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Abstract

We study the convergence of entropically regularized optimal trans-
port to optimal transport. The main result is concerned with the con-
vergence of the associated optimizers and takes the form of a large
deviations principle quantifying the local exponential convergence rate
as the regularization parameter vanishes. The exact rate function is
determined in a general setting and linked to the Kantorovich poten-
tial of optimal transport. Our arguments are based on the geometry
of the optimizers and inspired by the use of c¢-cyclical monotonicity in
classical transport theory. The results can also be phrased in terms of
Schrodinger bridges.

Keywords Optimal Transport; Entropic Penalization; Schrédinger Bridge; Large
Deviations; Cyclical Invariance
AMS 2010 Subject Classification 90C25; 60F10; 49N05

1 Introduction

Over the last three decades, optimal transport theory has flourished due to
its connections with geometry, analysis, probability theory, and other fields
in mathematics; see for instance [53, 54, 58|. Following computational ad-
vances which have enabled high-dimensional applications, a renewed interest
comes from applied fields such as machine learning, image processing and
statistics. Popularized in this area by Cuturi [21], entropic regularization is
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a key computational approach for high-dimensional problems. The resulting
entropic optimal transport problem provides an approximate optimal trans-
port when solved for small regularization parameter € > 0 while admitting
much more efficient algorithms than the unregularized problem, in addition
to having other desirable properties. We defer the discussion of related liter-
ature to Section 1.1 below and proceed with a synopsis of the present study.

Given a continuous cost function ¢ : X x Y — R on Polish probability
spaces (X, 1) and (Y, v), we consider the entropic optimal transport problem

inf / cdr +eH(mlp @ v) (1.1)
mell(pv) Jxxy

where II(p,v) is the set of couplings and H (-] ® v) denotes relative en-
tropy (or Kullback-Leibler divergence) with respect to the product of the
marginals; see Section 2 for the formal definitions. The constant € > 0 acts
as a regularization parameter; ¢ = 0 recovers the (unregularized) optimal
transport problem. Under mild conditions detailed in Sections 2 and 3, re-
spectively, the entropic optimal transport problem admits a unique solution
me € II(p, v) and 7. converges weakly to a solution 7, of the unregularized
problem. Our main interest is to quantify the speed of this convergence
Mg —> M.

For finite-dimensional linear programs—including optimal transport prob-
lems with marginals supported by finite sets—the solution of the entropic
regularization is known to converge exponentially fast to a solution of the
original problem (in total variation, say). In transport problems with contin-
uous marginals, the situation is quite different even in the most regular ex-
amples. For Gaussian marginals on R and quadratic costs c(z,y) = |z — y/|?,
direct computation shows that m. is Gaussian and m, is given by a linear
transport (Monge) map 7. One finds that the transport cost converges only
linearly, [cdm. — [cdm. =¢/2+o(e). The culprit for this slowdown is eas-
ily spotted by inspecting the closed-form solution: the leading term in the
cost difference stems from the mass 7. places at a distance of approximately
V€ to the support ' of 7, (that is, the graph of T'). See Section 1.1 for
further discussion on the asymptotics of transport costs and value functions,
which have been the main focus of the extant literature on the convergence
ase — 0.

In the present study, we adopt a different, more local perspective, from
which the Gaussian example is actually encouraging: the density of 7. decays
exponentially away from I'. Indeed, it is proportional to e—aly=T@}/ ¢ where
a > 0 is the quotient of the marginal variances.

The main result of this paper is a comparable statement in a remarkably
general setting; it takes the form of a large deviations principle. We define a
function I(x,y) through the following optimization. In addition to the given



point (z,y) =: (x1,y1), choose finitely many points (z2,y2), ..., (k, yr) from
the support I' of the limiting optimal transport m,, as well as a permutation
o € X(k). Then, consider the difference

k

Z (i yi) — Z c(Tis Yo (i) (1.2)

i=1 i=1

between the pointwise transport costs from z; to y; with the costs for the
permuted destinations y,(;). The optimization is to maximize this differ-
ence, and we define I(x,y) as the supremum value of (1.2) over all choices
of points and permutations. For (z,y) € T, the optimality of =, implies
that I(z,y) = 0, because I' is ¢-cyclically monotone. But outside I', we may
typically expect that I(xz,y) > 0. Part (a) of our theorem below, the large
deviations upper bound, shows that I is a lower bound for the rate function
in the general Polish setting. The matching bound (b) necessitates a con-
dition on the optimal transport problem that is being approximated—but
still holds for the majority of continuous or semi-discrete transport problems
of interest. We mainly discuss the uniqueness of Kantorovich potentials
(Assumption 4.4) as a sufficient condition; it also gives rise to an insightful
representation of I as I(x,y) = ¢(x,y) —¢(y) + 1 (x), the difference between
the cost ¢(x,y) and the solution of the dual optimal transport problem (see
Proposition 4.5). An alternative condition imposing regularity of the op-
timal transport (Assumption 4.9) is also considered. Tacitly assuming the
existence of m. and its weak limit (cf. Sections 2 and 3), the main result
reads as follows.

Theorem 1.1. Let I' = spt . where w, = lim._o 7w is the limiting optimal
transport and define I : X x'Y — [0, 00] by (4.3).

(a) For any compact set C C X xX Y,

limsupelogn(C) < — inf I(z,y).
e—0 (z,y)eC

(b) Let Assumption 4.4 or Assumption 4.9 hold, and consider the sets Xo =
projx I' and Yo = projy I' of full marginal measure. For any open set
U c Xy XYy,

liminfelogn (U) > — inf I(z,y).
e—0 (z,y)eU

The theorem shows in particular that the rate depends (only) on the
geometry of m,, which does not seem to be clear a priori. We mention that
our result can also be stated in terms of (static) Schrédinger bridges. In this



context, it is a large deviations principle for the small-noise (or small-time)
limit; cf. Section 1.1.

For finitely supported marginals, the density of m. converges exponen-
tially for any cost function; that is, the rate function is strictly positive
outside I'. We shall see that the analogue may fail in the continuous case.
Rather, positivity depends on the geometry of the cost. The twist condition
(injectivity of V,c(z,-)) plays an important role, like in many results on
optimal transport. We include affirmative positivity results in particular for
quadratic costs, which is the most important case for applications. While
not pursued in the present paper, our results should also be useful to derive
detailed quantitative bounds on the rate in more specific settings. We may
also hope to gain insights into how the rate depends on the dimension.

Geometry is a cornerstone in the now-classical theory of optimal trans-
port, where optimality is captured geometrically by the c-cyclical monotonic-
ity of a transport’s support. Defined by comparing costs at finitely many
points, it yields a powerful tool to derive fundamental results such as stabil-
ity of optimal transports under weak limits or existence of dual potentials.
We are not aware of a comparable technique in the literature on entropic
optimal transport (or on Schrodinger bridges). In this paper, we exploit a
cyclical invariance property satisfied by the density of m.. The invariance it-
self can be understood as a reformulation of a classical characterization for .
through the solution of the dual problem, the Schrodinger potentials. The
novelty here lies in exploiting the geometric aspect and working on the primal
side, following the spirit of c-cyclical monotonicity. Like in classical optimal
transport, the arguments are remarkably simple and general once the correct
notions are in place. Our technique is a departure from the control-theoretic
methods in the related literature. Case in point, the geometric proof that
a weak limit 7 = lim._,o 7. is an optimal transport (cf. Proposition 3.2),
is nearly trivial compared to the Gamma-convergence technique, even in
the general Polish context. (Of course, Gamma-convergence is applicable to
many other problems where our technique has no analogue.)

We also emphasize another benefit which may illustrate that cyclical
invariance is in fact more than just a reformulation of control theory or
convex analysis: the geometry singles out a unique coupling 7. even if the
value function (1.1) is infinite and hence the usual notion of solution as a
minimizer is not meaningful. This is crucial for instance if costs are quadratic
but one of the marginal distributions does not have a finite second moment.
Our arguments for the large deviations result apply in that setting without
any added difficulty, paralleling the geometric insights in classical optimal
transport. (On the other hand, the existence of 7 in the case of infinite value
functions is not immediate. We establish it in [32], together with a stability
theorem for 7., using the same geometric standpoint.) Indeed, we expect the



technique to be useful in several other aspects of entropic optimal transport
and Schrodinger bridges, and thus the technique may be as important a
contribution as the main theorem.

The present paper is organized as follows. After reviewing motivations
for our research and related literature in the remainder of this Introduction,
Section 2 details the basic definitions and introduces cyclical invariance. In
Section 3, this notion is used to prove that cluster points of 7. as € — 0 have
c-cyclically monotone support, hence are optimal transports. The main re-
sult on large deviations is obtained in Section 4: part (a) of Theorem 1.1
is stated as Corollary 4.3 whereas (b) is split into Corollaries 4.7 and 4.12,
each covering one of the two alternative assumptions. Section 5 gives ex-
amples of settings where the rate function I is strictly positive outside the
support I', with a focus on quadratic costs. Appendix A contains facts about
Schrédinger bridges and a derivation of the cyclical invariance property. In
Appendix B, we detail two general settings where Assumption 4.4 on the
uniqueness of Kantorovich potentials is satisfied. Finally, Appendix C shows
how to translate the results on the positivity of I in Section 5 from quadratic
costs to more general cost functions by means of c-convex analysis.

1.1 Related Literature

In the literature on finite-dimensional linear programs and their entropic reg-
ularization, the early work [17] contains a very detailed study of primal and
dual convergence, expansion of the value function, and characterizations of
the rates. Their setting includes discrete optimal transport problems with
marginals supported by finitely many points, and in that case the pointwise
results in [17] certainly include the large deviations result for ¢ — 0. On the
other hand, our main theorem is most relevant when at least one marginal
support is connected, hence is complementary to the discrete case. More re-
cently, [59] proved an exponential convergence bound for finite-dimensional
linear programs. While the bound is not sharp in a pointwise sense, the
result is non-asymptotic; i.e., holds for all € below a known threshold. More-
over, the constants are known in terms of the data, which provided valuable
intuition for our construction of the rate function I. One may also observe
how the constants in [59] blow up as the cardinality of the support increases.

In the last decade, optimal transport has found myriad applications
in machine learning, statistics, image processing, language processing, and
other areas. The literature in the computational area has expanded very
quickly and our account is highly incomplete; see [51] for a recent mono-
graph with extensive references. Exact computation of an optimal transport
between marginals with n atoms costs O(n3logn), prohibitive for modern
applications with large data sets. The recent success of applied optimal



transport is enabled by the advent of fast approximate solvers, and entropic
regularization is among the most influential schemes for high-dimensional
problems. Popularized by Cuturi [21] in this domain, it allows for the ap-
plication of Sinkhorn’s algorithm (also called iterative proportional fitting,
and also due to Deming, Stephan, Fortet, Knopp and others) where each
iteration is a matrix-vector multiplication costing O(n?). Importantly for
modern applications, it is highly parallelizable on GPUs; a number of further
advantages are highlighted in [8]. The convergence of this algorithm was rig-
orously discussed in [35, 56|, among others. More recently, it was shown that
S-accurate approximations of the transport cost can be obtained in O(n?/)
operations via entropic regularization; cf. [10, 41| and the references therein.
In addition to computation accuracy, a second error in practice stems from
sampling the marginals. For entropic optimal transport (with £ > 0 fixed),
the rate of convergence of the empirical cost towards its population limit
does not depend on the dimension, in contrast to the curse of dimensionality
suffered by its unregularized counterpart [31, 45]. Addressing the combined
problem, [9] studies the convergence of the discrete Sinkhorn algorithm to an
optimal transport potential in the joint limit when &,, — 0 and the marginals
1, v are approximated by discretizations p,, v, satisfying a certain density
property. Explicit error bounds are derived, for instance for quadratic cost
on the torus, yielding important insights into the optimal trade-off between n
and e. In the present study, we focus on the discrepancy between the en-
tropic optimizer m. and the optimal transport m, in a general setting and
adopt a local point of view.

Continuing with a different branch of related literature, recall that en-
tropic optimal transport can also be phrased as the (static) Schrodinger
bridge problem. Informally stated, consider a system of diffusing parti-
cles from time tg to ¢; in thermal equilibrium, and a given joint “reference”
law R for its configuration at those times. If marginals (u,v) differing from
the ones of R are observed, what is the most likely evolution (joint law
of p,v) of the system conditional on R? Schrodinger’s answer amounts to
T = argminyy, ) H(:|R); see [28, 39| for extensive surveys including histor-
ical accounts. (This is the static formulation. Given the origins in physics,
it is natural that much of the literature focuses on the dynamic Schrédinger
bridge problem, which asks for the dynamic evolution of the particle system
over time t € [to,t1]. The static problem is recovered by projecting to the
marginals.)

The minimization of H(:|R) over II(u,v) coincides with the entropic
optimal transport problem (1.1) if we introduce the cost function ¢ :=
—¢elog(a™'dR/d(p ® v)), where the parameter € > 0 is arbitrary and «
is a normalizing constant (we tacitly assume that R ~ p ® v). Conversely,
taking (1.1) as the starting point, defining R(e) by dR(e)/d(p@v) = ae/*



yields the associated Schrédinger bridge problem. Assuming for simplicity
that {¢ = 0} is the graph of a function f : X — Y, Theorem 1.1 is then
a large deviations principle as the reference measure R(e) degenerates to a
deterministic coupling (meaning that a particle with given origin x travels to
the predetermined destination f(z)).! This is also called the small-noise or
small-time limit. While not pursued here, it seems plausible that a similar
principle could be established for more general sequences R(g). From the
point of view of Schrodinger bridges, another interesting follow-up question
is whether a comparable large deviations result can be stated for the dynamic
problem on path space.

Mikami [46, 47| first highlighted the connection between Schrédinger
equations and optimal transport in the small-noise limit; see also [14] for a
connection through a fluid dynamic formulation. Léonard studied Schrédinger
bridges in a series of works starting with [36, 37]; see [39] for further refer-
ences. In [38], he established convergence of the value function to an optimal
transport problem in the sense of Gamma-convergence for a general formu-
lation of the problem. See also [13] where a very accessible proof of the
Gamma-convergence is presented for quadratic costs. More recently, [18, 50|
study the limit in specific settings and determine higher-order terms in the
expansion of the Schrodinger (or entropic) value function around the opti-
mal transport cost. These works complement earlier results of |1, 26, 27|
showing that the large deviation rate function for the empirical distribution
of independent Brownian particles with drift is asymptotically equivalent to
the Jordan—Kinderlehrer—Otto functional arising in the Wasserstein gradient
flow. We mention that [18] also considers the large-time limit (corresponding
to € — 00); cf. [16] for recent developments. The setup in [50] is closest to
ours in that the entropic penalty and the limit ¢ — 0 are formulated in the
same way, whereas the literature on Schrédinger bridges often formulates the
zero-noise limit through a vanishing Laplacian. We also mention [34], estab-
lishing convergence of the dual potentials for compact marginals (see [49] for
a follow-up and more on the relation to the present work).

While the focus of the aforementioned works is on value functions and
global quantities, the present study focuses on the local geometry and conver-
gence. The value functions are not used at all, and so it is quite natural that
the results hold even when costs are infinite. We are not aware of a large
deviations principle similar to ours in the extant literature. One concrete
example where these aspects are of interest, are the multidimensional ranks
and quantiles that have been introduced in statistics to extend the usual
scalar notions and familiar nonparametric tests; see [15, 23, 24, 33|. Here

!Schrédinger’s ideas about the “most likely evolution” are usually presented as a large
deviations result in the modern literature. That result is very different from the one just
discussed.



Brenier’s map is fundamental, but like in the scalar case, moment conditions
are not natural. McCann’s geometric extension [44] of Brenier’s map (see
also [58, pp. 249-258]) can be used to provide a definition irrespectively of the
finiteness of the value function. Unlike their scalar counterparts, the ranks
defined through optimal transport are computationally expensive. Entropic
optimal transport resolves that issue and provides an approximate Brenier’s
map. Leveraging this idea, a notion of “differentiable ranks” based on en-
tropic optimal transport was recently proposed in [22]. We expect that our
results can be used to study the local deviations of these differentiable ranks
from the unregularized ones.

Related to our technique in a broader sense, there have been recent works
successfully using ideas of c-cyclical monotonicity outside the setting of clas-
sical optimal transport. Examples include martingale optimal transport [6]
and optimal Skorokhod embeddings [5, 7]. Finally, we mention the intriguing
“optimal entropy-transport problem” studied in [40|. Here, the usual optimal
transport problem is relaxed in that the marginal constraints are replaced
by an entropic penalty relative to a given pair of measures. While similar
in name, this problem is quite different from ours, where the marginal con-
straints are strictly enforced and the entropy of the joint distribution is used
as penalty.

2  Cyclical Invariance

Let (X, ) and (Y, v) be Polish probability spaces endowed with their Borel
o-fields and let ¢ : X x Y — Ry be a measurable (cost) function. The
associated optimal transport problem is

inf / cdm (2.1)
mell(p,v) JXxY

where II(u,v) is the set of all couplings; that is, probability measures =
on X x Y with marginals u = (projx)xm and v = (projy)gm. Given a
constant € > 0, the entropic optimal transport problem is
inf / cdr +eH(n|P), P:=up®uv, (2.2)
mell(pv) Jxxy

where H denotes the relative entropy or Kullback—Leibler divergence,
log(4=) dr, 7 < P,

H(r|P) = { ] 108aR) 4T
00, m & P.

As detailed in Proposition A.1 of Appendix A, this problem admits a unique
minimizer 7. whenever the value (2.2) is finite; i.e., whenever

there exists m € I(p,v) with [ cdr + H(w|P) < c0. (2.3)



Moreover, we then have . ~ P.

Definition 2.1. A coupling 7 € II(u,v) is called (¢, e)-cyclically invariant
if 7 ~ P and its density admits a version j—}r, : X XY — (0,00) such that

i[lz;(ﬂ?iayi) = €xXp < - é [gc(mi,yi) - gc(%yz‘ﬂ D lj

for all k € N and (4, y;)F_; C X x Y, where yx11 = v1.

x’L? y%+1

w\a

(2.4)

We omit the qualifier (¢,e) when there is no ambiguity. One elementary
way to motivate Definition 2.1 is to derive a first-order condition of optimality
for (2.2) through variational arguments in the case of discrete marginals,
which indeed yields (2.4). Cyclical invariance can be phrased more succinctly
using the auxiliary reference measure R = R(e) defined by the Gibbs kernel

% = ae ¢/, (2.5)
where o = ([ ™%/ dP)~! is the normalizing constant. As R ~ P, we can
state (2.4) as

dm dm
i dR(xlayz) = n dR(m“lerl). (2'6)
This condition, in turn, is related to a multiplicative decomposition of the
density drn/dR; cf. Appendix A. For our analysis of the limit ¢ — 0, the
less elegant definition (2.4) will be the more useful one, as it makes explicit
the role of € and links directly to the c-cyclical monotonicity condition of
optimal transport.

Proposition 2.2. (a) There is at most one (c,e)-cyclically invariant cou-
pling m € TI(p, v).

(b) Let (2.3) hold. Then m € Il(p,v) is (c,e)-cyclically invariant if and
only if it minimizes (2.2). Moreover, there exists a unique such coupling.

The proof is detailed in Appendix A. Under Condition (2.3), Proposi-
tion 2.2 shows the equivalence between minimality and cyclical invariance.
The notion of minimality is meaningful only under (2.3), otherwise all cou-
plings have infinite cost. By contrast, we show in [32]| that the notion of
cyclical invariance remains meaningful in this context of infinite costs: exis-
tence and uniqueness hold under mild regularity conditions; e.g., when X,Y
are FEuclidean spaces and c¢ is continuous.

In the remainder of this paper, we simply assume that a (¢, e)-cyclically
invariant coupling 7. € II(u, ) exists for every € > 0, rather than imposing



Condition (2.3) as in much of the literature. One reason is that this condition
precludes some applications of interest to us. In any event, the arguments
in this paper do not simplify if (2.3) is assumed.

3 Cluster Points as ¢ — 0

Denote by . the unique (c, e)-cyclically invariant coupling. In this section
we show that cluster points of 7. as € — 0 are c-cyclically monotone. The
estimates leading to that conclusion are obtained by simply integrating the
cyclical invariance condition.

Lemma 3.1. Let k> 2 and 0 < 6 < ¢’ < 0co. Define

k
Ai(0,0") = {(xivyi)i?:l e(XxY)F:s< ZC(ﬂfmyi) - ZC(SUi,yiH) < 5/}

i=1 i=1
and let A C Ag(5,0") be Borel. Then n¥ := Hle me(dx;, dy;) satisfies
T (A) < e %% forall > 0. (3.1)

&€

Suppose in addition that A := {(mi,yiJrl)f:l (i u)k, € A} satisfies
liminf. oelogn®(A) = 0. Then

lim inf & log 7% (A) > —§". (3.2)
e—0
Proof. Set Z = dm./dP. Using (2.4), we have for P*-a.e. (z;,y;)%_; € A that
H Z(xi,y;) = exp {*5_1 [ZC(%’, Yi) — d_c(w, ?/i+1)} } H Z(xi, Yit1)
< e ] Z(@i girn).

Integrating over A with respect to P* = [[ P(dx;,dy;) = [] P(dx;, dy;s1)
yields
mi(A) < eeml(A) < e,
which is (3.1). Analogously, 7#(A) > e=9/¢7¥(A) and hence
elogmF(A) > &' + clogwF(A),
so that (3.2) follows under the stated condition on A. O

In all that follows, probability measures are considered with weak con-
vergence; i.e., the topology induced by bounded continuous functions. We
recall that II(u,v) is weakly compact; cf. [58, p.45]. As a consequence,
any sequence of couplings admits at least one cluster point, and any clus-
ter point is a coupling. A set I' C X x Y is called c-cyclically monotone if
Zle c(xi,yi) < Zle c(xi, yip1) for all k > 1 and (x;,y;) €T, 1 <i < k.

10



Proposition 3.2. Let ¢ be continuous and let w be a cluster point of (7z) as
€ — 0. Then spt 7 is c-cyclically monotone, hence m is an optimal transport
as soon as the optimal transport problem (2.1) is finite. If (2.1) admits a
unique c-cyclically monotone coupling m, € Il(u,v), then me — 7, as e — 0.

Proof. Let ¢, — 0 and 7w, — m. Suppose for contradiction that there
are (z;,y;) € sptm, 1 <4 < k with ), c(xs, ) > >, ¢(xi, yit1). By con-
tinuity there exist 6 > 0 and open neighborhoods U; > (x;,y;) such that
Yo (@i, i) > 04 Y, ¢(T4, Yigr) for all (z4,9;) € U;. Moreover, 7(Us) > 0
and hence liminf,, 7, (U;) > 0. On the other hand, Uy x - - - x Uy C Ag(0, 00)
implies 7% (Uy x -+ x Uy) — 0 by Lemma 3.1, a contradiction. This shows
that spt 7 is c-cyclically monotone. It is well known that cyclical monotonic-
ity and optimality are equivalent when (2.1) is finite; cf. |58, Theorem 5.10,
p.57|. As II(p,v) is compact, m. must have cluster points as e — 0, so that
uniqueness implies convergence. L]

Remark 3.3. For the particular case of quadratic cost on R% and marginals
satisfying certain integrability conditions, the conclusion of Proposition 3.2
is obtained in [13] by (arguably much more involved) Gamma-convergence
arguments. That line of argument focuses on the properties of the value
function, hence cannot be applied when the value function is infinite. A
related but slightly different convergence result, also obtained by Gamma-
convergence, is stated in [38, Theorem 2.4] and includes lower semicontinuous
cost functions. On the other hand, the convergence in Proposition 3.2 may
fail if continuity is relaxed to lower semicontinuity: one example, discussed
in more detail in [48, Remark 4.3], is ¢(z,y) = 1{y2,) and p = v = Unif[0, 1].

Uniqueness of c-cyclically monotone transports is known for many exam-
ples of continuous or semi-discrete optimal transport problems—arguably for
most of the important examples except distance costs—and then Proposi-
tion 3.2 shows the convergence of 7. as € — 0. See, e.g., |58, Theorem 5.30,
p.84|. When the transport problem admits multiple solutions, it is not ob-
vious whether m. converges. If there exists an optimal transport m with
H(m|P) < o0, one can show that 7. converges to the unique optimal trans-
port 7, with minimal relative entropy H(:|P); cf. [48, Theorem 5.1|. This in-
cludes the discrete case with finitely supported marginals as analyzed in [17],
but also the semi-discrete case (where one marginal is continuous) under mi-
nor integrability conditions. Convergence is also known for the scalar Monge
problem where ¢(z,y) = |x — y| on X =Y = R and the marginals are abso-
lutely continuous; here a relatively explicit analysis is possible [25]. It has
been conjectured that convergence holds in a general setting.

11



4 Rate Function

Throughout this section, the cost function c is assumed to be continuous.
For simplicity of exposition, we shall also assume that

Te = T as € — 0, (4.1)

for some (necessarily c-cyclically monotone) transport m, € II(u,v). How-
ever, if it is merely known that m., — 7, along a specific sequence ¢, — 0,
then all of our results hold along that sequence, regardless of whether (7.) has
other cluster points. In fact, the arguments in this paper are complementary
to the question of convergence discussed in the preceding paragraph: given
the convergence of a sequence, we describe the large deviations.

4.1 Large Deviations Upper Bound

In this subsection we introduce the function I and show the large deviations
upper bound; i.e., that I provides a lower bound for the large deviations rate.
With the definitions in place, the arguments are straightforward and apply
in great generality. We write B,.(z) for the open ball of radius r around z,
in any metric space. The first lemma is a way to bound the decay of a ball
in X x Y based on the estimate for subsets of (X x Y)* in Lemma 3.1.

Lemma 4.1. Let (x,y) € X x Y. Suppose there exist (x;,Yi)a<i<k C Spt 7y
with k > 2 such that

k
0o =Y c(wi,yi) = Y c(wi,yin) >0, where (z1,41) := (2,y).
i=1 i=1
Given § < &g, there exist a,r,e9 > 0 such that
Te(Br(z,y)) < e % for e <e.

Proof. Once again, continuity of ¢ implies that for » > 0 small enough,
> c(Ziy §i) — doc(Zi; Piv1) = 0 for all (Z;,9;) € B; := Br(wi,yi), and then
Bi x -+ X By, C Ag(6,00) in Lemma 3.1 yields

7e(By) - me(By) < e79/. (4.2)

For i > 2 we have liminf 7. (B;) > m«(B;) due to the weak convergence
Te — T, and fB; = m(B;) > 0 as (z;,y;) € sptme. Let § = min;>o f;.
Then 7.(B;) > (/2 for ¢ > 2 and € small, and thus (4.2) yields m.(B;) <
(B/2)!kem0le. O

12



Denote by (k) the set of permutations of {1,...,k}. Next, we state the
definition of I(x,y); it is designed to capture the rate § in Lemma 4.1 and
optimize it over the choice of (z;, yi)a<i<k-

Lemma 4.2. Given a c-cyclically monotone set ) #T C X x Y, define

k

k
I(w,y):=sup sup  sup Y c(@i,yi) — Y (@i o)  (43)
k22 (z;y:)k_,croes(k) ;=1 i=1

where (x1,y1) = (z,y). Then I : X x Y — [0,00] is lower semicontinuous
and I =0 onI'. We have

k

k
I(z,y) Zsup  sup Y clw i) — Y @i, vi), (4.4)
k22 (2i,y:)}_,CT =1 i=1

and equality holds as soon as x € X := projxI' ory € Yo := projy I'.

Proof. We have I > 0 as 0 = Id is a possible choice in (4.3). For (z,y) € T,
the difference of sums in (4.3) is nonpositive by cyclical monotonicity. The
semicontinuity follows from the continuity of c.

Let I'(z,y) be the right-hand side of (4.4). As the pairs (z;,y;)¥_, can be
relabeled arbitrarily, this is the same as (4.3) except that the last supremum
in (4.4) is taken over o € (k) \{Id}. If I(x,y) > 0, the identity permutation
is not optimal for the relevant pairs (z;, y;)¥_, and equality must hold in (4.4).
Thus, if equality fails, then I(x,y) = 0 whereas I'(z,y) < 0. Let = € Xo,
then we can choose k = 2 and (z2,y2) € T' with x9 = x, which yields
S22 (i, yi) — S22 e(w, yiv1) = 0 and hence I'(z,y) > 0. The argument
for y € Yq is symmetric. O

The reader may ignore the difference between (4.3) and (4.4); it is merely
a notational nuisance. We have the following result for the c-cyclically mono-
tone set I' := spt 7y, also stated as Theorem 1.1 (a) in the Introduction.

Corollary 4.3. For any compact set C C X X Y,

limsupelogn(C) < — inf I(z,y).
£—0 (z,y)eC

Proof. Fixn > 0 and (z,y) € C. By the definition of I(z,y) there are k > 1
and (z;,;)¥_, C T such that

k k
ZC(%‘,yZ ZC T, Yir1) > In(x7y) -n/2,
=1 =1

13



where (z1,91) := (z,y) and I(z,y) := I(x,y) An~'. (The truncation is
needed only if I(x,y) = oco.) Lemma 4.1 thus yields a ball B, (x,y) with

limsupelog 7= (B, (z,y)) < —Iy(z,y) + 1. (4.5)

This holds for every (z,y) € C, and as C' is covered by finitely many such
balls, we deduce that

limsupelogn.(C) < — inf I(z,y) +1n.
(z,y)eC

Recalling that nn > 0 was arbitrary, the claim follows. O

We note that the measure 7, = lim, 7. is not compactly supported in
general. It is then an open problem how to relax the compactness condition
in Corollary 4.3 and hence obtain a “stronger” version of the large deviations
principle.

4.2 Large Deviations Lower Bound

Our next aim is to show that I is also an upper bound for the large deviations
rate, thus matching the bound in Corollary 4.3. This will be accomplished in
two slightly different settings and approaches. The dual approach expresses I
as the gap (4.6) between the cost ¢ and the solution of the dual optimal
transport problem, whereas the primal directly uses the definition (4.3) of I
and imposes regularity conditions. The results correspond to Theorem 1.1 (b)
in the Introduction.

4.2.1 Bound via Kantorovich Potential

We start with the dual approach, first recalling some standard notions of
optimal transport—we have tried to consistently use the notation of [58].
A proper function 9 : X — (—o0,00] is called c-convex if there exists some
¢ :Y — [-00,00] such that 9 (z) = sup,ey[C(y) — c(z,y)] for all z € X. Tts
c-conjugate is defined by ¥¢(y) := infyex[t(x) + c(z,y)] for y € Y, and its
c-subdifferential is

Octp ={(z,y) € X XY : 9(y) — p(x) = c(z,y)}.
Given a c-cyclically monotone set I', a c-convex function ¢ is called a Kan-
torovich potential if I' C 0.¢; that is, if ¥°(y) — ¢¥(x) = ¢(z,y) on I'. This

implies in particular that ), ¢ are finite on

Xo :=projx I', Yo :=projyI.
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In the context of optimal transport, spt 7 C 9.1 for some optimal 7 € II(u, v)
implies that 0.1 contains the support of any optimal transport. Indeed, 0.1
is a maximal c-monotone set for inclusion. In what follows, the cyclically
monotone set of interest is I' = sptm,, where 7, is the limiting optimal
transport (4.1).

Assumption 4.4. Uniqueness of Kantorovich potentials holds on Xg; that
is, for any c-convex functions ¥1, 19 on X with I' C 0.4, it holds that 11 — )
is constant on Xg.

This is often considered a fairly weak assumption, at least for differen-
tiable cost functions, and we detail sufficient conditions in Proposition B.2
of Appendix B. However, we emphasize that connectedness of at least one
marginal support is crucial (cf. Example 4.8 below).

As announced, Assumption 4.4 allows us to express I through the Kan-
torovich potential; see (4.6). For our present purpose, the key consequence
is (4.7). It is worth noting that (4.6) also allows us to translate a large body
of known results about c-convex functions, such as regularity results, into
statements about I. Finally, the gap (4.6) also plays a role in the regularity
theory of optimal transport maps (especially in [42]), thus relating to the
second approach in Section 4.2.2 below.

Proposition 4.5. Let Assumption 4.4 hold. Then

I(JL‘, y) = C($7y) - ¢C(y) + @/)(l’), (.T, y) S XO X YO (4'6)

for any Kantorovich potential 1. In particular, I < oo on Xg X Yo. If
(x,y), (a',y") € Xo X Yo are such that (z',y),(x,y’) € T, then

I(:Ea y) + I(CL‘,, y,) = C(l‘, y) + C('T,a y/) - C(.’E, y,) - C(l‘,, y) (47)

Proof. We first elaborate on Assumption 4.4. A particular family of Kan-
torovich potentials, sometimes called Rockafellar antiderivatives of I, is de-
fined as follows (cf. [58, Equation (5.17), p.65]): fix (zo,y0) € I' and set

k
V(zo,y0)(T) :=sup  sup Z[c(azi, yi) — c(Tit1,v:)], where xgiq = x.
k21 (zi,y:)k_ €T =0
(4.8)
It then holds that 1y, ) (z) = 0 for z = x¢. Clearly Assumption 4.4 implies
that changing the reference point (zg, %) only changes this potential by a
constant. In particular,

\Ij(xo,yo) (JT, y) = w&myo)(y) - ¢($o,yo)($)’ (337 y) € Xo X Yy (49)
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does not depend on (z9,y0) € I', and we may simply write ¥ := W, .
Indeed, under Assumption 4.4, ¥ is even the same for any potential 1.

We now use this independence to prove the lemma. To avoid notational
conflict, we first rewrite the definition (4.8) as

k
Yap@) =sup  sup (&7 + Y _[e(ziyi) — el@i, vi)] — cla2, 7),
k22 (z;y:)k_,€T i=2

(4.10)
where we have avoided the subscript i = 1. Fix (z,y) € Xo X Yy. Writing
(x1,91) = (x,y) as in Lemma 4.2, the definition x4 := x of (4.8) becomes
our usual cyclical convention xy 11 = 1. As y € Yy, there exists Z € X such
that (z,y) € T'. Using (4.10) with g := y then yields

k k
¢(:f,y) (SU) = sup sup C(.’f, y) + Z C(Ii) yl Z C(Ti+1, yz (:L‘Qa y)
k22 (z;,y:)k_ el i=2 i=2
k k
“sup sup  e@y) —clwy) + > elwn ) = 3 elwirn, w)
k22 (z;,y;)k_,er i=1 i=1
k k
=c(@,y) —c(z,y) +sup  sup Y ez i) — Y (i, Yit1)
k22 (zi,y:)f €l 41 i=1

= c(z,y) — c(z,y) + I(z,y),

where we have used the last part of Lemma 4.2. In view of ¢z ,y(Z) = 0, the
fact that W(z,) = c on I' shows in particular that ¢(Z,y) = fj Y (y), and
hence the preceding display yields

I(;L', y) = C(.f, y) + w(i,y) (l’) - w(cg@y) (y) = C(;L', y) - \I/(:i,y) (l’, y)

By the first part of the proof, ¥z ,(-) = ¥(-) does not depend on (z,y) and
the above is precisely (4.6).

To see (4.7), let (2/,y), (x,y’) € . Using that I = 0 on I' by Lemma 4.2
and then (4.6),

Iz, y) + 1(a",y) = I(z,y) + [(2',y) — I(z,y') — I(z', y)
= c(z,y) + (') — c(z,9) — el y)
—U(z,y) = V(') + V(z,y) + ¥ (2, y),

where the last line vanishes as ¥ is a sum of marginal functions (4.9). O
Remark 4.6. The proof of Proposition 4.5 is based on the condition that

W (29,50) Of (4.9) does not depend on (z9,y0) € T, (4.11)
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which may seem weaker than Assumption 4.4. However, Assumption 4.4 is in
fact equivalent to (4.11); the proof is stated below. As a direct consequence,
another equivalent condition is that the Rockafellar antiderivative (4.8) be
independent of (zg,y0). The symmetry of (4.11) shows that it is further
equivalent to impose the analogue of Assumption 4.4 on Y instead of X.

Proof that (4.11) implies Assumption 4.4. By construction, the Rockafellar
antiderivative 1 := 1 (z,4,) of (4.8) has the minimality property ¢p < &
on Xy whenever ¢ is a potential with £(xg) = 0 = ¢g(z9). (See [58, p.62],
or [4] for a more general result and further context.) Consider another
point (z1,y1) € T, let 11 = 9y, 4,) and let & be any potential. Using
the minimality twice,

Yo(z1) — o(wo) < &(z1) — &(@o) < Y1(21) — (o).
Given (4.11), the right-hand side can be expressed as
U1(z1) — P1(zo) = Yi(zr) — i (yo) — ¥a(xo) + 91(yo)

= to(21) — ¥5(y0) — Yo(z0) + ¥5(v0)
= o(w1) — o(z0),

which is the left-hand side. It follows that ¥g(x1)—vo(x0) = £(x1) —&(x0) for
any potential £, and as xg, x1 € X were arbitrary, Assumption 4.4 holds. [

We can now show the large deviations lower bound.

Corollary 4.7. Let Assumption 4.4 hold. For any open set U C Xg X Yo,

o > _ .
hgg(r)lfglogwe(U) > (x,%erI(x’y)

Proof. 1t suffices to show that given (z,y) € U and n > 0, there exists ro > 0
such that for all r < ro,

lim sup —¢ log 7. (B, (z,y)) < I(z,y) + n.

e—0

Let n > 0, pick any (2/,y') € Xo X Yp such that (2/,y), (z,y’) € T, and set

a = c(z,y) +c(@,y) —c(z,y') — c(@’,y).
We have I(z,y) < oo and I(z/,y") < oo by Proposition 4.5. For r > 0 small
enough we may use Lemma 3.1 with ' := a+n/2 and B,(z,y) x B.(2/,y') C
A3(0, ") to obtain
limsup — ¢ [log (B (2, 1)) + logm=(Br (', ')
= limsup —¢ log 72 (B, (z,y) x B.(z',y"))
<a+n/2 (4.12)
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On the other hand, for r small enough, Lemma 4.1 yields as in (4.5) that
liminf —elog 7o (B, (2',y')) > 1(2',y') — n/2. (4.13)
Using (4.12), then (4.7) and finally (4.13),

limsup — ¢log 7. (B, (z,y)) + liminf — log m- (B, (2',y))
< limsup —¢ [log 7e(Br(x,y)) + log Wa(Br(x’,y’)]
<a+mn/2
=I(z,y) + I(z',y) + /2
< I(z,y) + liminf —elog o (B, (2", y")) +n

and the claim follows. O

The following simple example shows that if both marginals supports are
disconnected (and Assumption 4.4 is violated), I may fail to be an upper
bound for the rate function.

Example 4.8 (Disconnected Supports). Consider the normalized 2 x 2 as-
signment problem: X =Y = {1,2} and y = v = (0(1} +;2y)/2. Here Il(p,v)
is the convex hull of the two couplings

T = (07,1} +942,21)/2, o = (9¢(1,2)3 + Ig2,1)1)/2-

In particular, every 7 € II(u,v) is symmetric: 7{(1,2)} = 7{(2,1)}. Con-
sider a cost function ¢ with ¢(1,1) = ¢(2,2) = 0 and ¢(1,2) + ¢(2,1) > 0.
Then m, is the unique optimal transport and we know that 7. — m,. Let

r(i,7) := lim —elog ({3, j}) (4.14)
e—0
be the exponential rate of convergence. Using Lemma 3.1 with
A={(1,2), 2, 1)} C 4(5,0)

for 6 := ¢(1,2) + ¢(2,1) > 0 shows r(1,2) +7(2,1) = 0. As 7. must be
symmetric, we conclude that the true exponential rate is

r(1,2) =r(2,1) =4/2.

(A priori, it may not be obvious that the limit (4.14) exists, but a posteriori,
this is justified as every subsequential limit leads to the same value.) On the
other hand, the definition (4.3) of I readily yields that I = 0.
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4.2.2 Bound via Regularity

In the remainder of the section we present an alternative approach to the
large deviations lower bound which does not (directly) refer to potentials but
instead employs a continuity condition for the limiting optimal transport 7.
We call a subset of a metric space arcwise connected if any two points are
connected by a continuous curve of finite length.

Assumption 4.9. (a) I' = graph T for a map T : Xg — Y.

(b) Xp is arcwise connected.

(c) The function ¢(-,7'(-)) has the following continuity property: given a
compact K C Xg, we have uniformly over z1,z9 € K that

le(x1, T(21)) + (2, T(x2)) — c(x1, T(x2)) — c(x2, T'(21))| = o(d(x1, x2)).
(4.15)

As an example, consider X = Y = R? with cost c(z,y) = ||z — y||?/2
and an optimal transport 7 given by a continuous transport map 7" on the
arcwise connected support spt . Then Assumption 4.9 holds with Xy =
spt i, as (4.15) equals

(1 — 22, T(z1) — T'(22))| < |21 — 22|[|T'(21) — T'(2)||

and 7' is uniformly continuous on compact sets. General sufficient conditions
for the continuity of 7' can be found in [19, Theorem 1].

Next, we show how to establish the key half of (4.7) under Assump-
tion 4.9.

Lemma 4.10. Let Assumption 4.9 hold. If (z,y), (z',y’) € Xo x Yq are such
that (2',y), (z,y’) € T, then
Iz, y) +1(2,y) > c(z,y) + c(a’,y') — c(2,y') — (@', y). (4.16)

Proof. Set (z1,y1) := (z,y) and (2,v]) := (¢/,v'). Let k > 2 and consider
arbitrary (z;,v;), (z},y;) € I for 2 <14 < k. The definition of I yields that

k

I(l‘,y) + I(.T/, y/) Z Z[ (xwyl) +c xza yz Z C\ZT5, yH—l (‘T;’y;—i-l)]
=1 =1

B

This holds in particular for the choices z := 2’ and ) := x, which entail
that y, = T'(2') = y and y;, = T'(z) = 3. Moreover, we have y; = T'(x;) and
yi = T(x}) for i > 2. Separating the first term of the first sum and the last
term of the second sum, we obtain that

/

I(z,y) + (2", y) > c(x,y) + c(a’,y) — c(x,y') — c(@',y)

k -1
+Z xz7yz) +C z’yz Z xlayl+1 +C(xz’yz+1)]
=2 =1
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Figure 1: Schematic representation of the sums (4.17) (left) and (4.18)
(right). Each dashed line stands for a term c(,-).

We further choose @, := zj_;41 fori = 2, ..., k—1, which implies y, = yx—_;+1
fort=2,...,k — 1. Then the first sum can be rearranged as
k k—1
> @i, yi) + cl@l,vh) =Y elwi, T(w:)) + e(@ipr, T(wirn)) (4.17)
=2 =1

and the second sum can be rearranged as

k—1 k—1
D elwiyyin) + e, giy) = Y clws, T(win)) + c(@ivn, T(w:));  (4.18)
=1 =1

(These rearrangements are elementary if tedious; Figure 1 may be helpful to
complete them.) In summary, we have

I(CC, y) + I(ﬂf/7y/) > C(LE,y) + C(l‘/,yl) - C(J:7y/) - C(ﬂf/, y) +=

where, always with the conventions x1 = z and x = 2/,

2 :=sup sup =k for
k>2 2,...,xp—1E€spt
k—1
B =Y clas, T(x:) + c(@ip1, T(wi11)) — (@i, T(wit1)) — @iy, T(xs)).
i=1

It remains to show that given n > 0, we can achieve Z; > —n by a
suitable choice of k and zo,...,2r_1. Fix a continuous, rectifiable curve
¢ :[0,1] = Xp with ¢(0) = = and (1) = 2/, and denote its length by C.
For each k > 2 there exist 0 = t1 < to < -+ < tp_1 < tp = 1 such that
x; = @(t;) satisty d(z;, xiy1) < C/(k—1) for all 1 <i < k — 1. Applying
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Assumption 4.9 on the compact set ([0, 1]), we have that

k—1
> le@s, T(@) + e(@irr, T(wig1)) — ez, T(wig1)) — (@i, T(x)))|
=1
< (k= 1)o(C/(k — 1)) = o(1) (4.19)
as k — oc. O

Remark 4.11. The preceding arguments can be generalized to handle cer-
tain discontinuities in 7', even though at a discontinuity, (4.15) can only be
expected with o(1) rather than o(d(x1,z2)). Indeed, the conclusion of (4.19)
still holds if for a bounded number of i’s, the term under the sum is only o(1).
For instance, this can be used to handle the case of semi-discrete transport
with quadratic cost, where v has finite support and hence the transport map
is necessarily discontinuous.

Corollary 4.12. Let Assumption 4.9 hold. For any open set U C Xg X Yo,

liminfelogn . (U) > — inf I(z,y).
e—0 (z,y)€U
Proof. The argument is similar to the proof of Corollary 4.7, using the in-
equality (4.16) instead of the equality (4.7). In the course of the argument
one also obtains that (4.16) already implies (4.7). We omit the details. [

5 Positivity of the Rate Function

The aim of this section is to establish that, under certain conditions, I(z,y)
of (4.3) is strictly positive for (z,y) € Xy x Yq outside the support I' of the
limiting optimal transport m,. In view of Corollary 4.7, this implies that
that the mass of 7. around (z,y) converges exponentially fast.

When both marginals are supported by finitely many points, it is known
that exponential convergence holds for any cost function [17, 59]. We shall
see that in the continuum case, such a statement must depend on the ge-
ometry of the cost. Throughout this section, we assume that X = R? (while
Y is Polish). The cost ¢ is continuous and differentiable in = with V¢ con-
tinuous, and there exists an optimal transport 7, as in (4.1). We recall the
twist condition of optimal transport (e.g., [58, p.234|) which requires that
V.e(z,-) be injective; it holds in particular for the quadratic cost. Exam-
ple 5.7 below shows that I may vanish on a set of large measure pu ® v when
the twist condition does not hold.

Similarly to the preceding section, we present a primal and a dual ap-
proach. The direct approach proceeds as follows. Given (z,y) ¢ I', we use
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the geometry of ¢ and regularity of the optimal transport to find an auxiliary
pair (Z,9) € T such that c(z,y) — ¢(Z,y) + ¢(Z,7) — c(x,g) > 0. Then, the
definition (4.3) of I (with k = 2) shows that I(z,y) > 0. The following is
one possible implementation.

Lemma 5.1. Fiz (x,y) €T and y € Y. Suppose that
v:i=Vye(z,y) — Vae(z,y') #0 (5.1)
and that there exist (pn,yn) € I' such that (xy,yn) — (x,y’) and
liminfcosay, >0 for ay:=Z(v,z —xy,). (5.2)
Then I(x,y) > 0.

Proof. Set A(z,y',yn) == Vauc(z,y') — Vac(z, yp); then A(z,y',yn) — 0 as
d(y',yn) — 0 and we have

On : = c(2,y) — c(Tn, y) + c(Tn, Yn) — (T, Yn)
= (Vae(z,y) — Vac(,yn),  — ) + o(||x — 2y ]])
= (Vae(z,y) — Vac(@,y) + A2,y yn), @ — n) + o(|z — znl])
= (v,2 — @a) +o(llz — zall) + O(d(Y', yn)) Iz — @a
= cos(an)[[v]||z — zall + oz — zall) + Oy, yn)) |2 — zall.

As v # 0 and liminf,, cos a, > 0, it follows that §, > 0 for n large enough.
Fix such an n, then choosing £ = 2 and (z2,y2) := (Tn,yn) in (4.3) shows
that I(x,y) > 0, > 0. O

Recall the notation Xg = projyx I' and I' = spt m,.. If = is interior in Xg,
we can choose auxiliary points in any direction from x and Lemma 5.1 yields
a positivity result for I(z,y) as follows.

Lemma 5.2. Letx € int Xg andy € Y. Let 7, be given by a transport map T’
which is continuous at x. If Vyc(x,y) — Vae(z,T(z)) # 0, then I(x,y) > 0.

Proof. For n large we can uniquely define a point x, € 9B ,,(z) C Xo by
the requirement that x — x, be parallel to v := V,c(z,y) — Vye(x, T(z))
(here OB denotes the boundary). Then cosa, = 1 in the notation of (5.2)
and we conclude using Lemma 5.1 with (z,v') = (z,T(z)) and (z,,y,) =
(Tn, T(2p))- O

Sufficient conditions for the continuity (and higher regularity) of the
transport map have been studied extensively; see [58, Section 12| for an
overview of now-classical results and, among others, [19] for recent results
including unbounded domains.
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The situation is more delicate if x is a boundary point of Xy or a point
of discontinuity of the transport map, as that restricts the viable choices for
approximating sequences. We provide some examples of possible results; for
simplicity of exposition, they are stated for the quadratic cost on X =Y =
R?. The extension of such arguments to a general class of cost functions is
discussed in Appendix C.

Lemma 5.3. Let c(z,y) = ||z — yl||?, let Xo be strictly convez® and consider
(z,y) € Xo x Yo) \ T with x € 0Xg. Suppose that 7, is given by a transport
map T which is continuous on a neighborhood B,(x) N Xg for some r > 0.
Then I(x,y) > 0.

Proof. The main step is to find a point 2” € Xq such that
(v,x —2") > 0. (5.3)

Once that is achieved, we may choose a sequence x,, — x in the open segment
(2", x) which is contained in int Xg due to strict convexity. As (xy,, T(x,)) —
(z,T(z)) by continuity and «,, = Z(v,z — 2”) for all n, we conclude by
Lemma 5.1 with (z,v') := (z,T(z)).

To find z” satisfying (5.3), we first fix 2’ € X such that (2/,y) € . Asc
is quadratic, we have v =y — y in (5.1) and the cyclical monotonicity of T’
yields

v,z —2'y = —y,z —2')y > 0.

If this inequality is strict, we choose " := a’. Whereas if (v,2 — 2’) = 0,
we consider the mid-point & = (2’ — z)/2 which satisfies Z € int X by strict
convexity as well as (v,x — Z) = 0. After choosing p > 0 small enough
such that 0B,(z) C Xo, we can find a point 2" € 9B,(Z) C X such that
(v, — 2”") > 0, completing the proof. O

Next, we illustrate the dual approach in a problem with discontinuous
optimal transport map. For the remainder of the section, we assume that
there exists a Kantorovich potential ¢ such that

I(z,y) = c(z,y) —¥(y) +¢(2), (2,y) € Xo x Yo. (5.4)

As seen in Proposition 4.5, a sufficient condition is Assumption 4.4 (unique-
ness of potentials). If we assume that p ~ £? on its support, the quadratic
cost and the convexity condition in the below results already guarantee that
Assumption 4.4 holds; cf. Proposition B.2. The relevance of (5.4) is that it
yields the representation

{I = 0} N (XO X Y(]) = 0.4 N (XO X Yo), (55)

so that our question regarding exponential convergence can be phrased as:

2In the sense that the open segment (x,z’) is contained in int Xo for distinct x,z" € Xo.
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does T fill the entire set 9.1 N (Xg x Y¢)?

The intersection with Xy X Yq is crucial to avoid a negative answer in many
cases with discontinuous transport (see also the proof of Proposition 5.5
below). On the other hand, the intersection is justified because the interpre-
tation of I as rate of convergence is meaningless outside spt ..

We first state the following continuation argument similar to Lemma 5.3.

Lemma 5.4. Let c(z,y) = ||z — yl|?, let Xo be strictly conver and consider
(z,y) € (Xo x Yo) \T' with x € 9Xg. Suppose that I(Z,y) > 0 for all
Z € int Xo N By (x), for some r > 0. Then I(x,y) > 0.

Proof. We may state the proof with the equivalent cost ¢(z,y) = —(x,y)/2,
so that the notions of c-convex analysis and convex analysis coincide. Sup-
pose for contradiction that I(z,y) = 0. Fix 2/ € X such that (2/,y) € T
and denote ¢ := —° for 1 as in (5.4), then both x and z’ are in the set

{I(-,y) =0} = 0.0(y) = 0o(y),

where 0¢(y) denotes the subdifferential of the convex function ¢ in the usual
sense. The latter set being convex, it must include the whole segment [z, 2],
meaning that I(Z,y) = 0 for all Z € [z,2]. The interior of the segment is
included in int Xy by strict convexity, contradicting the hypothesis. O

Proposition 5.5 (Semidiscrete Transport). Let c(x,y) = ||z — y||> on X =
Y = R, let Xg be strictly conver, let p < L% and let sptv be at most
countable, with no accumulation points. Then {I =0} N (Xg x Yo) =T.

Proof. Again, we may state the proof with the equivalent cost c(x,y) =
—(x,y)/2. Let (x,y) € Xo xYo. In view of Lemma 5.4, it suffices to treat the
case x € int Xg. Denote by dom V1) the set of points where 9 is differentiable
and assume that I(x,y) = 0; that is, y € .4 (z) = 9¢¥(x). The (ordinary)
subdifferential 0v(x) equals {Vi(x)} if € dom V), whereas in general, it
can be described (cf. [55, Theorem 25.6, p.246]) as the closed convex hull of

S(z) = {nlgrolo Vi(xy,) @ &y — x, Ty € dom Vi), nh_}ngo Vi(xy) exists}.
(5.6)

Case 1: x € domVe. As T' C 9¢ and 0¢(x) is a singleton, it follows
that (z,y) = (z, V¢o(x)) € .

Case 2: y € S(x). Let x, — x be as in (5.6). Recalling that x € int Xo,
we have z,, € Xp for n large. Thus (z,, Vi)(x,)) € ' by Case 1 and closedness
entails that the limit (z,y) pertains to I' as well.
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Case 3: y € OY(x) \ S(z). We shall show that this case does not occur.
As a first step, we argue that

oY (x) = conv S(x) (5.7)

in the present context (without taking closure). Asx € int X C int{y) < oo},
the subdifferential 0y (x) is bounded [55, Theorem 23.4, p.217]. Let U be
a bounded neighborhood of 99 (z). The discreteness assumption on sptv
entails that U N Yy is a finite set (and that Yo = sptv). Let x,, — = be as
in (5.6). For z,, close to x we have Vi(x,) € U, but also Vi(z,) € Yo by
Case 1. As a result, the set S(x) of limits is finite. In particular, its convex
hull is already closed, and (5.7) follows.

Now let y € 9y(x)\ S(z). By (5.7), y is a nontrivial convex combination
Yy = Ele 0;y; for some distinct y; € S(z) and 6; € (0,1) with > 6; = 1. Let
¢ := —1°¢ (which is the Legendre—Fenchel transform of 1 in this context)
and 2’ € 9¢(y). Then cyclical monotonicity of ¢ implies (z' —x,y —y;) > 0
for all 7 and as

k

Z&;(m'—x,y—yﬁ = (2 —x,0) =0, (5.8)
i=1

it follows that (' — 2,y — y;) = 0 for all 4. That is, we have
09(y) —{z} L y—y; forall 1<i<Ek,

which implies in particular dim d¢(y) < d. On the other hand, v({y}) > 0
by the discreteness of Yq. Thus pu(9é(y)) = v({y}) > 0, contradicting that
p < L does not charge lower dimensional sets. This shows that Case 3 does
not occur and completes the proof. O

The preceding arguments can be extended to a class of cost functions
satisfying a Ma-Trudinger-Wang condition. This is detailed in Appendix C.

Proposition 5.6. After replacing convexity by c-convexity, Lemma 5.4 and
Proposition 5.5 extend to cost functions c satisfying Assumption C.1.

We conclude with a simple example illustrating the relevance of the twist
condition. Here, V c(x,y) vanishes below the diagonal, so that the condition
fails, and indeed the convergence m. — m, is sub-exponential in that region.

Example 5.7 (No Twist). Consider X = Y = R with identical marginals
p = v having support [0, 1] and the cost function

C(l’,y) _ {(y—x)2, Yy >,

0, y <.
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As Vze(x,y) = 0 for all y < z, this cost does not satisfy the twist condition.
Clearly there is a unique optimal transport 7, € II(u, v), given by the Monge
map T'(z) = x. Its support is I' = {(z,z) : 0 < x < 1} and one can
check by direct calculation based on (4.3) that I = ¢ on X¢ x Yo = [0,1]%.
Assumption 4.9 is readily verified, hence Corollary 4.12 shows that I is indeed
the rate function in this context. We can obtain the same conclusion from
Corollary 4.7, at least if we also suppose that p is equivalent to the Lebesgue
measure on [0,1]: then, Proposition B.2 shows that Assumption 4.4 holds.
Or as a third option, we may verify directly that I satisfies (4.7), and then
conclude as in the proof of Corollary 4.7. In any event, we see that [ = 0
on {y < z}, indicating sub-exponential decay of the weight of ..

A Cyclical Invariance and Factorization

In this section we detail some classical facts about static Schrodinger bridges
as well as the proof of Proposition 2.2. Let (X,u) and (Y,v) be Polish
probability spaces; as before, we denote by II(u,v) the set of couplings.

Proposition A.1. Let R be a probability measure on X XY and suppose that
there exists m € II(u,v) with H(w|R) < co. (A1)

Then there is a unique minimizer ©* € Il(u,v) for inf cry,,) H(7|R). As-
sume in addition that R ~ u®v. Then my, ~ p®v and there exist measurable
functions Z : X x Y = (0,00), f: X = (0,00), g: Y — (0,00) such that

Z(z,y) = f(z)9(y), (z,y) €XXY (A.2)

and Z is a version of the Radon—Nikodym density dn*/dR. Conversely, if
m € I(pu,v) and a version of its density has the form (A.2) on a set of full
p & v-measure, where f and g are arbitrary [—oo, ool-valued functions, then
T=m".

The uniqueness result also holds without Assumption (A.1), if stated as
follows. Let w, 7" € II(u,v) and w, 7', R ~ p @ v. If versions of dr/dR and
dr'/dR both admit factorizations as above, then m = 7.

Proof. The result under (A.1) can be found in |48, Theorem 2.1| in the stated
form (where we do not assume a priori that one can choose m ~ R in (A.1)).

For the final generalization on the uniqueness claim, let 7, 7’ be as stated
and note that a version of the density dr/dn’ then admits a factorization.
We consider 7’ as an auxiliary reference measure, instead of R. Then the
analogue of (A.1) holds as 7’ is itself a coupling and clearly 7’ is the unique
minimizer of H(:|7’). We can now apply the above results. O
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We mention that the existence and uniqueness of 7, are due to [20], and
that the factorization of the density and its measurability are delicate in
general (see [11, 12, 29, 57|, among others) but less so under our condition
that R ~ p ® v. An insightful approach with a direct construction of the
factorization was recently proposed in [2[; it yields similar results for the
entropic function h(z) = xlogx considered here but also allows for a gener-
alization to nonconvex penalties h. In addition, it portrays what we called
cyclical invariance as the cyclical monotonicity of an optimal transport prob-
lem arising from the linearization of the static Schrédinger bridge problem.
Another recent work, [3|, uses Markovian methods to obtain a generalized
factorization result for Schrédinger bridges with additional constraints.

Proof of Proposition 2.2. Recall the definition (2.5) of R and note that R ~
P =y ® v. The entropic optimal transport problem (2.2) can we rewritten
as infrerq(y,) €H (7| R), putting it in the realm of Proposition A.1. Similarly,
(2.3) is equivalent to (A.1). Let Z be as in (A.2), then (2.6) follows, and
hence also (2.4).

Conversely, if m € II(p, v) is cyclically invariant, then 7 ~ P and (2.6)
holds for its density Z. Fix an arbitrary zp € X and note that f(z) :=
Z(x,y)/Z(xo,y) is independent of y due to (2.6) with & = 2. Setting
9(y) = Z(xo,y)/f(zo) then yields the (measurable) factorization Z(x,y) =
f(x)g(y), and we conclude by Proposition A.1. Alternately, the existence
of a factorization can be deduced from (2.6) by the general result of |11,
Theorem 3.3|. O

Remark A.2. The above proof shows that if the cyclical invariance condi-
tion (2.4) holds for k = 2, then it already holds for arbitrary k& > 2.

B Uniqueness of Potentials

Definition B.1. Let ' C X x Y and A € X. We say that uniqueness of
potentials holds on A if for any c-convex functions 1, 12 on X with I' C 9.¢;,
it holds that 11 — 19 is constant on A.

We detail two classes of optimal transport problems where uniqueness
of potentials holds. Connectedness of at least one marginal support is
essential—uniqueness fails even for the simplest discrete problem, y = v =

(6g1) + d423)/2 with cost c({i}, {}) = Liz-

Proposition B.2. Let X = R? and pu ~ L4 on spt p, where LY spt p) = 0
and int spt v is connected. Let I' = sptm where m € II(u,v) is an optimal
transport for the continuous cost function c.

(a) Lipschitz cost: Suppose that
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c(+,y) is differentiable for all y, and locally Lipschitz uniformly in y.

Then uniqueness of potentials holds on spt u, and in particular on projx I'.

(b) Convex, superlinear cost: Let Y = R? and c(x,y) = h(y — x), where
(i) h: R = R is convex and differentiable,
(i) h has superlinear growth: h(zx)/||z|| — oo whenever ||z|| — oo,

(iii) given r < 0o and 6 € (0,7), and for p € R? sufficiently far from the
origin, there is a cone of the form {x € RY : ||z — pl|||z] cos(8/2) <
(z,z —p) < 72|} for some z € R%\ {0} on which h assumes its
mazximum at p.

Then uniqueness of potentials holds on projx I.

Remark B.3. (a) If ¢ € C*(R? x R¥) and v is compactly supported, we
can always change ¢ outside a neighborhood of spt u X sptv to satisfy the
condition of (a), without affecting the set of optimal transports.

(b) The convex cost with superlinear growth is essentially the well-known
setting of Gangbo and McCann [30]; cf. their hypotheses (H2)-(H4). The
technical condition (iii) is implied by (i) in the radial case h(z) = h(||z||);
in particular, all the conditions are satisfied for c(z,y) = ||y — z|P with
p € (1,00). In contrast to the main result of [30], & is not assumed to be
strictly convex—strictness is required for uniqueness of optimal transports,
but not for uniqueness of potentials. For instance, the “parabola with an
affine piece,” given by h(z) = h(||z||) with A(t) = t*1g ;) + (2t — 1)1 9) +
(t? — 2t + 3)1[2,00), satisfies all the assumptions in (b). The affine piece will
lead to non-uniqueness of optimal transports for a large class of marginals
in the one-dimensional case.

(c) Dual uniqueness may fail if ¢ is not differentiable. For ¢(z,y) = |y —x|
on R x R, the c-convex functions are exactly the 1-Lipschitz functions. If
p = v is the Lebesgue measure on [0, 1], the identical transport 7 is optimal
and any 1-Lipschitz function v satisfies T' = {(x,z) : € [0,1]} C 0.4.

The proof of the proposition is based on the following standard consid-
eration (e.g., [30, Lemma 3.1]).

Lemma B.4. Let T C X x Y and let 1, ¢ be R-valued functions such that
B(y) — 6(x) < c(,y) on X x Y and B(y) — b(x) = c(r,y) on T. IfX =
R? and (z,y) € T are such that v and c(-,y) are differentiable at x, then
Vi(x) = =Vye(x,y). In particular, if ¢(-,y) is differentiable for ally €Y,
then Vi (x) is uniquely determined for x € projy I' N dom V).
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Proof. Let (x,y) € T be as stated. Then

(@) + Vip(z) - b+ o(h) = p(x + h) = ¢(y) — c(z + h,y)
= ¢(x) + (e, y) — c(z + h,y)
= ¥(z) = Vac(z,y) - h+ o(h)

and hence Vi(z) = =V e(x,y) as the direction of h is arbitrary. O

Lemma B.5. Let I' = sptn for some m € II(u,v). Then spt u = projyx I

Proof. Let (x,y) € T, then u(B,(x)) = 7(By(z) x Y) > 0 for all »r > 0.
This shows projx I' C sptu. Let € sptp. As p(By(x)) > 0, there must
be some =’ € B,(z) with 2’ € projx I, and this holds for all » > 0. Hence,
spt 4 C projy I'. O

Proof of Proposition B.2. We denote by dom the set where a function
is finite and by dom V1 the subset where it is differentiable.

(a) Let 9 be a c-convex function on X = R? with I' € 9.¢0. The lo-
cal Lipschitz bound of ¢(-,y) implies the same bound for . In particular,
1 is continuous and L%a.e. differentiable on dom = R%. The coupling
property guarantees that projx I' C spt p has full y-measure, hence also full
L% measure. It follows that A := dom V¢ N projxI' C sptp has full £%
measure, and V1 is uniquely determined on A by Lemma B.4. As ) is
locally Lipschitz and int spt p is open and connected, this implies that v is
uniquely determined (up to constant) on int spt i (see, e.g., [52, Formula 2]).
By continuity on R?, it is also determined on the closure, which equals spt p
due to L4(Dspt ) = 0.

(b) In this setting, the local Lipschitz property will only hold within
int spt 1 and 1 need not be continuous (or even finite) up to the boundary.
As we require uniqueness at all (rather than almost all) points x, we argue
the boundary case in a second step.

Step 1. We first show that uniqueness of potentials holds on int spt p. It
is proved in [30, Proposition C.3 and Corollary C.5] that for any c-convex
function 1 there is a convex set K with int K C domt C K and that
v is locally Lipschitz (hence L£%-a.e. differentiable) within int dom. By
convexity, int K = int K = intdom1. If I' C 9.1, then projx ' C dom)
and hence spt it = projx I C dom) C K, showing that

int spt # C int K = int dom ).

It follows that 1) is locally Lipschitz and £%a.e. differentiable on int spt .
On the other hand, projx I' has full g-measure in int spt u by the coupling
property, hence also full £%measure. Thus A := dom V) N projy I' has full
L%measure within int spt  and we conclude as in (a).
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Step 2. Define X; := projx I' Nint spt . Then
=T for Ty:={(z,y): z€Xy,yel} (B.1)

where T'; denotes the section {y € Y : (x,y) € I'}. Indeed, pu(X;) =1 as
stated in Step 1, which implies 7(I'1) = 1 and hence I' C T'; by the definition
of I' = spt w. Conversely, I'y C T is clear, and then I'; C I' by closedness.

Fix (z,y) € I'. By (B.1) we can find (2, yn) € 't with (zn,yn) — (z,9)
and in particular

wc(y) - 1/1(37) = C('CC? y) = lim C(‘Tna yn) = lim WJC(yn) - T/J(ﬂfn)]

The c-convex functions —¢ and 1 are lower semicontinuous thanks to the
continuity of ¢, so that ¢¢(y) > limsup ¥°(y,) and —¢(z) > limsup —¢(x,,).
Together, it follows that ¥°(y) = lim¢°(y,) and ¥(z) = lim¢(z,). As
Zp € int spt p, we know from Step 1 that v (x,,) is uniquely determined, and
then so is ¢ (z). O

C Proof of Proposition 5.6

In this section, we discuss how to extend Proposition 5.5 to a general class
of cost functions ¢ satisfying the Ma-Trudinger-Wang condition “(Aw)” in-
troduced in [43]; we use Loeper’s equivalent geometric characterization [42]
to generalize from the quadratic case. We recall that the dual representa-
tion (5.4) of I has been assumed.

A number of terms from c-convex analysis are needed. For ease of ref-
erence, we (mostly) follow the notation of [42]|, whose Section 2 also pro-
vides an excellent introduction to the notions used below. Consider a C!
function c(z,y) on the product of two domains Q,Q’ C R? and suppose
that ¢ satisfies the twist condition in both variables; i.e., Vzc(z,-) and
Vyc(-,y) are injective. Given x € Q, the c-exponential map T, is defined by
Ty = —Vge(z,-)~. A c-segment wrt. x is the image of a segment (in the
usual sense) under the map ¥,. The c-segment of y1,y2 € Q' wrt. x is the
image of the segment joining —V,c(z,y1) and —Vc(z,y2) under T,. The
set Q' is c-convex wrt. Q if the c-segment of y1, yo wrt.  is contained in Q' for
all y1,y2 € Q and x € Q, or equivalently, if —V c(z, Q') is convex for z € Q.
Strict c-convexity means that, in addition, the interior of the c-segment is in
the interior of Q'. A proper function ¢ : Q — RU{+o0} is c-convez if if there
exists ¢ : @ — [—o0,00] such that ¥(z) = sup,cq/[((y) — c(x,y)]. The c-
transform of 1 is defined by °(y) := inf cqlc(z, y) +¢(x)] for y € Q' and its
c-subdifferential at x is the set 9.(z) = {y € ' : Y°(y) — ¥(z) = c(x,y)}.

30



The function ¢ is semiconvez if it is the sum of a convex function and a
function of class C1:!. Tts (ordinary) subdifferential 9¢(z) at = € Q is

() == {y € R : Y(a') > $(a) + (.2 — 2) + oo — &/|]), ' € Q.

Clearly 0v¢(x) is convex. Moreover, it coincides with the subdifferential of
convex analysis if ¢ is convex, and it satisfies an analogue of the cyclical
monotonicity of convex analysis: adding up the defining inequalities shows

(y—y,x—2)>o(|lz—2||) for yeoy(z), y edyp(). (C.I1)

We shall use analogous notation for functions on €’ instead of Q (a minor
abuse of notation since ¢ is then used with its variables exchanged).

Assumption C.1. Let ©,Q be domains in R? with Xy € © and Yy C €,
and let ¢ € C! satisfy the twist condition in both variables. Moreover, let
X be strictly c-convex wrt. Yy and let €’ be c-convex wrt. Q. Finally, we
assume that any c-convex function v on €2 is locally semiconvex and satisfies

— Vac(z, 0 (x)) = 0v(x), (C.2)
and that the analogue holds for functions on .

The main condition is (C.2). As 0y(z) is convex, it implies in particu-
lar that 0.1 (x) is c-convex. (The converse implications also holds; see [42].
Note that our notation differs slightly from [42], where 0.1(z) denotes what
is —Vze(x,0.(x)) in our notation.) It is shown in [42] how (C.2) can
be deduced from the (Aw) condition when the the domains are bounded,
sufficiently c-convex and ¢ € C*. Local semiconvexity of c-convex func-
tions can be ensured by comparably mild conditions on the data, see for in-
stance [42, Proposition 2.2] or |30, Corollary C.5]. Apart from the quadratic
cost, another classical example treated in [42] is the reflector-antenna cost
c(x,y) = —log ||z — y||. See also [58] for further background.

Proof of Proposition 5.6. Step 1: Generalization of Lemma 5.4. This exten-
sion is straightforward: using the same notation as in the proof of Lemma 5.4,
we again have z, 2’ € {I(-,y) = 0} = 0.(—¢°)(y). The latter set is c-convex
by Assumption C.1, hence contains the c-segment of x, ' wrt. y. The interior
of the segment is contained in int Xy by strict c-convexity, and it includes
points from the neighborhood were I was assumed to be positive—a contra-
diction.

Step 2: Generalization of Proposition 5.5. Let (z,y) € Xg X Yq be such
that I(x,y) = 0. In view of Step 1, it again suffices to treat the case
x € int Xg. Moreover, as the c-convex function v is semiconvex by our
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assumption, it still holds that 9 (x) is the closed convex hull of S(z) as
defined in (5.6). The proofs for Case 1 and Case 2 carry over by simply re-
placing 0¢(x) with 0.4 (z) and Vip(z) with (Ve (x)). In Case 3, the proof
of (5.7) also carries over using semiconvexity. The arguments around (5.8)
can be adapted as follows: Let ¢ := —¢°¢ and 2’ € d¢(y). Then the cyclical
monotonicity property (C.1) of d¢ implies (z' — z,y — y;) > o(||z’ — z||) for
all 4. In view of (5.8), it now follows that (2’ — z,y — y;) = o(||]2' — «]|) for
all i, but noting that the convex set d¢(y) contains the segment [z, z], this
already implies that (' —xz,y —y;) = 0 for all 7. The remainder of the proof
is identical. O
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