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Abstract

In this paper I discuss the local convergence (or Benjamini-Schramm convergence) of random
graphs. I start with a motivation of pursuing a theory of graph convergence in order to study large
real-world networks and network models. Then I present basic definitions and results in graph
theory which are fundamental for the paper. In section 3, I construct the metric space of rooted
graphs and present the notion of local convergence, which is expanded to random rooted graphs
in section 4 with a plethora of (somewhat surprising) graph limits. I conclude by discussing some
network indicators that can be well-approximated or bounded under local convergence, justifying
the pursuit of such limit theory.

Audience: I write to a student familiar with point-set topology, although a highly motivated
student of real analysis will do just fine. Knowledge of convergence in metric spaces is essential.
Formal treatement of the content on random graphs also requires knowledge of Probability Theory,
including basics of random variable convergence and measurable metric spaces. I opt for covering
that section with less rigour and more visual intuition, but additional references are suggested for the
interested reader. No graph theory pre-requisite is assumed and the necessary background is provided.
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1 Motivation

Much of contemporary information is structured in the form of networks. That is, a set of objects
with respective qualities is interneconneted by particular relationships. In the internet, webpages link
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to one another; streets of a city connect their intersections; and people’s acquaintances determine
a network in society. Processes and games involving these relationships are illuminated by Graph
Theory, the branch of math which studies networks—or graphs, how mathematicians prefer to call
them. Gossiping and epidemic spreading (the latter being an unfortunately timely application) are
dynamic processes taking place on social networks, for example. The simplicity yet pervasiveness of
networks in the real-world justifies the detailed study of Graph Theory and its applications.

With important exceptions such as physically constrained street networks, most real-world net-
works are untractably large. As a result, often times scientists focus their attention on local phenom-
ena: what are the properties of specific nodes, how clustered are small communities, is it possible to
partition the nodes evenly, etc [1]. To understand some of these indicators, a clever idea is to view the
large real-world networks as limiting objects of increasingly large finite graphs. This sets forward the
necessity of developing a Graph Limit Theory–that is, a topological structure on some set of networks
that allows for meaningful notions of distance and convergence.

Beyond size, most real-world networks are also sparse. That is, there are significantly less rela-
tionships than objects. A common example is an online social network with plenty of users, but with
relatively few friendship connections. Some Graph Limit theories work well for dense graphs–such is
the case of graphons [2]–but fail to represent sparsity.

Real-world phenomena must also be studied with certain appreciation of uncertainty. Privacy
concerns often restrain detailed access to social network data via call data records or social media
interactions, for example. The best we can often do is assign a probability to the existence of some
social interaction. Our limit theory must be robust to probabilistic objects, to random graphs.

In this paper, I present the Benjamini-Schramm convergence of graphs. Through constructing a
compact, complete metric space, this notion of convergence gives rise to a graph limit theory that
works well for sparse and random graphs from the local point of view.

2 Graph Theory Preliminaries

This section collects results and definitions in Graph Theory which will be directly referred to in the
pursuit of a graph limit theory. More detailed proofs and expanded results can be found in introductory
texts such as [3] and [4].

2.1 Basic Graphs

I begin by introducing key concepts in graph theory needed to translate these real-world network
relationships into Mathematical objects.

Definition 1. A graph G = (V,E) consists of its vertex set V (G) and its edge set E(G), where E(G)
is a subset of the set of two-element subsets of V (G).

This definition of a graph implies that there is at most one edge between any two vertices and that
there are no self-edges i.e. edges starting and ending at the same vertex. Some graph theorists call
the above object a simple graph for these reasons. Additionally, the graphs I presented are undirected
because there is no distinction between the two vertices of an edge.

Example. Draw any collection of line segments in a piece of paper. You just drew your first graph!
The vertices are all the endpoints of the segments, and the edges are the segments them-
selves.

Note that the lines in the above example need not to intersect each other. In fact, a collection
of entirely disjoint lines is a well defined graph, as is a collection of several points and no lines (that
would be a graph with no edges). We will get back to these ideas later.
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Definition 2. Let G = (V,E) be a graph. Then any graph H = (V ′, E′) such that V ′ ⊆ V and E′ ⊆ E
is a subgraph of G.

Example. Take your drawing of lines—assuming you did not crumble the paper yet. Erase any
number of segments. You just found a subgraph of your first graph.

The idea of subgraphs raises the possibility of defining a maximal graph:

Example. A complete graph on n vertices contains an edge between any pair of vertices. That is, it
is a graph Kn = (V,E) such that |V | = n and E =

(
V
2

)
.

Thinking back to the idea of sparseness in real-world networks, we could say that complete graphs
are the most possible dense networks. Any person in a complete social network is acquainted to
everyone else—this is obviously never true in real life. But we can think of any graph as a subgraph of
a complete graph, as if out of all possible connections only some of them actually exist. An example
of complete graphs and their subgraphs is illustrated in figure 1.

Figure 1: The complete graph on 5 vertices and two of its subgraphs, which have respectively 5 and 4 vertices
each. Note that we can erase any edges or vertices to obtain a subgraph.

Using just the basic ideas of vertices and edges, we can define further measurements of adjacency:

Definition 3. Let G be a graph. Let x, y ∈ V (G) be vertices of G.

1. We say that x and y are neighbors if {x, y} ∈ E(G). That is, x and y are neighbors if there is an
edge between them.

2. The degree deg(x) of x is the number of neighbors of x. Equivalently, by the previous definition, it
is the number of edges incident to x.

3. A graph in which all vertices have equal degree d is said to be d-regular.

Example. The complete graph Kn is (n−1)-regular: any vertex is connected to all other vertices.

2.2 Paths, Cycles, and Connectedness

This definition of graph is extremely rich. As we saw, any collection of points and lines in Euclidean
space constitutes a graph. To help us produce some more examples and properly name them, we must
build some vocabulary.

Definition 4. Let G be a graph.

1. A path of length k in G is a sequence of vertices x0, x1, . . . , xk ∈ V (G) such that xi and xi+1 are
neighborhs for all i < k. If xi 6= xj for all i 6= j we say that this is a simple path.

2. A cycle of length k in G is a path x0, x1, . . . , xk such that x0 = xk and xi 6= xj otherwise.
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That is, a path is a sequence of adjacent vertices in a graph, as if you were tracing them without
lifting the pencil. If there are no repeating vertices, then we have a simple path. And, if you finish
exactly in the vertex you started, we have a cycle. The length of these objects is simply the count of
edges they have.

Example. A path graph of length n and a cycle graph of length n are graphs Pn and Cn such that:

V (Pn) = {v0, v1, . . . vn} and E(Pn) = {{vk, vk+1} | k = 0, . . . n− 1}
V (Cn) = {v1, . . . vn} and E(Cn) = {{vk, vk+1} | k = 1, . . . n− 1} ∪ {{vn, v1}}

Note that Pn has n edges but n+ 1 vertices, whereas Cn has n edges and n vertices. The
cycle graphs are always 2-regular, while in the path graphs there are two vertices of degree
1 and all other vertices have degree 2.

Figure 2 illustrates the idea of paths and cycles.

Figure 2: In the graph G, whose vertices are labelled v1 . . . v8, we can find multiple paths and cycles. For
example, the sequence v2, v3, v5 forms a cycle of length 3. The graphs C6 and P5 are, respectively, a cycle graph
of length 6 and a path graph of length 5. Note that we can find such graphs also as subgraphs of G: the sequence
v2, v3, v5, v7, v6, v4 forms a cycle of length 6 in G, and the sequence v1, v2, v3, v6, v7, v8 forms a path of length 5.

With the notion of paths, we can return to the unsettling idea that a collection of any non-
intersecting lines in a plane is a graph. It turns out such graph is not minimal, in a sense.

Definition 5. The graph G is connected, if for all x, y ∈ V (G) there is a path from x to y.

We can restrict our attention to these “nicer” connected graphs because all graphs have connected
components: maximal connected subgraphs. To make this idea rigorous, consider the rightmost graph
in 1. We can say that such graph is a disjoint union of two paths of length 1 (i.e. two edges, exactly
by the definition) because there is no edge between these two graphs. The following lemma generalizes
this notion:

Lemma 1. Every graph G is the disjoint union of connected graphs, the connected components of G.

Proof. Let ∼ be a binary relation on V (G) such that u ∼ v ⇐⇒ ∃ a path from u to v. I show that
∼ is an equivalence relation on V (G).

(i) u itself is a path of length 0 vacuously. So u ∼ u for all u ∈ V (G).
(ii) if u, x1..., xn, v is a path from u to v in G, then v, xn, ...x1, u is a path from v to u,1 So

1This works essentially because the graphs I defined are undirected! In the case of directed graphs there are additional
notions of strong and weak connectedness.
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u ∼ v =⇒ v ∼ u for all u, v ∈ V (G).
(iii) if u, x1..., xn, v is a path from u to v in G and v, y1..., yn, w is a path from v to w in G,
then the concatenation u, x1..., xn, v, y1..., yn, w is a path from u to w by the definition of path.
So u ∼ v, v ∼ w =⇒ u ∼ w for all u, v, w ∈ V (G).

Then ∼ induces a partition on V (G). Let the equivalence classes with respect to ∼ be H1, H2....
We notice that u, v ∈ Hi ⇐⇒ ∃ a path from u to v so each class is a connected graph itself.
Moreover, there cannot be an edge between Hi and Hj for i 6= j: if there were, then there
would be a path from a vertex of Hi to a vertex of Hj and they would have to be in the same
equivalence class. Thus, the classes H1, H2, ... partition not only the set of vertices of G but
also the entire graph, and each of them is a connected graph.

Connected graphs are then a basic object of study, since we can look at the components of any
graph individually. The following is perhaps the most important type of graph we will consider:

Definition 6. A forest is a graph with no cycles. A tree is a connected forest. The vertices of degree
1 in a tree are called leaves.

Importantly, there is a unique path between any two vertices of a tree. The rigorous proof of this
fact can be found in [3], but one can be convinced by noticing that the concatenation of two distinct
paths with common endpoints defines a cycle. This also implies that, in a tree, any path is a path of
shortest length.

Example. Figure 3 shows some trees. Note that the path graphs we have defined earlier are naturally
trees as well. And the rightmost graph in figure 1 is a forest.

Figure 3: The graphs G, H, T , and S are all trees because they are connected and acyclical. In addition, the
disjoint union of any collection of these graphs is a forest.

The idea of paths can lead to treating graphs as metric spaces. There is an inherent distance
between two nodes determined by shortest path lengths. This distance turns out to be well-defined:

Definition 7. For x, y ∈ V (G) let the distance d(x, y) be the minimal length of a path from x to y.

We allow d to be infinite, which will happen in case x and y lie in two distinct components of G.

Lemma 2. Let G be a connected graph. Then d is a metric on V (G).
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Proof. First, notice that because G is connected there is a path between any two vertices x, y ∈ V (G).
Then there is also a path whose length is minimal, and no pair has infinite distance. So
d : V (G)× V (G)→ R is a well-defined function. We check d is a metric:

(i) d(x, y) ≥ 0 for all x, y ∈ V (G) by definition, since the length of a path is the (natural)
number of edges it contains. There is a path with length zero from x to y, that is which does
not go through any edge, if and only if x = y.

(ii) d(x, y) = d(y, x) for all x, y ∈ V (G), as a path from x to y can be inverted to yield a path
from y to x with the same length and vice-versa.

(iii) d(x, z) ≤ d(x, y) + d(y, z) for all x, y, z ∈ V (G), as concatenating a path from x to y and
a path from y to z always yields a path from x to z whose length is equal to the sum of the
lengths of the two paths. A minimal path from x to z has length at most the length of that
specific path.

Using this metric, we can generalize important notions of metric spaces to the context of a graph.

Definition 8. A k-ball Bk(x0) in a connected graph G centered at some x0 ∈ V (G), is the set of
vertices v ∈ V (G) such that d(x0, v) ≤ k and the set of edges between such vertices. Similarly, a
k-sphere is the set of vertices v ∈ V (G) such that d(x0, v) = k for a non-negative integer k.2

The 1-sphere around a node is often referred to as its neighborhood and denoted N(x0).

Example. Figure 4 shows a graph and two balls of a certain graph. Note that Bk(x0) ⊆ Bk+1(x0), a
phenomenon that must be familiar to anyone who studied metric spaces.

Figure 4: A graph with a distinct vertex x0 and the 1-and 2-balls around that vertex in the left and right
pictures respectively. Nodes and edges belonging to each ball are painted in blue.

2.3 Graph Isomorphisms

We now turn to defining a notion of equality in the set of graphs.

Definition 9. Let G and H be two graphs. An isomorphism between G and H is a bijection f :
V (G)→ V (H) preserving adjacency relations. That is:

{u, v} ∈ E(G) ⇐⇒ {f(u), f(v)} ∈ E(H)

If there exists such a bijection, we say that G is isomorphic to H.

2It makes less sense to define the spheres as a graph–i.e. with vertices and edges–than as simply a set of vertices. But
feel free to think of it as a subgraph of G, like the balls.
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Graph isomorphisms are nothing but relabelings of the vertices that preserve neighbors. We can
also think of them as two bijections that agree with each other, one between vertices and another
between edges.

Example. In figure 3, the trees H and T are isomorphic. To build an isomorphism, the vertices
of degree 2 must be mapped to each other. The other vertices can be mapped in any
order.

The following lemma is a logical step to justify the use of our definition of isomorphisms:

Lemma 3. Graph isomorphism is an equivalence relation on the set of all graphs.

Proof. Let ∼ be a binary relation on the set of all graphs such that G ∼ H if and only if G is isomorphic
to H. Then:

(i) since the identity function on V (G) is a bijection, G ∼ G.
(ii) since isomorphim requires a bijection, we can use the inverse function f−1 to find an
isomorphism from H to G.
(iii) if G ∼ H and H ∼ J , then there exist adjacency-preserving bijections f : G → H and
g : H → J . The composite g ◦ f : G→ J is also a bijection and:

{u, v} ∈ E(G) ⇐⇒ {f(u), f(v)} ∈ E(H) ⇐⇒ {g(f(u)), g(f(v))} ∈ E(J)

So that G ∼ J .

Then ∼ is reflexive, symmetric and transitive. Thus it is an equivalence relation.

Example. Figure 5 shows an example of an isomorphism between graphs. Note that isomorphic
graphs need to be “drawn” the same way in the paper, but that one could easily “redraw”
them alike. Try doing that with the graphs in the figure to convince yourself.

Figure 5: Isomorphic graphs G and H. A particular isomorphism f maps the vertices of G to the vertices
of H such that vertices of equal color in the figure correspond. That is: f(v1) = u1, f(v2) = u3, f(v3) = u5,
f(v4) = u2, and f(v5) = u4. Adjacency relationships are preserved.

In our limit theory, we will need a slightly stronger definition of isomorphism.

Definition 10. Let G be a graph such that v∗ ∈ V (G).

1. The pair (G, v∗) is called a rooted graph and v∗ is called the root of G.

2. The radius of (G, v∗) is the maximal distance from any vertex of G to v∗.

3. Two rooted graphs are isomorphic if there is an isomorphism identifying the roots.
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Example. In the example above, (G, v4) and (H,u2) are isomorphic as rooted graphs. Actually, G
and H are isomorphic as rooted graphs independently of their roots: to see that, notice
that we can build a satisfactory isomorphism by “shifting” the assignment of f until the
roots agree.

Example. In general, rooted isomorphisms are more restrictive. Figure 6 shows a case of isomorphism
graphs which are not rooted isomorphic for a particular choice of root.

Figure 6: The trees R and S are isomorphic, simply match the vertices occupying the same position. However,
the rooted trees (R, v) and (S, u) are not isomorphic. To see that, note that whereas v has degree 4 in R, u is
a leaf of S and has degree 1. Any bijection from V (R) to V (S) mapping v to u will assign too many neighbors
in R to u.

2.4 Infinite Graphs

The main objects we will be working with are infinite graphs. In particular, we restrict our attention
to a subset of countable graphs:

Definition 11. A graph is locally finite if all of its vertices have finite degree.

Example. Any finite graph is locally finite.

Example. Any d-regular tree must be an infinite graph as long as d > 1 and locally finite as long as
d < ∞. To see that, let T be a d-regular tree and pick a vertex v ∈ T . By definition, v
contains d neighbors, call them v11, v12, . . . , v1d. Then, each of these vertices contain d
neighbors as well and, due to the absence of cycles, necessairly d− 1 neighbors which have
not been enumerated so far. We can keep enumerating vertices of T and we will always
find d− 1 new vertices so that T must have infinitely many of them. Verify this principle
holds in the regular tress shown in figure 7. Hold on to the idea for this proof, we will
make it rigorous in a while.

The infinite path motivates another definition. Notice that there was no clear “starting point” in
T2. Let’s addres this:

Definition 12. Let G = (V,E) be an infinite graph. A ray in G is an infinite sequence of distinct
vertices x0, x1, · · · ∈ V (G) such that {xi, xi+1} ∈ E(G) for all i ≥ 0.

To sucessfully prove results regarding infinite graphs, we need some tools. While Zorn’s lemma
is very powerful and works in general settings, for locally finite graphs we can use a more visual and
simple tool known as Konig’s Infinity Lemma. I prove the lemma in what is often known as its tree
variation:
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Figure 7: The 2-regular tree T2 and the 3-regular tree T3. Note that T2 can be thought as an infinite path (and
sometimes we will refer to it this way). These trees have no leaves. The number of vertices in the k-sphere of a
tree grows exponentially.

Lemma 4. Let T be an infinite tree rooted at x0. If T is locally finite, then there exists a ray x0, x1, . . .
in T such that d(x0, xn) = n.

Proof. To prove this lemma more smoothly we can use the definition of descendants in a rooted tree
(T, x0). The descendants of a vertex v ∈ T are vertices of T whose (unique) simple path to the
root passes through v. Now we use induction to prove that, for every natural number k, there
exists a simple path x0, x1, . . . xk in T such that xk has infinitely many descendants.

The base case amounts to picking x0 alone. This is vacuously a simple path of length 0, and
the descendants of the root are all the vertices–an infinite set by assumption.

Assume the result holds for k ≤ n and pick a simple path x0, . . . xn where xn has infinitely
many descendants. Note that xn−1 is not a descendant of xn since x0 . . . xn−1 is a simple path
not passing through xn. Therefore, xn must have at least one neighbor which is not xn−1,
otherwise it would have no descendants.

Because the tree is locally finite, xn has finitely many such neighbors. Enumerate them as
v1, . . . vd. The descendants of these vertices (along with themselves) partition the set of de-
scendants of xn: for any descendant of xn which is not its neighbor, a simple path to the origin
must first pass through a neighbor since subsequent vertices in a path are adjacent. Thus we
can partition the infinite set of descendants of xn into sets of descendants of finitely many vi.

By properties of set cardinality, at least one of such vi must have infinitely many descendants.
Pick this vertex and call it xn+1. By the definition of a descendant, the simple path from
xn+1 to the root passes through xn and hence by uniqueness of simple paths in a tree it passes
through xn−1, xn−2, . . . x1. Therefore we found a simple path x0, . . . xn+1 where xn+1 has in-
finitely many descendants.

This completes the proof by induction. Note that, having found such a simple path for any
natural number k, we found a ray by definition.

9



This result will be used in the construction of a metric space for rooted graphs. I will make direct
use of the following corollary:

Corollary 1. Let (G, v0) and (H,u0) be connected, countable, locally-finite rooted graphs. If the balls
Br(v0) and Br(u0) are isomorphic for any r ≥ 0, then G and H are isomorphic as rooted graphs.

Rather than applying Konig’s lemma directly to the graphs G or H themselves, to prove this result
we will build a graph whose vertices are rooted isomorphisms between them. Then we show this new
graph is a locally finite, infinite tree and hence we can use the infinity lemma to find a ray.

Proof. We build a graph W such that the vertices are rooted isomorphisms between all k-balls and
the edges are restrictions between compatible isomorphisms:

V (W ) =
∞⋃
k=0

Vk(W ) =
∞⋃
k=0

{f | f : Bk(v0)→ Bk(u0) is an isomorphism}

E(W ) = {{f, g} | ∃k : f ∈ Vk(W ), g ∈ Vk+1(W ), g|Bk(v0) = f}

This graph is:

Connected. Any isomorphism can be restricted to the trivial isomorphism between the zero-
balls f0 : {v0} → {u0}. Now consider W to be a rooted graph with root f0.

Infinite. The balls Bk(v0) and Bk(u0) for all k > 0 are non-empty, because if they were the
original graphs would not be infinite (since they are locally finite).

Locally finite. Each isomorphism f ∈ Vk(W ) has neighbors on Vk−1(W ) and Vk+1(W ) only by
construction. Because the graphs G and H are locally finite, the k-balls are finite for any fixed
k ≥ 0. Between any two finite sets there is only a finite number of bijections—namely their
cardinality factorial—so that there can only be finitely many isomorphisms between the k balls
of G and H. This implies that both Vk−1(W ) and Vk+1(W ) are finite, and that f can have at
most finitely many neighbors.

Acyclical. Any vertex fk ∈ Vk(W ) has a unique neighbor in Vk−1(W ). That is because
Bk−1(x0) ⊆ Bk(x0) is a subgraph, therefore its assignments under fk are fixed.

Therefore W is a locally-finite, infinite-tree rooted at f0. By Konig’s Lemma, there is an infinite
ray in W . This infinite ray defines a rooted isomorphism between G and H: for any vertex of
G we can find an assignment under an isomorphism (i.e. vertex) in W lying in the ray.

Konig’s Infinity lemma can be used instead of Zorn’s lemma to show that any countable graph
contains a spanning tree, or that the chromatic number of a countable graph can be determined by
the chromatic number of its finite subgraphs. These and other results can be found on chapter 8
of Diestel’s text [3], and their proof follows a similar argument to the ball isomorphim proof above:
building a tree based on restrictions of a function to finite graphs and applying Konig’s lemma.

3 A Topological Space of Rooted Graphs

Let G denote the set of isomorphism classes of rooted, connected, locally-finite graphs. We start by
putting a metric on G . When not explicitly defined, assume that vi is the root of a graph Gi.

Definition 13. For G1, G2 ∈ G let

dBS(G1, G2) =
1

k + 1

where k is the maximal integer such that the rooted k-ball of G1 is isomorphic to the rooted k-ball of
G2. If there is no such maximal integer then dBS(G1, G2) = 0.
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Lemma 5. dBS is a metric on G .

Proof. First, notice that dBS : G ×G → [0,∞) is well-defined despite the choices of representatives G1

and G2 for the isomorphism classes. That is because isomorphic graphs have all their k-balls
isomorphic, which is the only factor influencing dBS. We now show identification, symmetry,
and the triangular inequality:

(i) If G1, G2 ∈ G are isomorphic as rooted graphs, then any rooted k-ball of G1 is isomorphic
to a rooted k-ball of G2. Therefore isomorphism implies that dBS(G1, G2) = 0. The converse
follows from corollary 1, for if dBS(G1, G2) = 0 then all k-balls in G1 and G2 are isomorphic.

(ii) Due to the symmetry of graph isomorphisms, this distance is symetric.

(iii) We can prove the triangular inequality by proving the strong triangular inequality : any side
of a triangle is no larger than the largest of the other two sides, hence any triangle is isosceles.
This helps set up the Benjamini-Schramm space as a ultrametric space, an interesting result
which will not be exploited in this paper.

Let G1, G2, G3 ∈ G . Let kij denote the maximal integer such that the rooted kij-ball of Gi is
isomorphic to the rooted kij-ball of Gj (possibly infinity). That is:

kij = sup{k | BGi
k (vi) ∼= B

Gj

k (vj)} =⇒

{
BG1
k (v1) ∼= BG3

k (v3) ∀k ≤ min{k13, k23} ≤ k13
BG2
k (v2) ∼= BG3

k (v3) ∀k ≤ min{k13, k23} ≤ k23
=⇒ BG1

k (v1) ∼= BG2
k (v2) ∀k ≤ min{k13, k23}

=⇒ k12 = sup{k | BG1
k (v1) ∼= BG2

k (v2)} ≥ min{k13, k23}
=⇒ k12 + 1 ≥ min{k13 + 1, k23 + 1}

=⇒ 1

k12 + 1
≤ max

{
1

k13 + 1
,

1

k23 + 1

}
=⇒ 1

k12 + 1
≤ 1

k13 + 1
+

1

k23 + 1

The second implication followed by transititviy of isomorphisms, and the third by the definition
of a supremum.

Endow G with the topology defined by dBS. We call this metric the Benjamini-Schramm space
after [5]. Considering the notion of convergence in metric spaces, we have established the Benjamini-
Schramm convergence as the convergence of rooted balls:

(Gn)∞n=1 →BS G ⇐⇒ dBS(Gn, G)→ 0

⇐⇒ sup{k | BGn
k (vn) ∼= BG

k (v)} → ∞
⇐⇒ ∀k > 0 ∃nk ∈ N : BGn

k (vn) ∼= BG
k (v) ∀n > nk

Now we take a look at three examples of the Benjamini-Schramm convergence:

Example. The sequence of paths Pn rooted at their left endpoint x0 converges in the Benjamini-
Schramm sense to an infinite one-sided ray rooted at its left endpoint, P . These graphs
are illustrated in figure 8, and they satisfy the following relation:

dBS(Pn, Pm) =
1

min(n,m) + 1
and dBS(Pn, P ) =

1

n+ 1

To see that this holds, observe that Pn ⊆ Pm is a subgraph (up to isomorphism) whenever
n ≤ m. Therefore there is an isomorphism between the n-rooted ball of Pn (which is the
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whole graph) and the n-rooted ball of Pm. For P , think of it as a path when n→∞.

Therefore (P, x0) is the Benjamini-Schramm limit of the ((Pn, x0))
∞
n=1. Given any ε > 0

we can pick:

n >
1

ε
− 1 =⇒ dBS(Pn, P ) < ε

Figure 8: Paths (Pn, x0) and their Benjamini-Schramm limit (P, x0).

Example. The sequence of paths Pn rooted at their middle vertex x 1
2
n (or close to the middle if

n is odd) converges in the Benjamini-Schramm sense to an infinite two-sided ray rooted
anywhere, T2, also known as the 2-regular tree from figure 7. These graphs are illustrated
in figure 9, and they satisfy the following relation:

dBS(Pn, Pm) =
1⌊

min(n,m)
2

⌋
+ 1

and dBS(Pn, T2) =
1⌊

n
2

⌋
+ 1

Again, this happens primarily because Pn ⊆ Pm is a subgraph (up to isomorphism) when-
ever n ≤ m. But in this case the n-ball in Pm may not be equal to Pn, since the root is in
the middle of the graph (see the figure)! Note that the distance between any of these paths
(except P1) to P in figure 8 is 1, for their 1-balls are not isomorphic due to the degree of
the root being different.

Therefore (T2, x) is the Benjamini-Schramm limit of the ((Pn, x 1
2
n))∞n=1. Given any ε > 0

we can pick:

n >
2

ε
− 2 =⇒ dBS(Pn, T2) < ε

Example. The sequence of cycle graphs Cn rooted at any vertex x0 also converges in the Benjamini-
Schramm sense to the infinite two-sided ray rooted at any vertex T2. These graphs are
illustrated in figure 10, and they satisfy the following relation:

dBS(Cn, Cm) =
1⌊

min(m,n)
2 − 1

⌋
+ 1

and dBS(Cn, T2) =
1⌊

n
2 − 1

⌋
+ 1

12



Figure 9: Paths (Pn, xn
2

) and their Benjamini-Schramm limit T2. Note how the 1-ball in P2 contains both
neighbors of the root, hence is not isomorphic to the 1-ball in P1. That is why, in the BS-distance of these
graphs, we must take the floor of half the path length.

To see that this holds, observe that until we have transversed half the cycle (on each side of
the root) we will not capture the edge “closing” the cycle. Then our balls will be isomorphic
to a path rooted in its middle vertex such as the ones shown in figure 9 and we reduce to
the previous example.

Therefore (T2, v) is the Benjamini-Schramm limit of the ((Cn, v))∞n=3. Given any ε > 0 we
can pick:

n >
2

ε
+ 2 =⇒ dBS(Cn, T2) <

1⌊
1
ε

⌋
+ 1
≤ 1

1
ε − 1 + 1

= ε

Figure 10: A few rooted cycles and their Benjamini-Scramm limit T2. The reasoning for taking the floor is very
similar to the one presented in 9. The correction to one unit less happens because in the case of an odd cycle
the ball captures the entire graph before reaching half of its length. The 2-ball of C5 is the entire pentagon.

There are three important takeways from these examples.

1. Benjamini-Schramm convergence is local. The cycles are clearly not akin to an infinite path
(which is a tree!) globally, but from the point of view of the root they all look like a path. Think
of the Earth (or, if you can, of a manifold) and how it feels flat from any point in it.
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2. The roots matter. Rooting the sequence of paths at different vertices (with, importantly, different
degrees) yields a different limit.

3. The roots are sometimes irrelavant. In the case of cycles, for all v ∈ Cn the rooted graphs (Cn, v)
are isomorphic. This isomorphism is easy to visualize: simply rotate the cycles.

To understand more how these graph limits work, we have to prove a few properties about the
Benjamini-Schramm space.

3.1 Benjamini-Schramm is a Polish Space

A first result regarding this space is that infinite graphs can be well-approximated by sequencs of finite
rooted graphs. This is analogous to how real numbers are limits of sequences of rational numbers, and
is a consequence of separability:

Theorem 1. G is a separable metric space, where the set of finite rooted graphs modulo isomorphism
forms a dense subset.

Proof. Let F ⊆ G denote the set of equivalence classes of finite rooted graphs. For every natural
number k there are finitely many graphs on k vertices (finitely many subgraphs of the complete
graph) and k possible roots. As a countable union of finite sets, F is countable. We show it is
dense.

Let (G, v) ∈ G be an arbitrary rooted graph. For all k ∈ N, the k-ball BG
k (v) is a finite rooted

graph hence an element of F which satisfies:

dBS
(
BG
k (v), G

)
≤ 1

k + 1

since the ball is a subgraph of G. Fix ε > 0. Then we can pick any k above ε−1 − 1 and:

dBS
(
BG
k (v), G

)
< ε

Which shows that F is dense in G , since we picked G ∈ G arbitrarily and found a point in F
arbitrarily close to it.

Therefore, instead of looking at an infinite graph (or, in the real-world, an untractably large graph),
we can look at a sequence of finite graphs converging to it. But, as in any metric space, some sequences
do not converge. Figure 11 shows an example of such sequence.

Fortunately, “nice” sequences converge. Recall the following definition from analysis:

Definition 14. Let (X, d) be a metric space. A sequence (xn) ⊆ X is called a Cauchy Sequence if for
all ε > 0 there exists N = N(ε) such that if n,m > N then d(xn, xm) < ε. The space X is said to be
complete if all Cauchy Sequences converge.

The divergent sequence in figure 11 was not Cauchy (pick ε < 1). In the Benjamini-Schramm
space, Cauchy sequences converge. My proof follows the exposition in appendix A of [6].

Theorem 2. G is a complete metric space.

Proof. Let ((Gn, vn)) ⊆ G be a Cauchy sequence. First, let’s see what the Cauchy condition means
for the balls. Let ε > 0 be given and pick N > 0 as per the previous definition. Then:

dBS(Gn, Gm) < ε ∀n,m > N =⇒ dBS(Gn, Gm) <
1(

1
ε − 1

)
+ 1
∀n,m > N

=⇒ sup{k | BGn
k (vn) ∼= BGm

k (vm)} > 1

ε
− 1 ∀n,m > N

14



Figure 11: A sequence (Gn) ⊆ G rooted at the pink vertex, x0. Algebraically, V (Gn) = {x0, . . . xn} and
E(Gn) = {{x0, xi}}. Note that the 1-rooted balls in any two of these graphs cannot be isomorphic: the root
has degree n, different in all Gn, therefore no bijection between the 1-balls will preserve adjacency. This means
that k = 0 and that the distance between any two elements of this sequence is 1. Thus it cannot converge to a
point in G , which makes sense: the logical limiting graph would contain infinitely many vertices, all adjacent
to the root—but then this graph would not be locally finite!

=⇒ BGn
k (vn) ∼= BGm

k (vm) ∀k ≤ 1

ε
− 1 ∀n,m > N

Equivalently, if we assume that k is given, we pick ε < 1
k+1 and the associated N to find that

BGn
k (vn) ∼= BGm

k (vm) ∀n,m > N

But this means that we can find a nk := N > 0 such that

BGn
k (vn) ∼= B

Gnk
k (vnk

) ∀n ≥ nk (∗)

Using this reformulation of the Cauchy property, we will construct a sequence of graphs all
within a given distance from an element of G . This element will become the limiting object.

For every k = 1, 2, . . . , find one such nk as given by (*). This can be done such that the
sequence (nk) is monotonically increasing: any n > nk also satisfies the given property. We
construct a sequence of graphs using the k-balls:(

B
Gnk
k (vnk

), vnk

)
= (Hk, vk) ⊆ G

Note that, by (*) and the monotonicity of nk, we have a sequence where:

BHs
r (vs) ∼= BHr

r (vr) ∀ r ≤ s

Therefore these graphs are compatible as rooted graphs: the r-balls freeze. We can consider
that they have the same set of vertices (one could define a proper isomorphism). Let (G, v) ∈ G
be another graph whose vertices are the union of all vertex sets ∪V (Hk) and the edges are the
union of all edge sets. Clearly G is locally-finite and connected since so are all the Hk. And,
by the definition of G and (*), we have:

BG
k (v) ∼= BHk

k (vk) = B
Gnk
k (vnk

) ∼= BGn
k (vn) ∀ n ≥ nk

This, in terms of the Benjamini-Schramm distance, tells us that:

dBS (G,Gn) ≤ 1

k + 1
∀ n ≥ nk

This completes the proof because k was an arbitrary natural number. Thus, given any ε > 0:

k >
1

ε
− 1 =⇒ dBS (G,Gn) < ε

That is, (Gn)∞n=1 →BS G.
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Therefore, the Benjamini-Schramm topological space is a complete and separable metric space.
We can say it is a Polish space.

3.2 Compactness in the Benjamini-Schramm Space

Take a look again at the sequence given in figure 11. As explained in the figure, the distance between
any two elements of that sequence is 1. So, picking a few of those graphs, even if we choose them
wisely, will not generate a convergent sequence. Not only the sequence diverges, but it also contains
no convergent subsequence. If we recall the definition of (sequential) compactness in the setting of
metric spaces:

Definition 15. Let (X, d) be a metric space. If every sequence (xn) ⊆ X contains a convergent
subsequence (xnk

) ⊆ (xn), we say that X is compact.

Therefore we showed by a counter-example that the Benjamini-Schramm space G is not compact.
Compactness is a very appealing property, for continuous functions in compact spaces are well-behaved.
It turns out we can easily characterize compact subspaces of G . We begin by defining an important
subspace.

Definition 16. Let D > 0 be an integer. The subspace of G with locally-finite, connected rooted graphs
(modulo isomorphism) of all degrees at most D is GD ⊆ G .

This subspace is compact. Before we show that, we can show two other important properties.

Theorem 3. The metric space GD is closed in G .

Proof. We show that GD by showing it contains all of its limit points. Let (Gn, vn) ⊆ GD be a
convergent sequence whose limit is (G, v) ∈ G . We can prove that the degrees in G are all at
most D by contradiction.

Assume there is a vertex x ∈ G such that deg(x) > D. Let r = dG(x, v) be the distance in
the graph G between x and the root. Then BG

r+1(v) contains x and all of its neighbors, whose
distance to the root is either r − 1 or r + 1. But this implies that, for any (H,u) ∈ GD, there
cannot be a rooted isomorphism between BH

r+1(u) and BG
r+1(v): while in the former all the

vertices have degree at most D, the latter contains the vertex x whose degree is more than D.
Therefore, by definition of the Benjamini-Schramm distance:

BH
r+1(u) � BG

r+1(v) =⇒ dBS(G,H) >
1

r + 1 + 1
=

1

r + 2
∀(H,u) ∈ GD

If we pick ε < 1
r+2 , there is no element of the sequence (Gn, vn) which is within ε from G.

Then the sequence cannot converge to G, which is a contradiction. So no vertex in G can have
degree above D which implies that G ∈ GD.

The proof is complete since G was an arbitrary limit point of GD.

Now recall the following definition from analysis:

Definition 17. Let (X, d) be a metric space. We say that X is totally bounded if, for any r > 0,

∃x1, x2, . . . xNr ∈ X : ∃i ∈ {1, . . . Nr} : d(x, xi) < r ∀x ∈ X

I remark that usually the definition of total boundedness is phrased in terms of open balls. I
avoided this since we are making use of balls in the graphs a lot.

Theorem 4. The metric space GD is totally bounded.
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Proof. Let r > 0 be given. We will use the definition of the radius of a rooted graph. Pick:

ρ >

⌈
1

r

⌉
There are only finitely many possible graphs in GD whose radius is at most ρ. This happens be-
cause such graph has at most finitely many, namely Dρ, vertices. Call these graphs G1, . . . GN .
We will show that any graph in GD is within r from at least one of these graphs.

Let (H,u) ∈ GD be an arbitrary rooted graph. The ρ-rooted ball of H, BH
ρ (u), is a a graph in

GD whose radius is at most ρ. Therefore it is isomorphic to one of the G1, . . . GN , say Gk. By
definition of the Benjamini-Schramm distance, we then have:

BH
ρ (u) ∼= Gk =⇒ dBS(H,Gk) ≤

1

ρ+ 1
<

1⌈
1
r

⌉
+ 1
≤ 1

1
r + 1

≤ r

This completes the proof since r was arbitrary.

We can now put these two properties together. The following lemma, from analysis, explains how
we will do that:

Lemma 6. A complete and totally bounded metric space is compact.

In addition, recall from analysis that a closed subset of a complete space is also complete. This
allows us to show:

Theorem 5. The metric space GD is compact.

Proof. This is a consequence of theorems 3 and 4. Because G is complete and GD ⊆ G is closed, it is
also complete. Then, following lemma 6, it is compact.

Much of the local limits of interest happen to be confined to the subspace GD. The convergent
sequences of paths and cycles shown in this section were all within G2 for example. The divergent
sequence in figure 11 was not in any such subspace: for any choice of D, the root degree in graph GD
would exceed the bound. Appealing to compactness will allow us to easily generalize the Benjamini-
Schramm convergence to the case of random graphs, as I will discuss next.

4 A Topological Space of Random Rooted Graphs

Often, real-world networks do not have a distinct vertex. To make sense of the idea of a rooted graph,
we can think of choosing the root uniformly at random among a graph’s vertices. This inspires the
following definition:

Definition 18. For a fixed integer D > 0 and the Borel sigma-algebra, a GD-valued random variable
G is called a random rooted graph.

Given a fixed finite graph, we can construct a random rooted graph naively by choosing its root
uniformly. Note that sometimes we choose the root so that the resulting graphs are isomorphic. This
yields a skewed probability distribution.

Example. Let Pn represent the path graph of length n with vertices x0, . . . xn. We associate to it a
random rooted graph Pn. The root will fall on vertex xi with probability 1

n regardless of
i. However, if we want to consider how this graph will look like up to isomorphism (hence,
in GD), we can consider it to be rooted in half of its vertices:

(i) If n is odd, Pn is rooted at xi with probability 2
n for any i < n+1

2 .
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(ii) If n is even, Pn is rooted at xn
2

with probability 1
n and at another xi, i <

n
2 with

probability 2
n .

This happens because of symmetry: as rooted graphs, the path rooted at x0 is isomorphic
to the path rooted at xn and so on.

Example. Let Cn represent the cycle graph of length n. As stated in a takeway of the previous
section, rooting a cycle at any of its vertices yields an isomorphic rooted graph. Therefore
we can say that, with Cn, we associate a random rooted graph Cn whose root is a vertex
v with probability 1.

A random rooted graph, then, corresponds to a Borel probability distribution on GD. For a more
detailed and rigorous probabilistic explanation, the reader can look at [7] and [8]. The Benjamini-
Schramm convergence can be extended to random rooted graphs as a weak convergence (or convergence
in probability) of random variables. That is:

(Gn)∞n=1 →BS G ⇐⇒ ∀(H, o) ∈ GD Pr
[
BGn
k (vn) ∼= BH

k (o)
]
→ Pr

[
BG
k (v) ∼= BH

k (o)
]

Essentially, we are comparing the k-ball in each of the Gn to a k-ball in a fixed rooted graph H to make
sense of the random variables. The transitiviy of graph isomorphism should help the reader understand
why this notion of convergence implies that, in probability, the limit of Gn will be isomorphic to G.
More intuitively, we can think of how the balls (for a fixed radius) in Gn will look like if we choose a
root at random. What kind of vertices will lie inside the ball? What graph are these balls converging
to as n→∞? These questions illustrate once again how the Benjamini-Schramm focuses on the local
structure of the graph, since convergence is determined by the balls.

This notion of convergence works well because our metric space (GD, dBS) is compact and Polish
(separable and complete). Prokhorov’s theorem, an important result in Probability Theory, guarantees
that the space of Borel-probability distributions on (GD, dBS) is also compact. More details about
Prokhorov’s theorem can be found in [9].

4.1 Examples of Random Graph Convergence

Now I give several examples of the Benjamini-Schramm convergence of random rooted graphs:

Example. Convergence of cycles is once again a trivial case. The limiting object of the sequence
Cn will be the two-dimensional tree T2 rooted, with probability 1, at any of its vertices.
That is because, for fixed r, balls around a vertex of the cycle mostly look like balls in a
two-sided path—considering, of course, the tail of the sequence of cycles.

Example. Random rooted graphs solve the conflict between the two path limits. Let Pn be the
random rooted path of length n, whose distribution was precisely defined on a previous
example. I claim that the limit of (Pn) is also T2 rooted, with probability 1, at any of its
vertices.

This happens because the left endpoints become negligible as the paths grow. While the
probability that the path Pn will be rooted at a vertex of degree 1 (i.e. endpoint) is 2

n , the
probability that it will be rooted at a vertex of degree 2 is n−2

n . As n → ∞, the former
approaches zero and the latter 1.

Thinking of balls, this means that the balls of fixed radius at a random vertex of Pn mostly
extend nicely in both directions. That is, there is a very low probability a ball of fixed
radius will capute the end point of the path as n→∞.
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In these two examples, the limit object had a degenerate probability distribution: with probability
1, the root was fixed. This is not usually the case: often the Benjamini-Schramm limit of random
rooted graphs is random itself. These proofs follow the visual explanation in [10] and [11].

Example. Let Fn denote a comb graph with handle on 3n vertices. That is:

V (Fn) = {b1, . . . bn} ∪ {t1, . . . tn} ∪ {h1, . . . hn}
E(Fn) = {{bi, bi+1} | i < n} ∪ {bn, h1} ∪ {{hi, hi+1} | i < n} ∪ {{ti, bi} | i ≤ n}

The vertices t1 . . . tn are the teeth of the comb, the b vertices are the base of the comb, and
the h vertices are the handle. It will be useful to consider the comb graph without handle
Mn as the subgraph of Fn on the 2n vertices composing the base and teeth of the comb.
This sequence of graphs is shown at figure 12.

As a sequence of random rooted graphs, (Fn) converges to a random graph F which is
isomorphic to, with equal 1

3 probability:

(i) The infinite comb without handle M rooted at one of the base vertices.

(ii) The infinite comb without handle M rooted at one of the teeth vertices.

(iii) The infinite rooted 2-tree T2.

This happens because 1
3 of the vertices of Fn lies in each of the three regions of the comb.

Taking the root uniformly over all vertices implies the root will be a tooth, a base vertex,
or a handle vertex with equal probability. There are a few boundary cases: the points
where handle meets the base, the endpoint of the handle, etc. As n → ∞, there is zero
probability that a ball in Fn will capture these finitely many boundary points. Locally,
the graph looks like an infinite handleless comb or an infinite path—and in the case of the
comb it matters where the root falls.

Figure 12: The (unrooted) comb graphs with handle F1, F2, and F3 on the left and the realizations of their
Benjamini-Schramm limit (as random rooted graphs) on the right. The graphs Fn have equal probability to
be rooted on the teeth, base, or handle. Each of these scenarios corresponds to a value in the image of their
limiting object.

There are many other interesting limits. Naturally extending the path to a k-dimensional lattice,
for example, will yield that finite grids converge to the infinite grid. And readers who are more
familiar with random graphs and stochastic processes will be pleased to know that Erdos-Renyi random
graphs converge in the Benjamini-Schramm sense to the Galton-Watson tree with Poisson offspring
distribution, a proof of which can be found in section 1.3 of [8]. I finish this section by illustrating one
more interesting limit, whose limiting graph is perhaps unfamiliar to the reader.
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Example. The sequence of truncated regular binary trees converges to the infinite canopy tree. Say
that Gn is the binary tree which has 2n − 1 vertices. The first few of these trees are
illustrated in figure 13.

Figure 13: The sequence of truncated binary trees. Each tree Gn has 2n−1 vertices distributed along n heights
(consider the leaves are in height n i.e. we are counting down). And each height k of the tree has 2k−1 vertices.
So Gn has 2n−1 leaves, which means that over half of the vertices in a truncated binary tree have degree 1.

The key to figuring out what is the limiting graph resides on examining how the tree looks,
locally, from the perspective of its leaves, of the neighbors of its leaves, of the neighbors of
the neighbors of its leaves, and so on. Rooting the tree at any vertex of the same height
will yield an isomorphic rooted graph: think of it as if you are twisting the branches of the
tree. We must root the truncated trees at every height. An equivalent visualization of the
truncated tree G4 is shown in figure 14.

Figure 14: The truncated binary tree of height 4 in its common form (left) and on an isomorphic form (right).
The colors map the vertices between the two graphs, such that vertices of the same color can be permuted
without changing the isomorphism class. Basically, G4 can be seen as the union of a 3 path and the truncated
trees G1, G2 and G3—each hanged from a vertex of the path. Rooting G4 at a leaf is equivalent to rooting the
figure on the right on the first vertex of the path, and so on.

It turns out that this construction generalizes well and the infinite graph it determines is
called the canopy tree. The canopy tree is shown in figure 15.

Figure 15: The canopy tree TC . This infinite graph is composed of an infinite one-sided ray x0x1, . . . and all
truncated binary trees G1, G2, . . . . The tree Gn hangs from the vertex xn. Consider, if you wish, that G0 is the
empty graph.

Let’s look at the balls rooted around a leaf. The truncated trees Gn are a subgraph of
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the canopy tree TC . In their path-hanging form presented in figure 14, we can capture the
whole height of Gn in a ball of TC without noticing the two graphs are not isomorphic. But
we notice it as soon as we increase the ball’s radius one more unit, because the truncated
path-hanging tree has a right endpoint. In the specific example of G4 from figure 14, the
3-ball around a leaf will capture x3 and that is ok, but the 4-ball will capture x4 which has
no correspondence in G4 since the green vertex has no second neighborh in the path. The
height of the tree Gn (in number of edges) is n− 1. Generalizing this notion:

dBS((Gn, leaf), (TC , x0)) =
1

n− 1 + 1
=

1

n

In the deterministic Benjamini-Schramm sense, the sequence Gn when all graphs are rooted
on a leaf converges to (TC , x0). Similarly, balls rooted around a vertex which is a neighbor
of a leaf (the blue vertices in figure 14) are isomorphic for one less unit—since the blue
vertices are one unit closer to the green vertex. This would mean:

dBS((Gn, leaf neighbor), (TC , x1)) =
1

n− 2 + 1
=

1

n− 1

Again, as n→∞, we have found the deterministic Benjamini-Schramm limit.

Different than in the comb example, it seems like the limit of Gn will take infinitely many
values with positive probability. They are all isomorphic to the canopy tree if we ignore
the rooting. Their isomorphic class as rooted graphs, however, depends on the height of
the original root, which was decided uniformly at random over the vertices of Gn. And,
as given in figure 13, we know how to compute the limiting proportion of vertices at each
height:

#(leaves) =
2n−1

2n − 1
→ 1

2

#(neighbors of leaves) =
2n−2

2n − 1
→ 1

4

#(neighbors of neighbors of leaves) =
2n−3

2n − 1
→ 1

8
...

The canopy tree is the limit G of the sequence Gn. Its root will be random, depending
on the probability of choosing a root on the Gn. Generalizing the above observation, the
probability of choosing a root at height k away from a leaf approaches 1

2k+1 . Therefore the
random rooted graph G which is a limit of Gn has the following probability distribution:

Pr[G = (TC , xn)] =
1

2n+1

It is perhaps surprisingly that the limit of truncated regular trees is not the infinite regular tree.
This tree, as a matter of fact, is the limit of sequences of (some) regular graphs. We have seen this
example in disguise: the cycles (2-regular graphs of increasing size) converge to the two-sided path
(infinite 2-regular tree). The Benjamini-Schramm theory, once more, focuses on local properties of the
graphs. Being a regular tree is a global property, and that was lost in the example of the canopy tree.
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5 Conclusion: why the local convergence?

After seeing Benjamini-Schramm convergence in practice, we must return to the fundamental question:
why is this graph limit theory valid?

First, several remarks throughout this exposition address the major feature of BS convergence: it
is local. This happens because the limiting graph is determined by neighborhoods of the root. In turn,
the theory works well for sparse graphs: the paths, the cycles, the trees all have Benjamini-Schramm
limits. The sequence of complete graphs (which is dense) does not, for the degree of such sequence is
not bounded.

Second, the Benjamini-Schramm space has nice topological properties. Because the space is sepa-
rable by the set of finite graphs, we can use finite objects to efficiently approximate infinite networks
for example. And, due to compactness, all sequences of bounded degree are guaranteed to have at
least a convergent subsequence.

Third, this notion of convergence preserves several network statistics. Many of these statistics are
“local” in the sense that they depend, mostly, on the size of neighborhoods. The clustering coefficient,
a common measure of how tight communities are in social networks, is an example of network indicator
which is estimable along the Benjamini-Schramm convergence under certain conditions. Similarly, so
are measurements of degree assortativity. These and other results are found in section 2.5 of [6].
Matching numbers are another example of practically relevant indicator that is preserved under local
convergence [12]. There are also many applications of this notion of convergence to Spectral Graph
and Group Theory [13].

Finally, local convergence is being currently researched in the context of Machine Learning. Graph
Neural Networks are learning algorithms often tasked with finding properties of nodes and edges, or
predicting links. However, as posed in the introduction, many real-life networks are untractably large.
Benjamini-Schramm convergence provides a framework for randomly sampling sections of the network
in order to parallelize model training and achieve similar performance. Learning from local balls, as
proven with the BS convergence, is as good as learning from the entire graph [14].

Therefore, for the particular class of sparse graphs, the local convergence has several advantages
and applications in Mathematics and Computer Science.
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