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Abstract

We study the optimal transport between two probability measures
on the real line, where the transport plans are laws of one-step mar-
tingales. A quasi-sure formulation of the dual problem is introduced
and shown to yield a complete duality theory for general marginals
and measurable reward (cost) functions: absence of a duality gap and
existence of dual optimizers. Both properties are shown to fail in the
classical formulation. As a consequence of the duality result, we obtain
a general principle of cyclical monotonicity describing the geometry of
optimal transports.
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1 Introduction

Let µ, ν be probability measures on the real line R. A Monge–Kantorovich
transport from µ to ν is a probability P on R2 whose marginals are µ and ν,
respectively; that is, if (X,Y ) is the identity map on R2, then µ = P ◦X−1

is the distribution of X under P and similarly ν = P ◦ Y −1. The set of all
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these transports is denoted by Π(µ, ν). Let P ∈ Π(µ, ν) and consider the
disintegration P = µ ⊗ κ. If the stochastic kernel κ(x, dy) ≡ P [ · |X = x] is
given by the Dirac mass δT (x) for a map T : R → R, then T is called the
corresponding Monge transport. In general, a Monge–Kantorovich transport
may be interpreted as a randomized Monge transport.

Let f be a (measurable) real function on R2; then the cumulative reward
for transporting µ to ν according to P is

P (f) ≡ EP [f(X,Y )] ≡
∫
R2

f(x, y)P (dx, dy)

and the Monge–Kantorovich optimal transport problem is given by

sup
P∈Π(µ,ν)

P (f). (1.1)

In an alternate interpretation, the negative of f is seen as a cost and the
above is the minimization of the cumulative cost. One advantage of the
Monge–Kantorovich formulation is that an optimizer P ∈ Π(µ, ν) exists as
soon as f is upper semicontinuous and sufficiently integrable (of course, ex-
istence may fail when f is merely measurable). Optimal transport has been
a very active field in the last several decades; we refer to Villani’s mono-
graphs [41, 42] or the lecture notes by Ambrosio and Gigli [2] for background.

In the so-called martingale optimal transport problem, we only consider
transports which are martingale laws; then µ can be seen as the distribution
of a martingale at time t = 0 and ν as the distribution of the process at
t = 1. This problem was introduced by Beiglböck, Henry-Labordère and
Penkner [5] in the discrete-time case and by Galichon, Henry-Labordère and
Touzi [23] in continuous time. In the present paper, we focus on the most
fundamental case, where the transport takes place in a single time step.
That is, a martingale transport from µ to ν is a law P ∈ Π(µ, ν) under
which (X,Y ) is a martingale; of course, this necessitates that µ and ν have
finite first moments. We let

M(µ, ν) =
{
P ∈ Π(µ, ν) : EP [Y |X] = X P -a.s.

}
denote the set of martingale transports. Alternately, consider a disintegra-
tion P = µ⊗ κ of P ∈ Π(µ, ν); then P is a martingale transport if and only
if x is the barycenter (mean) of κ(x) for µ-a.e. x ∈ R; that is,

∫
y κ(x, dy) = x.

Here we may also observe that Monge transports are meaningless in this
context—only a constant martingale is deterministic.

The martingale property induces an asymmetry between µ and ν—the
marginals can only become more dispersed over time. More precisely, the
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set M(µ, ν) is nonempty if and only if µ, ν are in convex order, denoted
µ ≤c ν, meaning that µ(φ) ≤ ν(φ) whenever φ is a convex function (see
Proposition 2.1). Under this condition, the martingale optimal transport
problem is given by

sup
P∈M(µ,ν)

P (f). (1.2)

The present paper develops a complete duality theory for this problem, for
general reward functions and marginals. In particular, we obtain existence
in the dual problem, and that is the main goal of this paper.

The problem (1.2) was first studied in [7, 30]. In analogy to the Hoeffding–
Fréchet coupling of classical transport, [7] establishes a measure P , the so–
called Left-Curtain Coupling, that is optimal in (1.2) for reward functions f
of a specific form. This form was generalized to a version of the Spence–
Mirrlees condition in [26], where the coupling is also described more explic-
itly, whereas [31] shows the stability with respect to the marginals. On the
other hand, [29, 30] find the optimal transports for f(x, y) = ±|x − y|. A
generalization of the martingale transport problem, where an arbitrary linear
constraint is imposed on Π(µ, ν), is studied in [43].

Martingale optimal transport is motivated by considerations of model un-
certainty in financial mathematics. Starting with [27], a stream of literature
studies robust bounds for option prices via the Skorokhod embedding prob-
lem and this can be interpreted as optimal transport in continuous time; cf.
[28, 37] for surveys. The opposite direction is taken in [3], where Skorokhod
embeddings are studied from an optimal transport point of view. Recently, a
rich literature has emerged around the topics of model robustness and trans-
port; see, e.g., [1, 8, 13, 14, 15, 16, 22, 35] for models in discrete time and
[6, 11, 18, 17, 20, 21, 24, 25, 32, 34, 36, 38, 40] for continuous-time models.

1.1 Duality for Classical Transport

Let us first recall the duality results for the classical case (1.1). Indeed, the
dual problem is given by

inf
ϕ,ψ
{µ(ϕ)+ν(ψ)}, subject to ϕ(x)+ψ(y) ≥ f(x, y), (x, y) ∈ R2. (1.3)

Here ϕ ∈ L1(µ) and ψ ∈ L1(ν) are real functions that can be seen as La-
grange multipliers for the marginal constraints in (1.1). There are two funda-
mental results on this duality in a general setting, obtained by Kellerer [33].
First, there is no duality gap; i.e., the values of (1.1) and (1.3) coincide.
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Second, there exists an optimizer (ϕ,ψ) ∈ L1(µ)× L1(ν) for the dual prob-
lem, whenever its value (1.3) is finite. While additional regularity assump-
tions allow for easier proofs, the results of [33] apply to any Borel function
f : R2 → [0,∞]. An important application is the “Fundamental Theorem
of Optimal Transport” [2, 42] or “Monotonicity Principle” which describes
the trajectories used by optimal transports: there exists a set Γ ⊆ R2 such
that a given transport P ∈ Π(µ, ν) is optimal for (1.1) if and only if P is
concentrated on Γ. This set can be obtained directly from a dual optimizer
(ϕ,ψ) by setting

Γ = {(x, y) ∈ R2 : ϕ(x) + ψ(y) = f(x, y)}. (1.4)

In fact, given ψ, one can find ϕ by f -concave conjugation and vice versa,
so that either of the functions may be called the Kantorovich potential of
the problem, and then Γ is the graph of its f -subdifferential. The set Γ has
an important property called f -cyclical monotonicity which can be used to
analyze the geometry of optimal transports; we refer to [2, 42] for further
background.

1.2 Duality for Martingale Transport

Let us now move on to the dual problem in the case of interest, where
the martingale constraint gives rise to an additional Lagrange multiplier.
Formally, EP [Y |X] = X is equivalent to EP [h(X)(Y − X)] = 0 for all
functions h and thus the domain of the analogue of (1.3) consists of triplets
(ϕ,ψ, h) of real functions such that

ϕ(x) + ψ(y) + h(x)(y − x) ≥ f(x, y), (x, y) ∈ R2, (1.5)

while the dual cost function is unchanged,

inf
ϕ,ψ,h

{µ(ϕ) + ν(ψ)}.

In [5], it was shown that there is no duality gap whenever the reward func-
tion f is upper semicontinuous and satisfies a linear growth condition, and
the analogous result holds in the setting of [43]. On the other hand, a
counterexample in [5] showed that the dual problem may fail to admit an
optimizer, even if f is bounded continuous and the marginals are compactly
supported.

The proofs of the positive results in [5, 43], absence of a duality gap,
reduce to classical transport theory by dualizing the martingale constraint
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and using a minimax argument. Only the latter step requires upper semicon-
tinuity, and it is easy to believe that it is a technical condition necessitated
only by the technique of proof. This turns out to be wrong: we provide
a counterexample (Example 8.1) showing that the dual problem (1.5) can
produce a duality gap in a fairly tame setting with compactly supported
marginals and a reward function that is bounded and lower semicontinuous.
Regarding the absence of an optimizer, we provide a counterexample (Exam-
ple 8.2) which is, in a sense to be made specific, simpler than the one in [5]
and suggests that failure of existence is generic as soon as the marginals do
not satisfy a condition called irreducibility (see below and Section 2) and f
is not smooth.

Let us now introduce a formulation of the dual problem which will al-
low us to overcome both issues and develop a complete duality theory—dual
existence and no duality gap—for general reward functions. The most im-
portant novelty is that we shall reformulate the pointwise inequality of (1.5)
in a quasi-sure way. Indeed, we say that a property holds M(µ, ν)-quasi-
surely (q.s. for short) if it holds outside a M(µ, ν)-polar set; that is, a set
which is P -null for all P ∈M(µ, ν). We then replace (1.5) by

ϕ(X) + ψ(Y ) + h(X)(Y −X) ≥ f(X,Y ) M(µ, ν)-q.s.; (1.6)

i.e., the inequality holds P -a.s. for all P ∈ M(µ, ν). For the classical trans-
port, it is known that all polar sets are of a trivial type—they are negligible
for one of the marginals. This is different in the martingale case. Indeed, as
observed in [7], there are obstacles that cannot be crossed by any martingale
transport. These barriers divide the real line into intervals that (almost)
do not interact and are therefore called irreducible components. Our first
important result (Theorem 3.2) provides a complete characterization of the
M(µ, ν)-polar sets: a subset of R2 is polar if and only if it consists of tra-
jectories a) crossing a barrier or b) negligible for one of the marginals. On
the strength of this result, we have a rather precise understanding of (1.6);
namely, it represents a pointwise inequality on each irreducible component,
modulo sets that are not seen by the marginals.

We thus proceed by first studying an irreducible component; the analy-
sis has two parts. On the one hand, there are soft arguments of separation
(Hahn–Banach) and extension (Choquet theory) that are familiar from clas-
sical transport theory. On the other hand, there is an important closedness
result (Proposition 5.2) based on novel arguments: given reward functions
fn → f and corresponding almost-optimal dual elements (ϕn, ψn, hn), we
construct a limit (ϕ,ψ, h) for f . The proof of this result is deeply linked to
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the convex order of the marginals. Indeed, we introduce concave functions χn
which control (ϕn, ψn) in the sense of one-sided bounds. A compactness re-
sult of Arzela–Ascoli type is established for the sequence (χn), based on a
bound of the form

0 ≤
∫
χn d(µ− ν) ≤ C. (1.7)

After finding a limit χ for χn, we can produce limits (ϕ,ψ) for (ϕn, ψn)
by Komlos-type arguments, and the corresponding function h can be found
in an a posteriori fashion. The compactness result yields some insight into
the failure of the pointwise formulation (1.5) for the global problem: the
bound (1.7) does not control the concavity of χn at barriers because the
inequality between µ and ν is not “strict” in the convex order at these points.

A second relaxation is necessary to obtain our duality result; namely,
the cost µ(ϕ) + ν(ψ) needs to be defined in an extended sense. We provide
counterexamples showing that the existence of dual optimizers (Example 8.4)
and in some cases the absence of a duality gap (Example 8.5) break down if
one insists on ϕ and ψ being integrable for µ and ν, individually. We shall
see that several natural definitions of µ(ϕ) + ν(ψ) lead to the same value.

With these notions in place, our main result (Theorem 7.4) is that duality
holds for arbitrary Borel reward functions f : R2 → [0,∞]; here the lower
bound can be relaxed easily (Remark 7.5) but not eliminated completely
(Example 8.6). Moreover, existence holds in the dual problem whenever it is
finite. As a consequence, we derive a monotonicity principle (Corollary 7.8)
with a set analogous to (1.4) in a fairly definitive form, generalizing and
simplifying results of [7, 43].

While there are no previous results on duality for irregular reward func-
tions, we mention that the proof of the monotonicity principle in [7] con-
tains elements of a theory for dual optimizers for the case of continuous f ,
although the dual problem as such is not formalized in [7]. We expect that
the quasi-sure formulation proposed in the present paper will prove to be a
useful framework not only for the situation at hand but for a large class of
transport problems; in particular, to obtain dual attainment under general
conditions.

The remainder of the paper is organized as follows. In Section 2, we recall
preliminaries on the convex order and potential functions. The structure of
M(µ, ν)-polar sets is characterized in Section 3, and Section 4 discusses the
extended definition of µ(ϕ)+ν(ψ). The crucial closedness result for the dual
problem is obtained in Section 5, which allows us to establish the duality
on an irreducible component in Section 6. Section 7 combines the previous
results to obtain the global duality theorem and the monotonicity principle.
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The counterexamples are collected in the concluding Section 8.

2 Preliminaries on the Convex Order

It will be useful to consider finite measures, not necessarily normalized to be
probabilities. The notions introduced in Section 1 extend in an obvious way.
Let µ, ν be finite measures on R with finite first moment. We say that µ
and ν are in convex order, denoted µ ≤c ν, if µ(φ) ≤ ν(φ) for any convex
function φ : R → R. It then follows that µ and ν have the same total mass
and the same barycenter. An alternative characterization of this order refers
to the so-called potential function, defined by

uµ : R→ R, uµ(x) :=

∫
|t− x|µ(dt).

This is a nonnegative convex function with a minimum at the median of µ,
and µ can be recovered from uµ via the second derivative measure. The
following result is known; the nontrivial part is [39, Theorem 8].

Proposition 2.1. Suppose that µ(R) = ν(R). The following are equivalent:

(i) The measures µ and ν are in convex order: µ ≤c ν.

(ii) The potential functions of µ and ν are ordered: uµ ≤ uν .

(iii) There exists a martingale transport from µ to ν: M(µ, ν) 6= ∅.

It will be important to distinguish the intervals where uµ < uν from
the points where the potential functions touch, because such points act as
barriers for martingale transports. In all that follows, the statement µ ≤c ν
implicitly means that µ, ν are finite measures on R with finite first moment.

Definition 2.2. The pair µ ≤c ν is irreducible if the set I = {uµ < uν} is
connected and µ(I) = µ(R). In this situation, let J be the union of I and
any endpoints of I that are atoms of ν; then (I, J) is the domain of (µ, ν).

As uµ = uν outside of I and µ(I) = µ(R) and µ, ν have the same
mass and mean, the measure ν is concentrated on J . More precisely, the
open interval I is the interior of the convex hull of the support of ν, and
J is the minimal superset of I supporting ν. The marginals µ ≤c ν can be
decomposed into irreducible components as follows; cf. [7, Theorem 8.4].
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Proposition 2.3. Let µ ≤c ν and let (Ik)1≤k≤N be the (open) components
of {uµ < uν}, where N ∈ {0, 1, . . . ,∞}. Set I0 = R \ ∪k≥1Ik and µk = µ|Ik
for k ≥ 0, so that µ =

∑
k≥0 µk. Then, there exists a unique decomposition

ν =
∑

k≥0 νk such that

µ0 = ν0 and µk ≤c νk for all k ≥ 1,

and this decomposition satisfies Ik = {uµk < uνk} for all k ≥ 1. Moreover,
any P ∈ M(µ, ν) admits a unique decomposition P =

∑
k≥0 Pk such that

Pk ∈M(µk, νk) for all k ≥ 0.

The index 0 is special in the above: the measure P0 is the unique mar-
tingale transport from µ0 to itself, given by the law of x 7→ (x, x) un-
der µ0. This corresponds to a constant martingale or the identical Monge
transport. In particular, P0 does not depend on P ∈ M(µ, ν). We ob-
serve that P0 is concentrated on ∆0 := ∆ ∩ I2

0 , the part of the diagonal
∆ = {(x, x) ∈ R2 : x ∈ R} which is not contained in any of the squares
Ik × Jk for k ≥ 1. Thus, ∆0 will play a role similar to Ik × Jk for k = 0.

A second remark is that both of the families (µk)k≥0 and (Pk)k≥0 are
mutually singular, whereas (νk)k≥0 need not be. Indeed, an atom of ν may
be split such as to contribute to two adjacent components νk.

We close this section with a technical remark for later use.

Remark 2.4. We observe from the definition that the continuous convex
function uµ is affine to the left and to the right of the support of µ, with
absolute slope equal to the mass of µ. Moreover, discontinuities of the first
derivative correspond to atoms of µ.

Let µ ≤c ν be irreducible with domain (I, J) and write I = (l, r). As
µ(I) = µ(R), the measure µ cannot have atoms at the boundary points
of I. Suppose that r < ∞; then the derivative duµ(r) exists and is equal
to µ(R). However, the measure ν may have an atom at r, and while the right
derivative d+uν(r) is always equal to duµ(r), the left derivative satisfies

duµ(r)− d−uν(r) = 2ν({r}).

Similarly, if l > −∞, we have d−uν(l) = duµ(l) = −µ(R) and

d+uν(l)− duµ(l) = 2ν({l}).

3 The Structure of M(µ, ν)-Polar Sets

The goal of this section is to characterize the sets which cannot be charged
by any martingale transport. Given a collection P of measures on some
space (Ω,F), a set B ⊆ Ω is called P-polar if is it P -null for every P ∈ P.
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For the classical mass transport, the following result can be obtained by
applying Kellerer’s duality theorem [33] to the indicator function f = 1B;
cf. [4, Proposition 2.1].

Proposition 3.1. Let µ, ν be finite measures of the same total mass and let
B ⊆ R2 be a Borel set. Then B is Π(µ, ν)-polar if and only if there exist a
µ-nullset Nµ and a ν-nullset Nν such that

B ⊆ (Nµ × R) ∪ (R×Nν).

The above result, which holds true more generally for arbitrary Polish
spaces, states that the only Π(µ, ν)-polar sets are the obvious ones: the
sets which are not seen by the marginals. This is the reason why in the
classical dual transport problem, there is no difference between a quasi-sure
formulation and a pointwise formulation. Namely, if ϕ(X)+ψ(Y ) ≥ f holds
Π(µ, ν)-q.s., let B be the exceptional set and let Nµ, Nν be as above. Then
setting ϕ =∞ on Nµ and ψ =∞ on Nν yields ϕ(X) + ψ(Y ) ≥ f pointwise
on R2, without changing the cost µ(ϕ) + ν(ψ).

The situation is fundamentally different for the martingale transport.
Unless µ ≤c ν is irreducible, there are obstructions to all martingale trans-
ports, and more precisely, a set that “fails to be on a component” is polar,
even if it is seen by the marginals. The following result completely describes
the structure ofM(µ, ν)-polar sets.

Figure 1: In this illustration of Theorem 3.2, the striped areas correspond
to the domains of two irreducible components. The dotted areas are polar
even though they are not negligible for the marginals.
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Theorem 3.2. Let µ ≤c ν and let B ⊆ R2 be a Borel set. Then B is
M(µ, ν)-polar if and only if there exist a µ-nullset Nµ and a ν-nullset Nν

such that

B ⊆ (Nµ × R) ∪ (R×Nν) ∪

∆ ∪
⋃
k≥1

Ik × Jk

c

,

where ∆ = {(x, x) ∈ R2 : x ∈ R} is the diagonal.

The main step in the proof is the following construction.

Lemma 3.3. Let µ ≤c ν be irreducible and let π be a finite measure on R2

whose marginals π1, π2 satisfy1 π1 ≤ µ and π2 ≤ ν. Then, there exists
P ∈M(µ, ν) such that P dominates π in the sense of absolute continuity.

Proof. Let (I, J) be the domain of (µ, ν). We may assume that µ, ν are
probability measures; in particular, I 6= ∅.

(i) We first show the result under the additional hypothesis that π is
supported on an compact rectangle K × L ⊆ I × J .

Writing I = (l, r), the definition of (I, J) implies that ν assigns positive
mass to any neighborhood of l. Since K is compact, it has positive distance
to l and we can find a compact set B− ⊆ J with ν(B−) > 0 to the left of K;
i.e., l < y < x for all y ∈ B− and x ∈ K. Similarly, we can find a compact
B+ ⊆ J with positive mass to the right of K. Let

π = π1 ⊗ κ

be a disintegration of π; we may choose a version of the kernel κ(x, dy) that
is concentrated on L for all x ∈ K. We shall now change the mean of κ(x)
such as to render it a martingale kernel. Indeed, let us introduce a kernel κ′

of the form

κ′(x, dy) =
κ(x, dy) + s−(x)ν(dy)|B− + s+(x)ν(dy)|B+

c(x)
, x ∈ K.

Here c(x) ≥ 1 is the normalizing constant such that κ′(x, dy) is a stochastic
kernel. Moreover, for x such that the mean of κ(x) is smaller or equal to x,
we set s−(x) := 0 and define s+(x) as the unique nonnegative scalar such
that the mean of κ′(x) equals x, and analogously in the opposite case. Note

1By π1 ≤ µ we mean that π1(A) ≤ µ(A) for every Borel set A ⊆ R.
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that s± are well-defined because B± is at a positive distance to the left (resp.
right) of x ∈ K. Then,

π′ :=
ν(B−) ∧ ν(B+)

3
π1 ⊗ κ′

is a martingale measure with π′ � π and its marginals µ′, ν ′ satisfy µ′ ≤
π1 ≤ µ as well as ν ′ ≤ ν; the latter is due to π1(R) ≤ µ(R) = 1 and

κ′(x) ≤ ν(B−)−1 ν|B− + ν(B+)−1 ν|B+ + κ(x)

and
π1 ⊗ ν|B− + π1 ⊗ ν|B+ + π1 ⊗ κ ≤ 3ν.

We also note that

π′ is concentrated on a compact square K × L′ (3.1)

where L′ ⊆ J is the convex set generated by B− and B+. It remains to find
P ∈M(µ, ν) such that P � π′.

(a) We first consider the case where I = J . Since uν − uµ is continuous
and strictly positive on I, this difference is uniformly bounded away from
zero on the compact set L′ ⊆ I. On the other hand, the continuous function
uν′ − uµ′ is uniformly bounded on L′. Hence, there is 0 < ε < 1 such that

uµ − εuµ′ ≤ uν − εuν′ on L′,

but then this inequality extends to the whole of R because uµ′ = uν′ outside
of L′, due to (3.1). Noting also that uµ − εuµ′ = uµ−εµ′ , we thus have

µ− εµ′ ≤c ν − εν ′,

and these are nonnegative measures due to µ′ ≤ µ and ν ′ ≤ ν. Hence,
M(µ− εµ′, ν − εν ′) is nonempty; cf. Proposition 2.1. Let πε be any element
of that set and define

P = εµ′(R)−1π′ + πε.

By construction, P is an element ofM(µ, ν) and P � π′ � π.
(b) Next, we discuss the case where ν has an atom at one or both of

the endpoints of I. Suppose that ν({r}) > 0; then L′ may touch the right
boundary of J and we need to give a different argument for the existence of
ε > 0 as above, since uν − uµ need no longer be bounded away from zero on
L′. However, the left derivatives satisfy d−uν(r) < d−uµ(r) by Remark 2.4,
and similarly at l if ν({l}) > 0. Recalling that the derivatives of any potential
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function—and in particular of uµ′ and uν′—are uniformly bounded by the
total mass of the corresponding measure, we see that we can still find ε > 0
such that uµ − εuµ′ ≤ uν − εuν′ . The rest is as above.

(ii) Finally, we treat the general case. As π1 ≤ µ and π2 ≤ ν, the
measure π is necessarily concentrated on I × J . We can cover I × J with a
sequence (Qn)n≥1 of compact rectangles Qn ⊆ I×J and define measures πn

supported by Qn such that π =
∑
πn. For each n, our construction in (i)

yields a martingale transport plan πn � Pn ∈ M(µ, ν), and then P =∑
2−nPn satisfies the requirement of the lemma.

Corollary 3.4. The pair µ ≤c ν is irreducible if and only if the Π(µ, ν)-polar
sets and theM(µ, ν)-polar sets coincide.

Proof. If µ ≤c ν is irreducible, the conclusion is an immediate consequence
of the preceding lemma. Conversely, suppose that µ ≤c ν is not irreducible;
that is, there exists x ∈ R such that uµ(x) = uν(x) and µ(−∞, x) > 0 and
µ(x,∞) > 0. Then, the set (−∞, x) × (x,∞) is M(µ, ν)-polar (Proposi-
tion 2.3) but not Π(µ, ν)-polar (Proposition 3.1).

Proof of Theorem 3.2. By Proposition 2.3 and Corollary 3.4, a Borel set B
isM(µ, ν)-polar if and only if B ∩ (Ik × Jk) is Π(µk, νk)-polar for all k ≥ 1
and B∩∆ is P0-null. The result now follows by applying Proposition 3.1 for
each k ≥ 1.

4 A Generalized Integral

4.1 Integral of a Concave Function

Let µ ≤c ν be irreducible with domain (I, J) and let χ : J → R be a concave
function2. We assume that I 6= ∅. Our first aim is to define the difference
µ(χ) − ν(χ). Indeed, µ(χ) and ν(χ) are well defined in [−∞,∞) as χ+

has linear growth, but we need to elaborate on the difference. There are
(at least) three natural definitions, and we shall see that they all yield the
same value. To that end, note that χ is continuous on I by concavity, but
may have downward jumps at the boundary J \ I. We denote the absolute
magnitude of the jump at y by |∆χ(y)|.

(1) Approximation. Let In be a sequence of open, bounded intervals in-
creasing strictly to I (i.e., I \ In has two components for all n) and

2In fact, we will not need irreducibility for the results of this section, except for Exam-
ple 4.5 and Remark 4.6. Moreover, we could allow χ to take the value −∞ on J \ I.
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consider the concave, linearly growing functions χn : J → R defined
by the following conditions: χn = χ on In and on J \ I, whereas χn is
affine on each component of I \ In, with continuous first derivative at
the endpoints of In. Then, µ(χn) and ν(χn) are both finite and we set

I1(χ, µ− ν) := lim
n→∞

[µ(χn)− ν(χn)]. (4.1)

We shall see below that the limit exists in [0,∞].

(2) Integration by Parts. Let −χ′′ be the (locally finite) second derivative
measure of the convex function −χ on I and set

I2(χ, µ− ν) :=
1

2

∫
I
(uµ − uν) dχ′′ +

∫
J\I
|∆χ| dν. (4.2)

As uµ ≤ uν and χ <∞, this quantity is well defined in [0,∞].

(3) Disintegration. Fix an arbitrary P ∈ M(µ, ν) and consider a disin-
tegration P = µ ⊗ κ; then we have

∫
χ(y)κ(x, dy) ≤ χ(x) for µ-a.e.

x ∈ I by Jensen’s inequality. Thus,

I3(χ, µ− ν) :=

∫
I

[
χ(x)−

∫
J
χ(y)κ(x, dy)

]
µ(dx)

is well defined in [0,∞], and we shall see below that this value is
independent of the choice of P ∈M(µ, ν). This definition was already
used in [7].

For future reference, let us recall the following fact about the second
derivative measure χ′′: after normalizing χ and its left derivative χ′ such
that χ(a) = χ′(a) = 0 for some a ∈ I (by adding a suitable affine function),

χ(y) =

∫
(l,a)

(y − t)− χ′′(dt) +

∫
[a,r)

(y − t)+ χ′′(dt), y ∈ I,

where l, r ∈ [−∞,∞] are such that I = (l, r). If χ is continuous at the
boundary of I, this identity extends to y ∈ J by monotone convergence.

Lemma 4.1. The values Ii(χ, µ− ν) are well defined in [0,∞], depend only
on χ and µ− ν, and coincide for i = 1, 2, 3.

Proof. By concavity, χ is continuous on I with possible downward jumps at
the boundary. Setting χ̄ := χ on I and extending χ̄ to J by continuity, we
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have χ = χ̄ − |∆χ|1J\I where χ̄ is concave and continuous. By linearity of
the ν-integral, it suffices to show the claim for χ̄; in other words, we may
assume that χ is continuous.

Suppose first that χ ∈ L1(µ) ∩ L1(ν). Then, it is clear that Ii(χ, µ− ν)
is well defined for i = 1, 2, 3 and that I1(χ, µ− ν) = I3(χ, µ− ν). To see the
equality with I2(χ, µ − ν), let a ∈ I be arbitrary. Writing again I = (l, r),
we have∫

J
χ(s) (µ− ν)(ds) =

∫
[l,a)

∫
(l,a)

(t− s)+ χ′′(dt) (µ− ν)(ds)

+

∫
[a,r]

∫
[a,r)

(s− t)+ χ′′(dt) (µ− ν)(ds).

Applying Fubini’s theorem to both integrals and noting that the integrands
vanish on certain sets, this can be rewritten as∫

(l,a)

∫
J
(t− s)+ (µ− ν)(ds)χ′′(dt) +

∫
[a,r)

∫
J
(s− t)+ (µ− ν)(ds)χ′′(dt).

Substituting (t − s)+ = (s − t)+ + t − s in the first integral and using that
µ and ν have the same mass and mean, this equals∫

I

∫
J
(s− t)+ (µ− ν)(ds)χ′′(dt).

On the other hand, using |s− t| = 2(s− t)+ − (s− t) yields that

(uµ − uν)(t) =

∫
J
|s− t| (µ− ν)(ds) = 2

∫
J
(s− t)+ (µ− ν)(ds).

It follows that I2(χ, µ− ν) = I3(χ, µ− ν) and that this value depends only
on χ and µ− ν.

For general χ, define χn ∈ L1(µ) ∩ L1(ν) as before (4.1); the above es-
tablishes that the values of Ii(χn, µ−ν) coincide for each n. Noting that χn
decreases to χ stationarily and that χn+1−χn is concave, monotone conver-
gence entails that Ii(χn, µ− ν)→ Ii(χ, µ− ν) for i = 2, 3, and in particular
these limits coincide. It now follows that the limit defining I1(χ, µ−ν) must
exist and have the same value.

Definition 4.2. We write (µ− ν)(χ) for the common value of Ii(χ, µ− ν),
i = 1, 2, 3.
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As the notation suggests, we have (µ − ν)(χ) = µ(χ) − ν(χ) as soon
as at least one of the latter integrals is finite—this follows from the rep-
resentation (4.1). However, it may happen that (µ − ν)(χ) is finite but
µ(χ) = ν(χ) = −∞. The following remark elaborates on this.

Remark 4.3. Suppose that (µ − ν)(χ) is finite; then µ(χ) and ν(χ) are
either both infinite or both finite. Thus, one sufficient condition for their
finiteness is that the support of µ be a compact subset of I. A more general
condition is the existence of a constant C ≥ 1 such that

uν − uδm ≤ C(uν − uµ), (4.3)

where m ∈ I is the barycenter of µ. Indeed, by (4.2), this implies that

(δm − ν)(χ) ≤ C(µ− ν)(χ);

thus, ν(χ) > −∞ if the right-hand side is finite. One can formulate a similar
sufficient condition by substituting δm with any measure µ̄ satisfying µ̄ ≤c ν
and µ̄(χ) > −∞.

Example 4.4. Let µ, ν be Gaussian with the same mean and variances
σ2
µ < σ2

ν . Then, a direct computation shows that µ ≤c ν is irreducible and
Condition (4.3) is satisfied.

It turns out that atoms at the endpoints of I are helpful in terms of
integrability.

Example 4.5. Suppose that µ ≤c ν is irreducible with domain (I, J). If I
is bounded and ν has atoms at both endpoints of I, then (4.3) is satisfied.
Indeed, uν > uµ on I and the slopes are separated at the endpoints (cf.
Remark 2.4) so that (uν−uδ)/(uν−uµ) has a positive limit at the boundary.
Using these two facts, (4.3) follows.

Very much in the same spirit, we have the following estimate related to
the preceding example.

Remark 4.6. Let µ ≤c ν be irreducible with domain (I, J), let I have a
finite right endpoint r and let χ : J → R be a concave function such that
χ(a) = χ′(a) = 0, where a ∈ I is the common barycenter of µ and ν. In
particular, χ ≤ 0 and χ1[a,∞) is concave. If ν has an atom at r, then

χ(r) ≥ − C

ν({r})

∫
[a,∞)

χd(µ− ν), (4.4)
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with a constant C ≥ 0 depending only on µ, ν.
Indeed, as in Example 4.5, Remark 2.4 implies that there exists C such

that (4.3) holds on [a,∞). As a consequence,

−χ(r)ν({r}) ≤ −
∫

[a,∞)
χdν =

∫
[a,∞)

χd(δa − ν) ≤ C
∫

[a,∞)
χd(µ− ν),

where we have applied Lemma 4.1 to χ1[a,∞).

4.2 Integrability Modulo Concave Functions

Our next aim is to define expressions of the form µ(ϕ) + ν(ψ) in a situation
where the individual integrals are not necessarily finite. We continue to
assume that µ ≤c ν is irreducible with domain (I, J).

Definition 4.7. Let ϕ : I → R and ψ : J → R be Borel functions. If
there exists a concave function χ : J → R such that ϕ − χ ∈ L1(µ) and
ψ + χ ∈ L1(ν), we say that χ is a concave moderator for (ϕ,ψ) and set

µ(ϕ) + ν(ψ) := µ(ϕ− χ) + ν(ψ + χ) + (µ− ν)(χ) ∈ (−∞,∞],

where (µ− ν)(χ) was introduced in Definition 4.2.

Remark 4.8. The preceding definition is independent of the choice of the
concave moderator χ. Indeed, suppose there is another concave function χ̄
such that ϕ − χ̄ ∈ L1(µ) and ψ + χ̄ ∈ L1(ν), then it follows that χ − χ̄ ∈
L1(µ) ∩ L1(ν). Using, for instance, the representation (4.1), we see that

(µ− ν)(χ)− (µ− ν)(χ− χ̄) = (µ− ν)(χ̄)

and now it follows that

µ(ϕ− χ) + ν(ψ + χ) + (µ− ν)(χ) = µ(ϕ− χ̄) + ν(ψ + χ̄) + (µ− ν)(χ̄)

as desired.

Definition 4.9. We denote by Lc(µ, ν) the space of all pairs of Borel func-
tions ϕ : I → R and ψ : J → R which admit a concave moderator χ such
that (µ− ν)(χ) <∞.

In particular, µ(ϕ) + ν(ψ) is well defined and finite for (ϕ,ψ) ∈ Lc(µ, ν),
and has the usual value if (ϕ,ψ) ∈ L1(µ)× L1(ν) ⊆ Lc(µ, ν).

The following sanity check confirms that µ(ϕ) + ν(ψ) has the good value
in the context of martingale transport.
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Remark 4.10. Let (ϕ,ψ) ∈ Lc(µ, ν) and let h : I → R be Borel. If
ϕ(x) + ψ(y) + h(x)(y − x) is bounded from below on I × J , then

µ(ϕ) + ν(ψ) = P [ϕ(X) + ψ(Y ) + h(X)(Y −X)]

for any P ∈M(µ, ν).

Proof. Let χ be a concave moderator for (ϕ,ψ). We may suppose that 0 is
a lower bound, so that

(ϕ− χ)(X) + (ψ + χ)(Y ) + χ(X)− χ(Y ) + h(X)(Y −X) ≥ 0.

As the first two terms are P -integrable, the negative part of the remaining
expression is P -integrable and P [ϕ(X) + ψ(Y ) + h(X)(Y −X)] equals

µ(ϕ− χ) + ν(ψ + χ) + P [χ(X)− χ(Y ) + h(X)(Y −X)].

Let P = µ⊗κ be a disintegration of P ; then by the linear growth of χ+, the
following integrals are well defined and equal,∫

[χ(x)− χ(y) + h(x)(y − x)]κ(x, dy) =

∫
[χ(x)− χ(y)]κ(x, dy)

for µ-a.e. x ∈ I. As the negative part of χ(X) − χ(Y ) + h(X)(Y − X) is
P -integrable, Fubini’s theorem (for kernels) yields

P [χ(X)− χ(Y ) + h(X)(Y −X)] =

∫∫
[χ(x)− χ(y)]κ(x, dy)µ(dx)

and the right-hand side equals (µ− ν)(χ) by Lemma 4.1.

5 Closedness on an Irreducible Component

In this section, we analyze the dual problem on a single component; that is,
we continue to assume that µ ≤c ν is irreducible with domain (I, J).

Definition 5.1. Let f : I × J → [0,∞]. We denote by Dc,pwµ,ν (f) the set of
all Borel functions (ϕ,ψ, h) : R→ R×R×R such that (ϕ,ψ) ∈ Lc(µ, ν) and

ϕ(x) + ψ(y) + h(x)(y − x) ≥ f(x, y), (x, y) ∈ I × J.

Moreover, we denote by D1,pw
µ,ν (f) the subset of all (ϕ,ψ, h) ∈ Dc,pwµ,ν (f) with

ϕ ∈ L1(µ) and ψ ∈ L1(ν).
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We emphasize that in this definition, the inequality is stated in the point-
wise (“pw”) sense. For later reference, we also note that there are two degrees
of freedom in the choice of (ϕ,ψ, h). Namely, given constants c1, c2 ∈ R, the
triplet (ϕ,ψ, h) belongs to Dc,pwµ,ν (f) if and only if the the triplet

ϕ̃(x) = ϕ(x) + c1 + c2x, ψ̃(y) = ψ(y)− c1− c2y, h̃(x) = h(x) + c2 (5.1)

does, and then µ(ϕ) + ν(ψ) = µ(ϕ̃) + ν(ψ̃).
The goal of the present section is the following closedness result for

Dc,pwµ,ν (f); it is at the very heart of our duality and existence theory.

Proposition 5.2. Suppose that µ ≤c ν is irreducible with domain (I, J),
let f, fn : I×J → [0,∞] be such that fn → f pointwise and let (ϕn, ψn, hn) ∈
Dc,pwµ,ν (fn) satisfy supn{µ(ϕn) + ν(ψn)} <∞. Then, there exist

(ϕ,ψ, h) ∈ Dc,pwµ,ν (f) such that µ(ϕ) + ν(ψ) ≤ lim inf
n→∞

{µ(ϕn) + ν(ψn)}.

The irreducible pair µ ≤c ν is fixed for the rest of this section, so let us
simplify the notation to

Dc(f) := Dc,pwµ,ν (f).

As a first step towards the proof of Proposition 5.2, we introduce concave
functions which will control simultaneously ϕn and ψn, in the sense of one-
sided bounds.

Lemma 5.3. Let (ϕ,ψ, h) ∈ Dc(0). Then, there exists a concave moderator
χ : J → R for (ϕ,ψ) such that

χ ≤ ϕ on I, −χ ≤ ψ on J.

In particular, µ(χ) + ν(−χ) ≤ µ(ϕ) + ν(ψ).

Proof. The function

χ(y) := inf
x∈I

[ϕ(x) + h(x)(y − x)], y ∈ J

is concave as an infimum of affine functions, and (ϕ,ψ) ∈ Lc(µ, ν) implies
that ϕ <∞ on a nonempty set, so that χ <∞ everywhere on J . Moreover,
we clearly have χ ≤ ϕ on I. Our assumption that

ϕ(x) + ψ(y) + h(x)(y − x) ≥ 0, (x, y) ∈ I × J (5.2)

shows that χ ≥ −ψ on J . Since (ϕ,ψ) ∈ Lc(µ, ν), the set {ψ <∞} is dense
in supp(ν), and by concavity it follows that χ > −∞ on the interior of the

18



convex hull of supp(ν); that is, on the interval I. Moreover, {ψ <∞} must
contain any atom of ν and in particular J \ I, so that χ > −∞ on J .

Setting ϕ̄ := ϕ− χ ≥ 0 and ψ̄ := ψ + χ ≥ 0, we can write (5.2) as

ϕ̄(x) + ψ̄(y) + [χ(x)− χ(y)] + h(x)(y − x) ≥ 0, (x, y) ∈ I × J.

Let P = µ⊗ κ be a disintegration of some P ∈M(µ, ν). For fixed x ∈ I, all
four terms above are bounded from below by linearly growing functions. It
follows that for µ-a.e. x ∈ I, the integral of the left-hand side with respect
to κ(x, dy) can be computed term-by-term, which yields

ϕ̄(x) +

∫
ψ̄(y)κ(x, dy) +

∫
[χ(x)− χ(y)]κ(x, dy).

These three terms are nonnegative, and thus the integral with respect to µ
can again be computed term-by-term. By Fubini’s theorem and Lemma 4.1,
it follows that

P [ϕ̄(X)+ ψ̄(Y )+[χ(X)−χ(Y )]+h(X)(Y −X)] = µ(ϕ̄)+ν(ψ̄)+(µ−ν)(χ).
(5.3)

Of course, the left-hand side is also equal to P [ϕ(X)+ψ(Y )+h(X)(Y −X)]
and therefore finite by Remark 4.10. Thus, the right-hand side is finite as
well. As a result, (ϕ̄, ψ̄) ∈ Lc(µ̄, ν̄) with concave moderator χ, and

µ(ϕ) + ν(ψ) = µ(ϕ̄) + ν(ψ̄) + (µ− ν)(χ) ≥ (µ− ν)(χ) = µ(χ) + ν(−χ)

as desired.

Let us record a variant of the preceding construction for later use.

Remark 5.4. Let (ϕ,ψ, h) : R→ (−∞,∞]×(−∞,∞]×R be Borel functions
such that

ϕ(x) + ψ(y) + h(x)(y − x) ≥ 0, (x, y) ∈ I × J.

Then, (ϕ,ψ) ∈ Lc(µ, ν) if and only if P [ϕ(X) + ψ(Y ) + h(X)(Y −X)] <∞
for some (and then all) P ∈M(µ, ν).

Proof. The “only if” statement is immediate from Remark 4.10. For the
converse, let P [ϕ(X) + ψ(Y ) + h(X)(Y −X)] < ∞ for some P ∈ M(µ, ν);
then ϕ is finite µ-a.s. and ψ is finite ν-a.s. We can then follow the proof of
Lemma 5.3 up to (5.3) to define a concave function χ : J → R such that
ϕ̄ := ϕ− χ ≥ 0 and ψ̄ := ψ + χ ≥ 0 and

P [ϕ(X) + ψ(Y ) + h(X)(Y −X)] = µ(ϕ̄) + ν(ψ̄) + (µ− ν)(χ).
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Since the left-hand side is finite, the three (nonnegative) terms on the right-
hand side are finite as well; that is, (ϕ,ψ) ∈ Lc(µ, ν) with concave modera-
tor χ.

Our second tool for the main result is a compactness principle for concave
functions. Irreducibility is crucial for its proof, so let us restate this standing
condition. The notation χ′n refers to the left derivative (say).

Proposition 5.5. Let µ ≤c ν be irreducible with domain (I, J) and let a ∈ I
be the common barycenter of µ and ν. Let χn : J → R be concave functions
such that

χn(a) = χ′n(a) = 0 and sup
n≥1

(µ− ν)(χn) <∞.

There exists a subsequence χnk which converges pointwise on J to a concave
function χ : J → R, and (µ− ν)(χ) ≤ lim infk(µ− ν)(χnk).

Proof. By our assumption, (µ− ν)(χn) is bounded uniformly in n. In view
of (4.2), this implies that there exists a constant C > 0 such that

0 ≤
∫
I
(uµ − uν) dχ′′n ≤ C and 0 ≤ |∆χn| ≤ C,

where we have used that J \ I consists of (at most two) atoms of ν and
|∆χn| = 0 on I. By the same fact, we thus have

lim
k
|∆χnk | = lim inf

n
|∆χn| (5.4)

for a suitable subsequence χnk ; we may assume that nk = k. Moreover,
the first inequality shows that the sequence of finite measures defined by
(uµ−uν) dχ′′n is bounded and thus relatively compact for the weak topology
induced by the compactly supported continuous functions on I. Recalling
that uν − uµ is continuous and strictly positive on I, it follows that (−χ′′n)
is relatively weakly compact as well. In view of χ′n(a) = 0, this implies
a uniform bound for the Lipschitz constant of χn on any given compact
subset of I. Using also χn(a) = 0, the Arzela–Ascoli theorem then yields a
function χ : I → R such that χn → χ locally uniformly, after passing to a
subsequence. Clearly χ is concave, and integration by parts shows that −χ′′n
converges weakly to the second derivative measure −χ′′ associated with χ.
Approximating uµ − uν from above with compactly supported continuous
functions on I, we then see that

(µ−ν)(χ) =
1

2

∫
I
(uµ−uν) dχ′′ ≤ lim inf

n→∞

1

2

∫
I
(uµ−uν) dχ′′n = lim inf

n→∞
(µ−ν)(χn).
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Together with (5.4), we can define χ on J and the result follows via (4.2).

We can now derive the main result of this section.

Proof of Proposition 5.2. Since (ϕn, ψn, hn) ∈ Dc(fn) and fn ≥ 0, we can
introduce the associated concave functions χn as in Lemma 5.3. Normalizing
(ϕn, ψn, hn) as in (5.1) with suitable constants, we may assume that χn(a) =
χ′n(a) = 0; note that the relations χn ≤ ϕn and −χn ≤ ψn are preserved.
After passing to a subsequence, Proposition 5.5 then yields a pointwise limit
χ : J → R for the χn.

Since ϕn ≥ χn → χ, Komlos’ lemma (in the form of [19, Lemma A1.1]
and its subsequent remark) shows that there are ϕ̄n ∈ conv{ϕn, ϕn+1, . . . }
which converge µ-a.s., and similarly for ψn. Without loss of generality, we
may assume that ϕ̄n = ϕn, and similarly for ψn. Thus, setting

ϕ := lim supϕn on I, ψ := lim supψn on J

yields Borel functions ϕ, ψ such that

ϕn → ϕ µ-a.s., ϕ− χ ≥ 0 and ψn → ψ ν-a.s., ψ + χ ≥ 0.

Fatou’s lemma and Proposition 5.5 then show that

µ(ϕ−χ) + ν(ψ + χ) + (µ− ν)(χ)

≤ lim inf µ(ϕn − χn) + lim inf ν(ψn + χn) + lim inf(µ− ν)(χn)

≤ lim inf[µ(ϕn − χn) + ν(ψn + χn) + (µ− ν)(χn)]

= lim inf[µ(ϕn) + ν(ψn)] <∞.

In particular, this shows that (ϕ,ψ) ∈ Lc(µ, ν) with concave moderator χ,
and then the above may be stated more concisely as

µ(ϕ) + ν(ψ) ≤ lim inf µ(ϕn) + ν(ψn).

It remains to find h. For any function g : J → R, let gconc : J → R denote
the concave envelope. Given a sequence of such functions gn, we have

lim inf(gconcn ) ≥ (lim inf gn)conc

as gconcn ≥ gn and lim inf gconcn is concave. Moreover, (ϕn, ψn, hn) ∈ Dc(fn)
means that ϕn(x) + hn(x)(y − x) ≥ fn(x, y)− ψn(y) which implies that

ϕn(x) + hn(x)(y − x) ≥ [fn(x, ·)− ψn]conc(y), (x, y) ∈ I × J.
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Fix x ∈ I; then these two facts yield

lim inf[ϕn(x) + hn(x)(y − x)] ≥ lim inf[fn(x, ·)− ψn]conc(y)

≥ [lim inf(fn(x, ·)− ψn)]conc(y)

≥ [f(x, ·)− ψ]conc(y)

=: ϕ̂(x, y)

for all y ∈ J , and for the specific choice y = x we obtain that

ϕ(x) ≥ lim inf ϕn(x) ≥ ϕ̂(x, x).

As ν{ψ = ∞} = 0 and f > −∞, we have ϕ̂(x, y) > −∞ for all y ∈ J .
If x /∈ N := {ϕ = ∞}, the above inequalities also show that ϕ̂(x, x) < ∞
and as a result, the concave function ϕ̂(x, ·) is finite on J and admits a left
derivative

h(y) := d−ϕ̂(x, ·)(y) ∈ R, y ∈ I.

By concavity, it follows that

ϕ(x) + h(x)(y − x) ≥ ϕ̂(x, x) + h(x)(y − x) ≥ ϕ̂(x, y) ≥ f(x, y)− ψ(y)

for all y ∈ J . Setting h := 0 on N , we then have ϕ(x)+ψ(y)+h(x)(y−x) ≥
f(x, y) for all (x, y) ∈ I × J , because the left-hand side is infinite for x ∈ N .
Thus, (ϕ,ψ, h) ∈ Dc(f) and the proof is complete.

6 Duality on an Irreducible Component

Let µ ≤c ν be irreducible with domain (I, J). We define the primal and dual
values as follows.

Definition 6.1. Let f : R2 → [0,∞]. The primal problem is

Sµ,ν(f) := sup
P∈M(µ,ν)

P (f) ∈ [0,∞],

where P (f) refers to the outer integral if f is not measurable. The dual
problem is

Ipwµ,ν(f) := inf
(ϕ,ψ,h)∈Dc,pwµ,ν (f)

{µ(ϕ) + ν(ψ)} ∈ [0,∞].
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The goal of this section is the following duality result; it corresponds to
our main result in the case of irreducible marginals. We recall that a function
f : R2 → [0,∞] is called upper semianalytic if the sets {f ≥ c} are analytic
for all c ∈ R, where a subset of R2 is called analytic if it is the (forward)
image of a Borel subset of a Polish space under a Borel mapping. Any
Borel function is upper semianalytic and any upper semianalytic function is
universally measurable; see, e.g., [10, Chapter 7] for background.

Theorem 6.2. Let µ ≤c ν be irreducible and let f : R2 → [0,∞].

(i) If f is upper semianalytic, then Sµ,ν(f) = Ipwµ,ν(f) ∈ [0,∞].

(ii) If Ipwµ,ν(f) <∞, there exists a dual optimizer (ϕ,ψ, h) ∈ Dc,pwµ,ν (f).

The proof of Theorem 6.2 is based on Proposition 5.2, Choquet’s theorem
and a separation argument, so let us introduce the relevant terminology. Let
[0,∞]R

2 be the set of all functions f : R2 → [0,∞], let USA+ be the sublat-
tice of upper semianalytic functions and let U be the sublattice of bounded
upper semicontinuous functions; note that U is stable with respect to count-
able infima. A mapping C : [0,∞]R

2 → [0,∞] is called a U-capacity if it
is monotone, sequentially continuous upwards on [0,∞]R

2 , and sequentially
continuous downwards on U .

We write S(f) := Sµ,ν(f) and I(f) := Ipwµ,ν(f) for the rest of this section;
both of these mappings will turn out to be capacities.

Lemma 6.3. The mapping S : [0,∞]R
2 → [0,∞] is a U-capacity.

Proof. SinceM(µ, ν) is weakly compact, this follows by the standard argu-
ments presented, e.g., in [33, Propositions 1.21, 1.26].

Next, we show the absence of a duality gap for upper semicontinuous
functions. This result is already known from [5, Corollary 1.1] which uses a
minimax argument and Kellerer’s duality theorem [33] for classical transport.
We shall give a direct and self-contained proof based on Proposition 5.2.

Lemma 6.4. Let f ∈ U ; then S(f) = I(f).

Proof. Let f : R2 → [0,∞] be bounded and upper semicontinuous; then the
inequality

S(f) ≤ I(f) (6.1)

follows from Remark 4.10. Below, we show the converse inequality.
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(i) We first prove the result for a class of continuous reward functions.
This will be a Hahn–Banach argument, which requires us to introduce a
suitable space.

Recall that µ has a finite first moment. Thus, by the de la Vallée–Poussin
theorem, there exists an increasing function ζµ : R+ → R+ of superlinear
growth such that x 7→ ζµ(|x|) is µ-integrable. The same applies to ν, and we
set

ζ(x, y) = 1 + ζµ(|x|) + ζν(|y|), (x, y) ∈ R2.

Let Cζ = Cζ(R2) be the vector space of all continuous functions f : R2 → R
such that f/ζ vanishes at infinity; this includes all continuous functions of
linear growth. We equip Cζ with the norm |f |ζ := |f/ζ|∞, where | · |∞ is the
uniform norm.

Let f ∈ Cζ . Then, setting ϕ0(x) = ζµ(|x|) and ψ0(y) = ζµ(|y|), we have

−c(1 + ϕ0 + ψ0) ≤ f ≤ c(1 + ϕ0 + ψ0)

for some constant c, showing in particular that S(f) is finite. Thus, we may
assume that S(f) = 0 by a translation. Consider the set

K = {g ∈ Cζ : I(g) ≤ 0}.

This is a convex cone in Cζ , and Proposition 5.2 implies that K is closed;
here we use that a convergent sequence in Cζ is uniformly bounded from
below by a function of the form −c(1 + ϕ0 + ψ0).

Assume for contradiction that I(f) > 0; that is, f /∈ K. Then the Hahn–
Banach theorem and the cone property yield a linear functional ` ∈ C∗ζ
such that `(K) ⊆ R− and `(f) > 0. We will argue below that ` can be
represented by a finite signed measure π. Note that `(K) ⊆ R− and the
fact that K contains all functions of the form ϕ(X)− µ(ϕ) with ϕ ∈ Cb(R)
imply that `(ϕ(X)) = µ(ϕ) for all ϕ ∈ Cb(R); i.e., µ is the first marginal
of π, and similarly ν is the second marginal. Thus, π ∈ Π(µ, ν). Moreover, if
h ∈ Cb(R), then the function h(X)(Y −X) is in Cζ due to its linear growth,
and a scaling argument shows that `(h(X)(Y −X)) = 0. This implies that
π is a martingale transport; i.e., π ∈ M(µ, ν). But now π(f) = `(f) > 0
contradicts S(f) = 0, and we have shown that I(f) ≤ S(f).

It remains to argue that C∗ζ can be represented by finite signed measures.
Indeed, f 7→ f/ζ is an isomorphism of normed spaces from Cζ to the usual
space C0(R2) of continuous functions vanishing at infinity with the uniform
norm. By Riesz’ representation theorem, any continuous linear functional
on C0(R2) can be represented by a signed measure m, and hence any ` ∈ C∗ζ
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can be represented as `(f) = m(f/ζ). Using 1/ζ ∈ C0(R2) ⊆ L1(m) as a
Radon–Nikodym density, ` is thus represented by the finite signed measure
dm̄ = (1/ζ) dm.

(ii) Let f be bounded and upper semicontinuous, then there exist fn ∈
Cb(R2) ⊆ Cζ decreasing to f and we have S(fn) = I(fn) for all n by
part (i) of this proof. As S(fn) → S(f) by the decreasing continuity of S,
cf. Lemma 6.3, it remains to show that I(fn)→ I(f). Since f ≤ fn, we have
I(f) ≤ I(fn) for all n. On the other hand, (6.1) shows that

lim I(fn) = limS(fn) = S(f) ≤ I(f)

and this completes the proof.

Our last preparation for the proof of Theorem 6.2 is to show that I is
a capacity; again, this is a consequence of the closedness result in Proposi-
tion 5.2.

Lemma 6.5. The mapping I : [0,∞]R
2 → [0,∞] is a U-capacity.

Proof. As I = S on U by Lemma 6.4, Lemma 6.3 already shows that I
is sequentially continuous downwards on U . Let f, fn ∈ [0,∞]R

2 be such
that fn increases to f ; we need to show that I(fn) → I(f). It is clear
that I is monotone; in particular, I(f) ≥ lim sup I(fn), and I(fn) → I(f) if
supn I(fn) =∞.

Hence, we only need to show I(f) ≤ lim inf I(fn) under the condition that
supn I(fn) <∞. Indeed, by the definition of I(fn) there exist (ϕn, ψn, hn) ∈
Dc,pwµ,ν (fn) with

µ(ϕn) + ν(ψn) ≤ I(fn) + 1/n.

Proposition 5.2 then yields (ϕ,ψ, h) ∈ Dc,pwµ,ν (f) with

µ(ϕ) + ν(ψ) ≤ lim inf[I(fn) + 1/n],

showing that I(f) ≤ lim inf I(fn) as desired.

We can now deduce the main result of this section.

Proof of Theorem 6.2. (i) In view of Lemma 6.3, Choquet’s capacitability
theorem shows that

S(f) = sup{S(g) : g ∈ U , g ≤ f}, f ∈ USA+ .

By Lemma 6.5, the same approximation formula holds for I, and as S = I
on U by Lemma 6.4, it follows that S = I on USA+.

(ii) To see that the infimum is attained when it is finite, it suffices to
apply Proposition 5.2 with the constant sequence fn = f .

25



7 Main Results

7.1 Duality

Let µ ≤c ν be probability measures in convex order and let f : R2 → [0,∞]
be a Borel function. We continue to denote the primal problem by

Sµ,ν(f) := sup
P∈M(µ,ν)

P (f),

as in the irreducible case. Some more notation needs to be introduced for
the dual problem. Let us first recall from Proposition 2.3 the decompositions

µ =
∑
k≥0

µk, ν =
∑
k≥0

νk,

where µk ≤c νk is irreducible with domain (Ik, Jk) for k ≥ 1 and µ0 = ν0.
Moreover, P0 denotes the unique element ofM(µ0, ν0).

Let (ϕ,ψ, h) : R→ R×R×R be Borel. Since P0 is concentrated on the
diagonal ∆, we have

ϕ(X) + ψ(Y ) + h(X)(Y −X) = ϕ(X) + ψ(X) P0-a.s.;

that is, the function h plays no role and ϕ,ψ enter only through their sum. In
fact, the dual problem associated to (µ0, ν0) is trivially solved, for instance,
by setting ϕ(x) = f(x, x) and ψ = 0. There is no need to use integrability
modulo concave functions, but to simplify the notation below, we set

Lc(µ0, ν0) := {(ϕ,ψ) : ϕ+ ψ ∈ L1(µ0)}

and µ0(ϕ) + ν0(ψ) := µ0(ϕ+ψ) for (ϕ,ψ) ∈ Lc(µ0, ν0). Moreover, Dc,pwµ0,ν0(f)
is the set of all (ϕ,ψ, h) with (ϕ,ψ) ∈ Lc(µ0, ν0) and

ϕ(x) + ψ(x) ≥ f(x, x), x ∈ I0.

Finally, it will be convenient to define Sµ0,ν0(f) := P0(f) ≡ µ0(f(X,X)).
We can now introduce the domain for the dual problem on the whole real

line.

Definition 7.1. Let Lc(µ, ν) be the set of all Borel functions ϕ,ψ : R→ R
such that (ϕ,ψ) ∈ Lc(µk, νk) for all k ≥ 0 and∑

k≥0

|µk(ϕ) + νk(ψ)| <∞.
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For (ϕ,ψ) ∈ Lc(µ, ν), we define

µ(ϕ) + ν(ψ) :=
∑
k≥0

{µk(ϕ) + νk(ψ)} <∞,

and Dcµ,ν(f) is the set of all Borel functions (ϕ,ψ, h) : R→ R× R× R such
that (ϕ,ψ) ∈ Lc(µ, ν) and

ϕ(X) + ψ(Y ) + h(X)(Y −X) ≥ f(X,Y ) M(µ, ν)-q.s.

Finally,
Iµ,ν(f) := inf

(ϕ,ψ,h)∈Dcµ,ν(f)
{µ(ϕ) + ν(ψ)} ∈ [0,∞].

We emphasize that the dual domain Dcµ,ν(f) is now defined in the quasi-
sure sense. Before making precise the correspondence with the individual
components, let us recall that the intervals Jk may overlap at their endpoints,
so we have to avoid counting certain things twice. Indeed, let (ϕk, ψk, hk) ∈
Dc,pwµk,νk(f). If Jk contains one of its endpoints, it is an atom of ν and hence ψk
is finite on Jk \ Ik. Translating ψk by an affine function and shifting ϕk and
hk accordingly, cf. (5.1), we can thus normalize (ϕk, ψk, hk) such that

ψk = 0 on Jk \ Ik. (7.1)

On the strength of our analysis of theM(µ, ν)-polar sets, the dual domain
can be decomposed as follows.

Lemma 7.2. Let f : R2 → [0,∞] be Borel, let µ ≤c ν and let µk, νk be as
in Proposition 2.3.

(i) Let (ϕk, ψk, hk) ∈ Dc,pwµk,νk(f) for k ≥ 1, normalized as in (7.1), and let
ϕ0(x) = f(x, x) and ψ0 = 0. If

∑
k≥0{µ(ϕk) + ν(ψk)} <∞, then

ϕ :=
∑
k≥0

ϕk1Ik , ψ :=
∑
k≥1

ψk1Jk , h :=
∑
k≥1

hk1Ik

satisfies (ϕ,ψ, h) ∈ Dcµ,ν(f) and µ(ϕ) + ν(ψ) =
∑

k≥0 µk(ϕk) + νk(ψk).

(ii) Conversely, let (ϕ,ψ, h) ∈ Dcµ,ν(f). After changing ϕ on a µ-nullset
and ψ on a ν-nullset, we have (ϕ,ψ, h) ∈ Dc,pwµk,νk(f) for k ≥ 0 and∑

k≥0

{µk(ϕ) + νk(ψ)} = µ(ϕ) + ν(ψ) <∞.
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Proof. In essence, this is a direct consequence of Proposition 2.3 and Theo-
rem 3.2. For (i), we note that µ(ϕk) + ν(ψk) ≥ 0 for all k, so that the sum
is always well defined. Regarding (ii), let B be the polar set of all (x, y)
such that ϕ(x) +ψ(y) + h(x)(y− x) < f(x, y); note that B is Borel because
all these functions are Borel. Then for each k ≥ 1, the set B ∩ (Ik × Jk) is
contained in a union (Nk

µ × R) ∪ (R × Nk
ν ), where Nk

µ is µ-null and Nk
ν is

ν-null. We then set ϕ =∞ on ∪k≥1N
k
ν as well as on the µ0-nullset B ∩∆0.

Proceeding analogously with ψ, we obtain the desired properties.

Remark 7.3. (i) Suppose that µ ≤c ν is irreducible. Then, Lemma 7.2
implies that the pointwise and the quasi-sure formulation of the dual problem
agree:

Ipwµ,ν(f) = Iµ,ν(f)

if f = 0 outside the domain (I, J), and otherwise the difference is P0(f) due
to our definitions. Without the irreducibility condition, the formulations
may differ fundamentally; cf. Example 8.1.

(ii) As a sanity check on our definitions, we note that

µ(ϕ) + ν(ψ) = P [ϕ(X) + ψ(Y ) + h(X)(Y −X)], P ∈M(µ, ν)

whenever (ϕ,ψ, h) ∈ Dcµ,ν(f) for some f ≥ 0, as a consequence of Lemma 7.2
and Remark 4.10.

We can now state our main duality result.

Theorem 7.4. Let f : R2 → [0,∞] be Borel and let µ ≤c ν. Then

Sµ,ν(f) = Iµ,ν(f) ∈ [0,∞].

If Iµ,ν(f) <∞, there exists an optimizer (ϕ,ψ, h) ∈ Dcµ,ν(f) for Iµ,ν(f).

Proof. We first show that Sµ,ν(f) ≤ Iµ,ν(f). To this end, we may as-
sume that Iµ,ν(f) < ∞, so that there exists some (ϕ,ψ, h) ∈ Dcµ,ν(f). By
Lemma 7.2, this induces (ϕ,ψ, h) ∈ Dc,pwµk,νk(f), and so the duality result of
Theorem 6.2 yields that

Sµ,ν(f) ≤
∑
k≥0

Sµk,νk(f) ≤
∑
k≥0

{µk(ϕ) + νk(ψ)} = µ(ϕ) + ν(ψ) <∞.

The claim follows as (ϕ,ψ, h) ∈ Dcµ,ν(f) was arbitrary.
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Next, we prove that Sµ,ν(f) ≥ Iµ,ν(f), for which we may assume that
Sµ,ν(f) < ∞. Then Sµk,νk(f) < ∞ for all k ≥ 0 and by Theorem 6.2 there
exist (ϕk, ψk, hk) ∈ Dc,pwµk,νk(f) such that

Sµ,ν(f) =
∑
k≥0

Sµk,νk(f) =
∑
k≥0

{µk(ϕk) + νk(ψk)}.

With the induced (ϕ,ψ, h) ∈ Dcµ,ν(f) as in Lemma 7.2, it follows that

Sµ,ν(f) = µ(ϕ) + ν(ψ) ≥ Iµ,ν(f) ≥ Sµ,ν(f),

which shows both the claimed inequality and that (ϕ,ψ, h) ∈ Dcµ,ν(f) is
optimal for Iµ,ν(f).

Some remarks on the main result are in order.

Remark 7.5. The lower bound on f in Theorem 7.4 can easily be relaxed.
Indeed, let f : R2 → R be Borel and suppose there exist Borel functions
(ϕ,ψ, h) : R→ R× R× R such that ϕ ∈ L1(µ), ψ ∈ L1(ν) and

f(X,Y ) ≥ ϕ(X) + ψ(Y ) + h(X)(Y −X) M(µ, ν)-q.s.

Then, we may apply Theorem 7.4 to

f̄ := [f(X,Y )− ϕ(X)− ψ(Y )− h(X)(Y −X)]+

and the conclusion for f follows, except that now Sµ,ν(f) = Iµ,ν(f) has values
in (−∞,∞]. However, the lower bound cannot be eliminated completely; cf.
Example 8.6

We recall that in general, the duality theorem can only hold with a re-
laxed notion of integrability; cf. Examples 8.4 and 8.5. We have the following
sufficient condition for integrability in the classical sense.

Remark 7.6. Suppose that for each k ≥ 1, either µk is supported on a
compact subset of Ik or

uνk − uδmk ≤ Ck(uνk − uµk)

for some constant Ck, where mk is the barycenter of µk. Then,

Dcµk,νk(f) = D1
µk,νk

(f), k ≥ 1

and in particular the optimizer in Theorem 7.4 satisfies ϕ ∈ L1(µ) and
ψ ∈ L1(ν). Indeed, Remark 4.3 shows that all concave moderators can be
chosen as χ = 0 in this situation.
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Remark 7.7. In the setting of Theorem 7.4 and the notation of Proposi-
tion 2.3 and Lemma 7.2, the following relations hold.

(i) We have Sµ,ν(f) =
∑

k≥0 Sµk,νk(f) and Iµ,ν(f) =
∑

k≥0 Iµk,νk(f).

(ii) If Pk ∈ M(µk, νk) is optimal for Sµk,νk(f) for all k ≥ 0, then P ∈
M(µ, ν) is optimal for Sµ,ν(f). If Sµ,ν(f) <∞, the converse holds as
well: if P ∈ M(µ, ν) is optimal for Sµ,ν(f), then Pk ∈ M(µk, νk) is
optimal for Sµk,νk(f) for all k ≥ 0.

(iii) If (ϕk, ψk, hk) ∈ Dcµk,νk(f) is optimal for Iµk,νk(f) for all k ≥ 0, then
(ϕ,ψ, h) ∈ Dcµ,ν(f) is optimal for Iµ,ν(f). If Iµ,ν(f) <∞, the converse
holds as well.

7.2 Monotonicity Principle

An important consequence of the duality is the subsequent monotonicity
principle describing the support of optimal transports; its second part can
be seen as a substitute for the cyclical monotonicity from classical transport
theory. While similar results have been obtained in [7, Lemma 1.11] and
[43, Theorem 3.6], the present version is stronger in several ways. First, it is
stated with a set Γ that is universal; i.e., independent of the measure under
consideration; second, we remove growth and integrability conditions on f ;
and third, the reward function is measurable rather than continuous.

Corollary 7.8 (Monotonicity Principle). Let f : R2 → [0,∞] be Borel, let
µ ≤c ν be probability measures and suppose that Sµ,ν(f) < ∞. There exists
a Borel set Γ ⊆ R2 with the following properties.

(i) A measure P ∈M(µ, ν) is concentrated on Γ if and only if it is optimal
for Sµ,ν(f).

(ii) Let µ̄ ≤c ν̄ be probabilities on R. If P̄ ∈M(µ̄, ν̄) is concentrated on Γ,
then P̄ is optimal for Sµ̄,ν̄(f).

If (ϕ,ψ, h) ∈ Dcµ,ν(f) is a suitable3 version of the optimizer from Theo-
rem 7.4, then we can take the following set for Γ,

{
(x, y) ∈ R2 : ϕ(x) + ψ(y) + h(x)(y − x) = f(x, y)

}
∩
(

∆ ∪
⋃
k≥1

Ik × Jk
)
.

3chosen as in Lemma 7.2 (ii)
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Proof. As Iµ,ν(f) = Sµ,ν(f) < ∞, Theorem 7.4 yields a dual optimizer
(ϕ,ψ, h) ∈ Dcµ,ν(f) and we can define Γ as above. By Remark 4.10,

P ′(f) ≤ P ′[ϕ(X) + ψ(Y ) + h(X)(Y −X)] = µ(ϕ) + ν(ψ) (7.2)

for all P ′ ∈ M(µ, ν), whereas for P ∈ M(µ, ν) with P (Γ) = 1, the same
holds with equality. This shows that P (f) = Sµ,ν(f). For the converse
in (i), we observe that the inequality in (7.2) is strict if P ′(Γ) < 1, and then
Sµ,ν(f) = µ(ϕ) + ν(ψ) shows that P ′ cannot be a maximizer.

For the proof of (ii), we choose a version of (ϕ,ψ, h) ∈ Dcµ,ν(f) as in
Lemma 7.2 (ii); moreover, we may assume that P̄ (f) < ∞. We shall show
that (ϕ,ψ, h) ∈ Dcµ̄,ν̄(f); once this is established, the proof of optimality is
the same as above.

(a) On the one hand, we need to show that

ϕ(X) + ψ(Y ) + h(X)(Y −X) ≥ f(X,Y ) M(µ̄, ν̄)-q.s. (7.3)

For this, it suffices to prove that the domains of the irreducible components
of µ̄ ≤c ν̄ are subsets of the ones of µ ≤c ν; i.e., that uµ(x) = uν(x) implies
uµ̄(x) = uν̄(x), for any x ∈ R. Indeed, let uµ(x) = uν(x). Since P̄ is
concentrated on Γ ⊆ ∆ ∪

⋃
k≥1 Ik × Jk, we know that Y ≥ x P̄ -a.s. on the

set {X ≥ x}. Writing E[ · ] for the expectation under P̄ , it follows that

E[|X − x|1X≥x] = E[(X − x)1X≥x] = E[(Y − x)1X≥x] = E[|Y − x|1X≥x],

where we have used that E[Y |X] = X P̄ -a.s. An analogous identity holds
for {X ≤ x}, and thus

uµ̄(x) = E[|X − x|] = E[|Y − x|] = uν̄(x)

as desired.
(b) On the other hand, we need to show that (ϕ,ψ) ∈ Lc(µ̄, ν̄). By reduc-

ing to the components, we may assume without loss of generality that (µ̄, ν̄)
is irreducible with domain (I, J). As (ϕ,ψ, h) ∈ Dc,pwµ,ν (f) and P̄ (Γ) = 1, we
have P̄ [ϕ(X) + ψ(Y ) + h(X)(Y − X)] = P̄ (f) < ∞, and now Remark 5.4
implies that (ϕ,ψ) ∈ Lc(µ̄, ν̄) as desired.

We note that the dual optimizer (ϕ,ψ, h) need not be unique, and a
different choice may lead to a different set Γ. Moreover, we observe that an
optimal P ∈ M(µ, ν) need not exist. However, the following yields a fairly
general sufficient criterion in the spirit of [9].
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Remark 7.9. Let f : R2 → [0,∞] be Borel, let µ ≤c ν be probability
measures and suppose that Sµ,ν(f) < ∞. Suppose there exist a Polish
topology τ on R and a function f̄ : R2 → [0,∞] such that f̄ is upper
semicontinuous for τ ⊗ τ and f̄ = f M(µ, ν)-q.s. Then, there exists an
optimal P ∈M(µ, ν) for Sµ,ν(f).

Indeed, the induced weak topology onM(µ, ν) does not depend on the
choice of τ ; cf. [9, Lemma 2.3]. Thus, under the stated conditions, the
mapping P 7→ P (f) is upper semicontinuous on the compact set M(µ, ν),
and the result follows. We remark that compactness need not hold if non-
product topologies are considered on R2, hence the use of τ ⊗ τ .

The flexibility of choosing τ allows us to include a broad class of functions.
Consider for instance f of the product form f(x, y) = f1(x)f2(y), where f1

and f2 are Borel measurable, or more generally any continuous function of
f1(x) and f2(y). Then, we can choose τ such as to make f continuous (cf.
the proof of [9, Theorem 1]) and the above applies.

Remark 7.10. Corollary 7.8 is a version of the classical “Fundamental The-
orem of Optimal Transport,” see e.g. [2, Theorem 2.13], where Γ is the graph
of the c-superdifferential of a c-concave function, the so-called Kantorovich
potential (here c = −f is the cost function). In our context, the roles of ϕ
and ψ are not symmetric, and it is ψ that constitutes the analogue of the
Kantorovich potential. Indeed, ϕ and h can easily be obtained from ψ by
taking a concave envelope and its derivative, respectively; see the end of the
proof of Proposition 5.2.

8 Counterexamples

In this section, we present five counterexamples. Examples 8.1 and 8.2 show
that the duality theory fails in the pointwise formulation; i.e.,

ϕ(x) + ψ(y) + h(x)(y − x) ≥ f(x, y) for all (x, y) ∈ R2,

and thus justify our quasi-sure approach. The subsequent two examples
demonstrate that a relaxed notion of integrability is necessary for the dual
elements, and the final example shows that duality fails if f does not have
any lower bound.

Our first example shows that a duality gap may occur with the pointwise
formulation of the dual problem.
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Example 8.1 (Duality Gap in Pointwise Formulation). We exhibit a situa-
tion where

(i) the reward function f is bounded;

(ii) a primal optimizer exists;

(iii) if the dual problem is formulated in the pointwise sense, dual optimizers
exist but there is a duality gap.

Indeed, let µ be the restriction of the Lebesgue measure λ to [0, 1]. Setting
ν = µ, the setM(µ, ν) has a unique element, the law P0 of x 7→ (x, x) under
µ, which is nothing but the uniform distribution on the diagonal of the unit
square [0, 1]2. Consider the bounded reward function f(x, y) := 1x 6=y which
is lower (but not upper) semicontinuous. Since P0 is concentrated on the
diagonal, the primal value of the problem is

sup
P∈M(µ,ν)

EP [f ] = EP0 [f ] = 0.

Now let ϕ,ψ, h be Borel functions such that

ϕ(x) + ψ(y) + h(x)(y − x) ≥ f(x, y) for all x, y ∈ [0, 1];

then in particular

ϕ(x) + ψ(y) + h(x)(y − x) ≥ 1 for all x 6= y ∈ [0, 1];

Let ε > 0. By Lusin’s theorem, there exists a Borel set A ⊆ [0, 1] with
λ(A) > 1− ε such that the restriction ψ|A is continuous. Using another fact
from measure theory [12, Exercise 1.12.63, p. 85], the set A can be chosen to
be perfect; i.e., every point in A is a limit point of A. Now let x ∈ A and let
xn ∈ A be a sequence of distinct points such that xn → x. Then passing to
the limit in

ϕ(x) + ψ(xn) + h(x)(xn − x) ≥ 1

yields that
ϕ(x) + ψ(x) ≥ 1 for all x ∈ A.

As ε > 0 was arbitrary, it follows that λ{x ∈ [0, 1] : ϕ(x) + ψ(x) ≥ 1} = 1.
In particular, µ(ϕ) + ν(ψ) ≥ 1. This bound is attained, for instance, by
the triplet ϕ = 1, ψ = 0, h = 0, so that the dual problem in the pointwise
formulation admits an optimizer and has value 1; in particular, there is a
duality gap in the pointwise formulation.
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The next example shows that in general, the pointwise formulation fails
to admit a dual optimizer. Such an example was already presented in [5],
using marginals with infinitely many irreducible components. The subse-
quence example shows that existence may fail even with finitely many (two)
components and in a reasonably generic setting.

Example 8.2 (No Dual Attainment in the Pointwise Formulation). We
describe a setting where

(i) the reward function is continuous and the marginals are compactly
supported (but not irreducible);

(ii) there is no duality gap for either formulation of the dual problem;

(iii) there is no optimizer for the pointwise formulation of the dual problem.

We fix two measures µ ≤c ν supported on (−1, 1) such that there are two
irreducible components with domains I1×J1 = (−1, 0)2 and I2×J2 = (0, 1)2.
Moreover, we assume that the origin is in the (topological) supports of µ and
ν; for instance, µ and ν could both be equivalent to the Lebesgue measure
on (−1, 1), or they could be discrete with atoms accumulating at the origin.
The reward function f is any continuous function of linear growth such that

f = 0 on (−1, 0)2 ∪ (0, 1)2 and

f is not (µ× ν)-a.s. bounded from above by a linear function on
(−1, 0)× (0, 1).

An example is f(x, y) =
√
|xy|1(−1,0)×(0,1).

Suppose for contradiction that (ϕ,ψ, h) is a dual minimizer for the point-
wise formulation; then

ϕ(x) + ψ(y) + h(x)(y − x) ≥ 0, (x, y) ∈ (−1, 0)2 ∪ (0, 1)2.

We have Sµ,ν(f) = 0 and as f is continuous with linear growth, there is no
duality gap (even for the pointwise formulation); cf. [5, Corollary 1.1]. It
follows that P [ϕ(X) + ψ(Y ) + h(X)(Y −X)] = 0 for all P ∈ M(µ, ν) and
thus

ϕ(X) + ψ(Y ) + h(X)(Y −X) = 0 M(µ, ν)-q.s.

Let Nµ and Nν be the corresponding nullsets as in Theorem 3.2 and write
Iµ for I \Nµ whenever I is an interval. Then

ϕ(x)+ψ(y)+h(x)(y−x) = 0, (x, y) ∈ [(−1, 0)µ×(−1, 0)ν ]∪ [(0, 1)µ×(0, 1)ν ]
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and in particular, fixing an arbitrary x0 ∈ (0, 1)µ yields

ψ(y) = −ϕ(x0)− h(x0)(y − x0), y ∈ (0, 1)ν ,

so that ψ must be an affine function ψ(y) = a+y + d+ on (0, 1)ν . It then
follows that h = −a+ on (0, 1)µ and ϕ(x) = −a+x − d+ on (0, 1)µ, and a
similar argument gives rise to constants a−, d− for (−1, 0). Now, spelling
out the condition

ϕ(x) + ψ(y) + h(x)(y − x) ≥ f(x, y)

yields

(a− − a+)y + (d− − d+) ≥ f(x, y), (x, y) ∈ (0, 1)µ × (−1, 0)ν ,

(a+ − a−)y + (d+ − d−) ≥ f(x, y), (x, y) ∈ (−1, 0)µ × (0, 1)ν .

Since f(0, 0) = 0 and 0 is an accumulation point of the intervals appearing
on the right-hand side, it follows that d− = d+, but then it follows that f is
(µ × ν)-a.s. bounded from above by a linear function on (−1, 0)µ × (0, 1)ν ,
and all the same for (0, 1)µ × (−1, 0)ν . This is the desired contradiction.

Remark 8.3. Nothing essential changes in Example 8.2 if ν has one or more
atoms at the boundary of the intervals Ik. As a matter of fact, the example
suggests that one can expect non-existence for the pointwise formulation as
soon as there are at least two adjacent irreducible components, the reward
function is not Lipschitz where they touch, and the marginals exhibit some
richness (in particular, have infinite support).

The next two examples concern the quasi-sure version of the dual prob-
lem; i.e., the setting of the main part of the present paper, and in particular
the notion of integral introduced in Section 4. The first one shows that it is
necessary to relax the notion of integrability in order to have existence for
the dual problem Iµ,ν .

Example 8.4 (Failure of Integrability for Optimizers). We exhibit a situa-
tion where

(i) the reward function f is bounded;

(ii) primal and dual optimizers exist and there is no duality gap;

(iii) whenever (ϕ,ψ, h) ∈ Dcµ,ν(f) is a dual optimizer, ϕ is not µ-integrable
and ψ is not ν-integrable.
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Indeed, let (ci)i≥1 be a sequence of strictly positive numbers satisfying∑
i ci = 1 such that the probability measure

µ :=
∑
i≥1

ciδi

has finite first moment but infinite second moment. Moreover, set

ν :=
1

3

∑
i≥1

ci(δi−1 + δi + δi+1)

and note that the moments of ν then have the same property. Finally, our
reward function is given by f(x, y) = 1x 6=y.

We observe that

P :=
∑
i≥1

ci δi ⊗
1

3
(δi−1 + δi + δi+1) ∈M(µ, ν);

in particular, µ ≤c ν. Moreover, let ϕ(x) = −x2, ψ(y) = y2 and h(x) = −2x;
then we have

ϕ(x) + ψ(y) + h(x)(y − x) = −x2 + y2 − 2x(y − x) = (x− y)2 ≥ f(x, y)

for all (x, y) ∈ N× N0, with equality holding on the set

Γ :=
{

(x, y) ∈ N× N0 : y ∈ {x− 1, x, x+ 1}
}
.

Since P is concentrated on Γ, it follows as in Corollary 7.8 that P ∈M(µ, ν)
is a primal optimizer and (ϕ,ψ, h) ∈ Dcµ,ν(f) is a dual optimizer. One can
observe that a concave moderator is given by χ(y) = −y2.

Now let (ϕ,ψ, h) ∈ Dcµ,ν(f) be an arbitrary optimizer; then we must have

ϕ(x) + ψ(y) + h(x)(y − x) = f(x, y) P -a.s.

and hence, by the definition of P , this equality holds for all (x, y) ∈ Γ. It
follows that

for all x ∈ N,


ϕ(x) + ψ(x− 1)− h(x) = 1,

ϕ(x) + ψ(x+ 1) + h(x) = 1,

ϕ(x) + ψ(x) = 0.

In particular, ϕ = −ψ on N and

2ϕ(x)− ϕ(x− 1)− ϕ(x+ 1) = 2, x ∈ N.
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All solutions of this difference equation satisfy

ϕ(x) = −x2 + bx+ c, x ∈ N,

for some constants b, c ∈ R. In particular, ϕ− is not µ-integrable and ψ+ is
not ν-integrable, and as a result, there exists no optimizer for Iµ,ν(f) in the
class D1

µ,ν(f) ⊂ Dcµ,ν(f).

The next example shows that without a relaxed notion of integrability,
the dual problem may be infinite even if the primal problem Sµ,ν is finite.

Example 8.5 (Integrability Requirement Causes Duality Gap). We exhibit
a situation where

(i) the reward function f is continuous;

(ii) primal and dual problem are finite;

(iii) the set D1
µ,ν(f) is empty; in particular, there is a duality gap if Dcµ,ν(f)

is replaced by D1
µ,ν(f) in the definition of the dual problem Iµ,ν .

Let µ ≤c ν be as in Example 8.4; we now make the specific choice

ci = i−3C, i ∈ N,

where C is the normalizing constant. This ensures that µ and ν have a first
but no second moment. Moreover, the strict concavity of i 7→ i−3 implies
that

µ({i}) > ν({i}), i ∈ N.

The associated potential functions satisfy uµ = uν on (−∞, 0]. If there were
x > 0 with uµ(x) = uν(x), then as µ is the second (distributional) derivative
of uµ/2, we would have ν({x}) > µ({x}), a contradiction. As a result,

µ ≤c ν is irreducible with domain (I, J) given by I = (0,∞), J = [0,∞).

For the reward function, we now consider

f(x, y) = (x− y)2.

As seen in in Example 8.4, setting ϕ(x) = −x2, ψ(y) = y2 and h(x) = −2x
yields (ϕ,ψ, h) ∈ Dcµ,ν(f) with concave moderator χ(y) = −y2; in fact,
µ(ϕ) + ν(ψ) = P (1x 6=y) ≤ 1 in the notation of Example 8.4, and thus
Sµ,ν(f) ≤ 1.
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Suppose that there exists some (ϕ,ψ, h) ∈ D1
µ,ν(f). Since µ ≤c ν is

irreducible, Corollary 3.4 shows that every point in N × N0 is charged by
some element ofM(µ, ν) and hence

ϕ(x)+ψ(y)+h(x)(y−x) ≥ f(x, y) = x2 +y2−2xy for all (x, y) ∈ N×N0.

We see that ψ must have at least quadratic growth in y, and thus ψ /∈ L1(ν)
and ϕ /∈ L1(ν). As a result, D1

µ,ν(f) = ∅ and the corresponding dual problem
has infinite value, whereas the primal one satisfies 0 ≤ Sµ,ν(f) ≤ 1.

Our last example shows that a duality gap may occur (even in the quasi-
sure formulation) if f does not have any lower bound. This should be com-
pared with [5, Theorem 1] which shows that there is no duality gap if f is
upper semicontinuous with values in [−∞,∞).

Example 8.6 (Duality Gap Without Lower Bound). We exhibit a situation
where

(i) the reward function f takes values in [−∞, 0];

(ii) primal and dual optimizers exist;

(iii) there is a duality gap.

Indeed, let µ = λ|[0,1] be the restriction of the Lebesgue measure to [0, 1],
fix a constant ∆ > 0 and

ν =
1

2

(
λ|[−∆,1−∆] + λ|[∆,1+∆]

)
.

Then µ ≤c ν is irreducible with domain given by I = J = (−∆, 1 + ∆).
Indeed, a particular element ofM(µ, ν) is given by P = µ⊗ κ, where

κ(x) =
1

2

(
δx−∆ + δx+∆

)
.

For the reward function, we choose

f(x, y) =


0 if |x− y| < ∆,

−1 if |x− y| = ∆,

−∞ if |x− y| > ∆.

We first analyze the primal problem. Let P ′ ∈M(µ, ν) and let P ′ = µ⊗κ′
be a disintegration. We observe that∫

(x− y)2 κ′(x, dy)µ(dx) = Var(ν)−Var(µ) = ∆2.
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If P ′(f) > −∞, then κ′(x){|x − y| > ∆} = 0 for µ-a.e. x and the above
implies that |x − Y | = ∆ for µ-a.e. x and therefore P ′ = P . As a result,
P ′(f) = −∞ for all P 6= P ′ ∈M(µ, ν) and

sup
P ′∈M(µ,ν)

EP
′
[f ] = EP [f ] = −1.

We now turn to the dual problem; since µ ≤c ν is irreducible, the quasi-
sure formulation is equivalent to the pointwise one. Let ϕ,ψ, h be Borel
functions such that

ϕ(x) + ψ(y) + h(x)(y − x) ≥ f(x, y) for all (x, y) ∈ I × J ;

then in particular

ϕ(x) + ψ(x+ δ) + h(x)δ ≥ 0 for all x ∈ (0, 1), δ ∈ [0,∆),

ϕ(x) + ψ(x− δ)− h(x)δ ≥ 0 for all x ∈ (0, 1), δ ∈ [0,∆).

Adding these two inequalities yields

ϕ(x) +
ψ(x− δ) + ψ(x+ δ)

2
≥ 0 for all x ∈ (0, 1), δ ∈ [0,∆).

Let ε > 0. As in Example 8.1, Lusin’s theorem can be used to find a set
A ⊆ (0, 1) with λ(A) > 1− ε such that for all x ∈ A there exists a sequence
δn = δn(x) with ψ(x ± δn) → ψ(x ± ∆). Thus, passing to the limit in the
above inequality shows that

ϕ(x) +
ψ(x−∆) + ψ(x+ ∆)

2
≥ 0 for all x ∈ A,

and as ε > 0 was arbitrary, the inequality holds µ-a.e. But then

µ(ϕ)+ν(ψ) = P [ϕ(X)+ψ(Y )] =

∫
ϕ(x)+

ψ(x−∆) + ψ(x+ ∆)

2
µ(dx) ≥ 0.

As a result, the dual value is zero and a dual optimizer is given for instance
by ϕ = ψ = h = 0.
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