−−→ Cn+1(X/A) → 0y∂ y∂ y∂
0→ Cn(A)

i−→ Cn(X)
p−−→ Cn(X/A) → 0y∂ y∂ y∂

0→ Cn−1(A)
i−→ Cn−1(X)

p−−→ Cn−1(X/A) → 0y y y
This induces a diagram for the homology groups. In order to get the exact

sequence we want, we just need to construct a map ∂′ : Hn(C)→ Hn−1(A) that fits
between the inclusion and projection maps.

Suppose c ∈ Cn(X/A) is a cycle, then c = p(b) for some b ∈ Cn(X). We know
that ∂b ∈ Cn−1(X) is in ker p since

p(∂b) = ∂p(b) = ∂c = 0.

Therefore, since ker p = im i, ∂b = i(a) for some a ∈ Cn−1(A). Then,

i(∂a) = ∂i(a) = ∂∂b = 0,
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which means ∂a = 0 since i is injective. Finally, we define ∂′ : Hn(C) → Hn−1(A)
by ∂′[c] = [a]. We leave the details to Hatcher to check that this map is well-defined
and fits into the exact sequence (116-17).

This technique of forming short exact sequences of the Cn groups, then connecting
different levels of the corresponding sequences for homology groups, is a common
process in homological algebra. One can refer to Vick for a discussion of how to
generalize this process (17-19). We will use it once more to prove the existence of
Mayer-Vietoris sequences.

Proof of Mayer-Vietoris sequences. Let Cn(A + B) be the subgroup of Cn(X)
consisting of sums of elements from Cn(A) and Cn(B). The boundary map
∂ : Cn(X) → Cn−1(X) takes Cn(A) to Cn−1(A) and likewise for B, thus
∂(Cn(A+B)) = Cn−1(A+B). We can form the short exact sequences

0→ Cn(A ∩B)
φ−−→ Cn(A)⊕ Cn(B)

ψ−−→ Cn(A+B)→ 0,

where φ(x) = (x,−x) and ψ(x, y) = x + y. See Hatcher for a verification that this
sequence is exact (150). Like the case for the exactness axiom, these exact sequences
induce exact sequences for homology groups.

It remains to show that Hn(A + B) is isomorphic to Hn(X), and to construct a
boundary map ∂′ : Hn(X)→ Hn−1(A ∩B). The isomorphism follows from Proposi-
tion 2.21 of Hatcher (149). As for the boundary map, if we have some α ∈ Hn(X)
represented by a cycle z ∈ Cn(X), then we can somehow decompose z = x + y for
x, y chains in A and B, respectively. Then ∂(x + y) = 0, which means ∂x = −∂y,
hence we just let ∂α = [∂x] = [−∂y] (Hatcher 150).
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