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Abstract

The optimal transport problem with quadratic regularization is use-
ful when sparse couplings are desired. The density of the optimal
coupling is described by two functions called potentials; equivalently,
potentials can be defined as a solution of the dual problem. We prove
the existence of potentials for a general square-integrable cost. Po-
tentials are not necessarily unique, a phenomenon directly related to
sparsity of the optimal support. For discrete problems, we describe
the family of all potentials based on the connected components of the
support, for a graph-theoretic notion of connectedness. On the other
hand, we show that continuous problems have unique potentials under
standard regularity assumptions, regardless of sparsity. Using poten-
tials, we prove that the optimal support is indeed sparse for small
regularization parameter in a continuous setting with quadratic cost,
which seems to be the first theoretical guarantee for sparsity in this
context.
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1 Introduction

We are concerned with quadratically regularized optimal transport; that is,

QOTε(µ, ν) := inf
π∈Π(µ,ν)

∫
X×Y

c(x, y)π(dx, dy) +
ε

2

∥∥∥∥ dπdP
∥∥∥∥2
L2(P )

(1.1)
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where µ, ν are given marginal distributions on separable spaces X,Y and
Π(µ, ν) denotes the set of their couplings. Moreover, P is a (product) refer-
ence measure for computing the density dπ/dP . The function c : X×Y → R
is a given “cost” and the regularization parameter ε > 0 controls the strength
of the regularization. Quadratic regularization is also called Euclidean or χ2

regularization. We shall prove for a general cost c ∈ L2(P ) that the unique
optimal coupling π∗ for (1.1) has a density of the form

dπ∗
dP

(x, y) =
(
f(x) + g(y)− c(x, y)/ε

)
+

(1.2)

for certain functions f : X → R and g : Y → R; cf. Theorem 2.2. These
functions are called potentials. They are also described as solutions to a
dual problem, but are in general non-unique. For discrete problems, non-
uniqueness is the typical case, and we shall describe the family of all poten-
tials (Theorem 3.5). Our description uses a decomposition of the support
of π∗ into “components” (for a certain notion of connectedness; cf. Defini-
tion 3.2). In particular, the multiplicity of the potentials is directly related
to sparsity of the support. For continuous and semi-discrete problems, the
situation is quite different: under standard regularity conditions we show
that the potentials are unique (up to an additive constant); cf. Theorem 3.7.
We use potentials to show that the support of πε is sparse for small ε > 0, in
the continuous setting with quadratic Euclidean cost c. Specifically, we show
that the support is contained in a neighborhood of the graph of Brenier’s
map (Theorem 4.1). To the best of our knowledge, this is the first theoretical
result on sparsity of continuous regularized transport.

Regularization has many purposes in optimal transport—to facilitate
computation, to obtain smoother couplings and dual potentials, to improve
sampling complexity, and others. Two regularizations are primarily used:
entropic regularization penalizes couplings by the Kullback–Leibler diver-
gence while quadratic regularization penalizes by the L2-norm of the density.
Entropic regularization (EOT) is the most frequent choice, as it allows for
Sinkhorn’s algorithm (e.g., [7, 28]) and has strong smoothness properties.
This smoothness is intimately linked to the full support property of the opti-
mal coupling, which can be a blessing or a curse (“overspreading”) depending
on the application. While for small values of the regularization parameter ε,
the actual weight of the EOT coupling might be quite small in large regions,
the issue is aggravated by a second issue of EOT: its computation is difficult
for small values of ε (e.g., [32]). By contrast, quadratic regularization is em-
pirically known to give rise to couplings with sparse support for a range of ε.
Moreover, as its computation does not involve logarithms and exponentials,

2



one can use regularization parameters that are several orders of magnitude
smaller than in EOT without running into issues with machine precision. For
those reasons, quadratic regularization is used in applications where sparsity
and/or weak regularization are desired.

Quadratically regularized optimal transport was first addressed by [2, 12]
in discrete settings. It is also a special case of optimal transport with convex
regularization [8]; see also the predecessors referenced in [12]. The formu-
lation of [2] is closer to ours; the authors present several experiments high-
lighting the sparsity of the optimal coupling and derive theoretical results
regarding duality and convergence as the regularization parameter ε tends to
zero. The authors further illustrate how entropic regularization can lead to
blurrier results in image processing tasks. In [12], quadratic regularization is
studied for a minimum-cost flow problem on a graph; this includes discrete
optimal transport as a particular case. The authors introduce a Newton-type
algorithm and discuss sparsity in several examples. In a continuous setting,
several works including [10, 16, 18, 19, 33] have applied optimization tech-
niques on the dual problem of regularized optimal transport. For instance,
[19] applies neural networks and gradient descent to compute regularized
Wasserstein barycenters. The authors compare entropic and quadratic regu-
larization and highlight that the entropic penalty produces a blurrier image
at the smallest computationally feasible regularization (ε = 10−2 for en-
tropic, ε = 10−5 for quadratic). Recently, [35] uses quadratically regularized
optimal transport in a manifold learning task related to single cell RNA se-
quencing; specifically, the optimal coupling is used to produce an adaptive
affinity matrix. In this context, sparsity is crucial to avoid bias—a full sup-
port coupling would introduce shortcuts through ambient space instead of
following the data manifold. In this application, the transport problem is
of “self-transport” type: the marginals µ = ν are identical and the cost c
is symmetric. In that situation we will show that the potentials f, g can
be chosen to be symmetric; i.e., f = g. While symmetry eliminates certain
degrees of freedom, we shall see that non-uniqueness can still occur.

The first work rigorously addressing a continuous setting is [21]. The au-
thors derive duality results and present two algorithms, a nonlinear Gauss–
Seidel method and a semismooth Newton method. The theoretical results
assume that the marginal spaces X,Y are compact subsets of Rd and that
the marginal distributions µ, ν are absolutely continuous with densities uni-
formly bounded away from zero. The reference measure P is taken to be
the Lebesgue measure. The authors apply weak* compactness in L1 to solve
the dual problem, and then this solution provides potentials. By contrast,
our approach is not of topological nature. It covers in a unified way dis-
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crete and continuous settings, and different reference measures P , avoiding
technical restrictions almost entirely. The paper [20] generalizes some of the
results of [21] to Orlicz space regularizations and shows Gamma convergence
as ε → 0 to the unregularized optimal transport problem. This conver-
gence is studied quantitatively in [11], where a rate of convergence is derived
based on quantization arguments, while [1] shows stability with respect to
the marginal distributions; both cover quadratic regularization as a special
case of more general f -divergences. The unpublished work [9] also consid-
ers optimal transport with regularization by an f -divergence, with quadratic
regularization being a special case. The authors emphasize the analogy to
c-convex conjugation in optimal transport (cf. the semi-smooth dual stud-
ied, e.g., in [2]) and use it to derive a priori estimates for the potentials. In
a setting with uniformly bounded cost c and P = µ ⊗ ν, these results are
leveraged to obtain existence of the potentials and convergence of the non-
linear Gauss–Seidel algorithm. The paper also states results regarding the
uniqueness of the potentials and differentiability of ν 7→ QOTε(µ, ν) which
however are flawed. Specifically, uniqueness is asserted in a general setting
including discrete problems, based on an assertion that the dual problem is
strictly concave. We emphasize that the dual problem (2.6) is not strictly
concave in the case of quadratic regularization (x 7→ −x2+ is constant on R−)
and uniqueness fails in simple situations such as µ = ν = 1

2(δ0 + δ1) with
c(x, y) = |x− y|2 and ε = 1/3 (see Example 3.1 for details). In cases where
uniqueness holds, it does so for very different reasons.

To the best of our knowledge, apart from the aforementioned, we are the
first to describe the multiplicity of the potentials; specifically, to describe
the family of all potentials in the discrete case and prove uniqueness in a
continuous (and semi-continuous) case. The connection between the family
of all potentials and “components” of the support also seems to be novel.
While sparsity of the support has been highlighted as an empirical finding,
Theorem 4.1 seems to be the first theoretical result in its direction. As
mentioned above, there is no analogue to this sparsity in EOT, where the
support of the optimal coupling always equals the support of µ⊗ ν.

For the existence of the potentials, we pursue a novel path inspired
by [13]: while the works cited above attack the dual problem, we leverage
the (straightforward) fact that the primal problem has a solution given by a
Hilbert space projection. To construct potentials, we introduce approximat-
ing problems with finitely many equality constraints instead of the marginal
constraints. Their solutions have the form (1.2) and converge to the optimal
density. To achieve the passage to the limit, we must show that a sequence
of functions fn(x)+ gn(y) converges to a limit of the form f(x)+ g(y). This
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problem is surprisingly subtle, but we can take advantage of insights found
in the context of Schrödinger bridges [14, 31]. This line of argument avoids
the conditions on the marginals and costs in previous approaches. It also
allows us to cover different reference measures P in a unified way. Once the
form (1.2) is obtained, the properties of the dual problem follow easily by
standard arguments.

The remainder of this paper is organized as follows. Section 2 states the
existence and duality results, and basic regularity properties of potentials. In
Section 3, we characterize the family of all potentials in the discrete case and
prove the uniqueness in the continuous case. Section 4 applies potentials to
prove sparsity in the setting of quadratic cost. Section 5 contains the proof
of the existence and duality result, while Section 6 proves the same result
for the self-transport problem; i.e., with potentials f = g.

2 Problem Formulation and Existence

Consider two Polish1 probability spaces (X,B(X), µ) and (Y,B(Y), ν). We
endow X × Y with the product σ-field and denote by Π(µ, ν) the set of
couplings of (µ, ν); that is, measures π on X×Y satisfying π(A×Y) = µ(A)
for A ∈ B(X) and π(X×B) = ν(B) for B ∈ B(Y). We also use the standard
notation (f ⊕ g)(x, y) := f(x)+ g(y) for functions f : X → R and g : Y → R,
and P(X) for the set of probability measures on X.

We further consider measures (µ̃, ν̃) ∈ P(X)×P(Y) satisfying µ ∼ µ̃ and
ν ∼ ν̃ (where ∼ denotes mutual absolute continuity) and

dµ

dµ̃
∈ L2(µ̃),

(
dµ

dµ̃

)−1

∈ L∞(µ̃),
dν

dν̃
∈ L2(ν̃),

(
dν

dν̃

)−1

∈ L∞(ν̃),

(2.1)

and denote their product

P := µ̃⊗ ν̃. (2.2)

Finally, we are given a cost function

c ∈ L2(P ) satisfying c ≥ c1 ⊕ c2

for some c1 ∈ L1(µ) ∩ L1(µ̃), c2 ∈ L1(ν) ∩ L1(ν̃);
(2.3)

1More generally, our results hold for all separable probability spaces; cf. Remark B.1.
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the lower bound ensures in particular that for any π ∈ Π(µ, ν), the integral∫
c dπ is well defined with values in (−∞,∞]. With this notation in place,

the quadratically regularized optimal transport problem (with ε = 1) is

inf
π∈Π(µ,ν)

∫
c dπ +

1

2

∥∥∥∥ dπdP
∥∥∥∥2
L2(P )

(2.4)

where (by convention) any coupling π ̸≪ P has infinite cost. The extension
to general regularization parameter ε > 0 is straightforward; see Remark 2.3.

Remark 2.1. (a) For the reference measure P in (2.2), our default is
(µ̃, ν̃) := (µ, ν). This choice leads to a meaningful problem (2.4) in discrete
and continuous settings, and a consistent scaling for discrete-to-continuous
limits. However, numerous works use other choices for µ̃, ν̃, especially uni-
form measures on a certain domain (usually discrete or in Rd). While the
choice of reference measure is often not highlighted in the literature, we
shall see that it can be quite crucial.2 For the entropic optimal transport
problem, it is known that changing the measures µ̃, ν̃ does not affect the
optimal coupling (e.g., [24]). That fact has no analogue for the present
problem. Consequently, we provide the results for general P . Example A.1
and Proposition A.2 show that the optimal coupling and even the optimal
support can depend on dµ

dµ̃ and dν
dν̃ , even for the straightforward cost c ≡ 0.

(b) The integrability condition on (dµdµ̃)
−1, (dνdν̃ )

−1 in (2.1) is used only to
obtain a convenient lower bound for potentials (Lemma 5.1). No condition
is needed for the existence results in Propositions 5.8 and 6.4.

(c) While our problem (2.4) makes sense if merely µ ≪ µ̃ and ν ≪ ν̃,
there is no real gain in generality for (2.4) from this weaker condition. Hence,
we use equivalent measures.

In view of the second term in (2.4), the minimization is equivalently
restricted to couplings with square-integrable density. Indeed, let

Z := {Z ∈ L2(P ) : Z dP ∈ Π(µ, ν)},

which is nonempty as it contains d(µ ⊗ ν)/dP due to (2.1). Then we can
rephrase (2.4) as

P := inf
Z∈Z

∫
cZ dP +

1

2
∥Z∥2L2(P ), (2.5)

2The function ot.stochastic.loss_dual_quadratic in the Python Optimal
Transport package follows [33] and assumes (µ̃, ν̃) = (µ, ν); see [29]. The function
OptimalTransport.quadreg in the OptimalTransport.jl package follows [21] and
assumes that µ̃, ν̃ are uniform; see [27].
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called the primal problem below. Note that P ∈ R due to (2.3) and the
Cauchy–Schwarz inequality. The dual problem is

D := sup
f∈L1(µ), g∈L1(ν)

∫
f dµ+

∫
g dν − 1

2

∫
(f ⊕ g − c)2+ dP. (2.6)

The two problems are in strong duality, and both admit optimizers.

Theorem 2.2. (i) Strong duality holds: P = D .

(ii) The primal problem (2.5) has a unique solution Z∗ ∈ Z given by the
L2(P )-projection Z∗ = argminZ∈Z ∥Z + c∥2L2(P ) of −c onto Z. In
particular, Z∗ is characterized by

⟨Z∗ + c, Z − Z∗⟩L2(P ) ≥ 0 for all Z ∈ Z.

The coupling π∗ ∈ Π(µ, ν) given by dπ∗ = Z∗ dP is the unique solution
of the regularized transport problem (2.4).

(iii) There exist measurable functions f : X → R and g : Y → R satisfying
the following conditions, and these conditions are equivalent:

(a) (f ⊕ g − c)+ is the density Z∗ ∈ Z of the optimal coupling π∗,

(b) (f ⊕ g − c)+ is the density of some coupling π ∈ Π(µ, ν),

(c) (f, g) ∈ L1(µ)× L1(ν) is a solution of the dual problem,

(d) (f, g) satisfies the system∫
X
(f(x) + g(y)− c(x, y))+ µ̃(dx) =

dν

dν̃
(y) for ν̃-a.e. y ∈ Y,

(2.7)∫
Y
(f(x) + g(y)− c(x, y))+ ν̃(dy) =

dµ

dµ̃
(x) for µ̃-a.e. x ∈ X.

(2.8)

Any such (f, g), necessarily in L1(µ)× L1(ν), are called potentials.

(iv) Suppose that (X, µ, µ̃) = (Y, ν, ν̃) and c(x, y) = c(y, x). Then the ex-
istence in (iii) also holds with the additional requirement that f = g,
and the dual problem (2.6) has the same value D if restricted to f = g.

For ease of reference, the following remark states the corresponding for-
mulas for general regularization parameter ε > 0.
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Remark 2.3 (General ε > 0). Often the regularized transport problem is
considered with a parameter ε > 0 for the quadratic penalty:

Pε = inf
π∈Π(µ,ν)

∫
c dπ +

ε

2
∥dπ/dP∥2L2(P ).

Note that Pε = εP(c̄) if P(c̄) is the primal problem (2.5) for the cost
c̄ = c/ε. The corresponding dual is

Dε = sup
f∈L1(µ), g∈L1(ν)

ε

∫
f dµ+ ε

∫
g dν − ε

2

∫
(f ⊕ g − c/ε)2+ dP (2.9)

and the optimal density then takes the form Zε = (f ⊕ g − c/ε)2+ for the
optimizers (f, g) of (2.9). In situations where ε is varied, it is often convenient
to consider the rescaled potentials (fε, gε) := (εf, εg). After this change of
variables, the dual problem reads

Dε = sup
f∈L1(µ), g∈L1(ν)

∫
f dµ+

∫
g dν − ε

2

∫ (
f ⊕ g − c

ε

)2

+

dP (2.10)

and the optimal density takes the form

Zε =

(
fε ⊕ gε − c

ε

)
+

for the optimizers (fε, gε) of (2.10). The rescaled potentials incorporate the
correct scaling in particular for the limit ε → 0.

For brevity, and without loss of generality, we use ε = 1 in the remainder
of the paper, except in Section 4 where we consider the limit ε → 0.

The proof of Theorem 2.2 consists of two parts. The main part is to prove
(iii)(a); i.e., that the optimal density Z∗ is of the form (f⊕g−c)+. The other
assertions in (i)–(iii) follow from that fact and elementary arguments. To
show the main part, we construct approximating problems whose solutions
have the form (fn ⊕ gn − c)+ and converge to the optimal density Z∗ as
n → ∞. Then, we argue that fn ⊕ gn converges to a function f ⊕ g on a
sufficiently large set. The details of the proof are deferred to Section 5. In
the symmetric setting of self-transport assumed in (iv), the construction of
Section 5 generally yields potentials f ̸= g. Section 6 presents a more refined
construction guaranteeing f = g.

As we want to use (d) in the derivation below, let us observe that the
equivalence of (b) and (d) in Theorem 2.2 is straightforward and independent
of all other claims.

8



Proof of (b)⇔(d). The left-hand side in (2.7) is the formula for the density
of the second marginal of the measure dπ := (f ⊕ g − c)+ dP wrt. ν̃. If
π ∈ Π(µ, ν), the second marginal is ν, giving the right-hand side. Similarly
for (2.8). Conversely, if the marginal densities equal (dµ/dµ̃, dν/dν̃), then π
is a coupling.

In the remainder of this section we gather some properties of potentials
to be used in Section 3. (Additional bounds and integrability properties are
stated in Section 5.2.) Let (f, g) be potentials. By (2.8), there is a set X0 of
full µ̃-measure such that for x ∈ X0,

Fx(t) :=

∫
Y
(t+ g(y)− c(x, y))+ ν̃(dy) =

dµ

dµ̃
(x) for t = f(x). (2.11)

As c ∈ L2(P ) and µ ∼ µ̃, we may further choose X0 such that c(x, ·) ∈ L1(ν̃)
and dµ

dµ̃(x) > 0 for x ∈ X0. We observe that for all x ∈ X0, the function
t 7→ Fx(t) is continuous, nondecreasing, strictly increasing on the set where
is it positive, limt→−∞ = 0 and limt→∞ = ∞. For x ∈ X0, we conclude that
there exists a unique t with Fx(t) =

dµ
dµ̃(x). In particular, the value of f(x)

is uniquely determined by g and c(x, ·), µ-a.s. We record this fact for ease
of reference.

Lemma 2.4. One potential uniquely determines the other: if (f, g) and
(f ′, g) are potentials, then f = f ′ µ-a.s.

More generally, gc(x) := {t : Fx(t) = dµ
dµ̃(x)} yields a version of the

potential f that is defined everywhere on X0. In fact, we can choose versions
of c and dµ/dµ̃ such that X0 = X, and then gc is defined everywhere on X.
Following standard arguments in optimal transport, we may think of gc as
a conjugate of f . This point of view was emphasized in [9] to show how
potentials inherit properties from the cost function. Specifically, the setting
of [9] assumes that (µ̃, ν̃) = (µ, ν). We state (a generalization of) that result
in the next lemma, before discussing how it breaks down when µ ̸= µ̃.

Lemma 2.5 (Oscillation). Suppose that µ = µ̃ and define

∆(x, x′) := sup
y∈Y

|c(x, y)− c(x′, y)| ∈ [0,∞].

If (f, g) are potentials, then f satisfies |f(x)− f(x′)| ≤ ∆(x, x′) for all x, x′

outside a µ-nullset. In particular:

(i) If the oscillation osc c(·, y) ≤ C for all y, then osc f ≤ C µ-a.s.
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(ii) If c is bounded, then f is bounded. More precisely, ∥f + α∥L∞(µ) ≤
2∥c∥∞ after choosing the centering α such that ∥(f + α)+∥L∞(µ) =
∥(f + α)−∥L∞(µ).

(iii) If a metric is given on X and x 7→ c(x, y) is uniformly continuous with
modulus of continuity ω, then f admits a version that is ω-continuous
on sptµ. If x 7→ c(x, y) is L-Lipschitz and X is a Hilbert space, then
f admits a version that is L-Lipschitz on X.

Proof. For all x, x′ in a set X0 of full µ-measure, writing ∆ = ∆(x, x′), we
use (2.11) at x and dµ

dµ̃ ≡ 1 to find∫
(f(x) + g(y)− c(x′, y)∓∆)+ ν̃(dy) ⋚

∫
(f(x) + g(y)− c(x, y))+ ν̃(dy)

=
dµ

dµ̃
(x) = 1 =

dµ

dµ̃
(x′).

Now using (2.11) at x′ and the strict monotonicity of Fx′ yield f(x′) ∈
[f(x)−∆, f(x)+∆]. This immediately implies (i) which in turn implies (ii).
If c is ω-continuous, the above shows that f is ω-continuous on X0. Thus f
can be uniquely extended to a ω-continuous function on the closure of X0,
which is a superset of sptµ as µ(X0) = 1. If f is Lipschitz on sptµ and X
is a Hilbert space, we can further use Kirszbraun’s theorem and extend to a
Lipschitz function on the whole space.

Lemma 2.5 showcases the idea that the potential f inherits regularity
from the cost c.3 This breaks down when µ ̸= µ̃. For instance, Proposi-
tion A.2 shows in particular that f = dµ

dµ̃ (up to additive constant) when
c ≡ 0 and ν = ν̃. Hence, in general, the regularity of the potentials depends
on the regularity of the marginal densities. The next lemma exemplifies
how (2.11) can still be used to obtain regularity results.

Lemma 2.6 (Lipschitz potentials). Let X be endowed with a metric. Let c
be bounded and let x 7→ c(x, y) be Lipschitz uniformly in y. Moreover, let dµ

dµ̃

and (dµdµ̃)
−1 be bounded and Lipschitz, and let dν

dν̃ be bounded. Then f admits
a version that is bounded and Lipschitz on sptµ. If X is a Hilbert space,
then f admits a version that is bounded and Lipschitz on X.

Proof. For brevity, we write ξ(x) = (dµdµ̃(x))
−1 and

f̃(x) = ξ(x)f(x), g̃(x, y) = ξ(x)g(y), c̃(x, y) = ξ(x)c(x, y).

3In contrast to EOT, this principle does not extend to higher-order regularity in general:
the potential need not have a C1 version even for a C∞ cost.
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As c and dν
dν̃ are bounded, Lemma 5.1 shows that ∥g∥∞ < ∞. As ξ is

Lipschitz and g is bounded, we see that g̃(x, y) is Lipschitz in x, uniformly
in y. Similarly, x 7→ c̃(x, y) is bounded and Lipschitz (uniformly in y) as a
product of bounded Lipschitz functions. Thus

∆(x, x′) := sup
y∈Y

|c̃(x, y)− c̃(x′, y)|+ sup
y∈Y

|g̃(x, y)− g̃(x′, y)| ≤ LdX(x, x
′)

for some L > 0, where dX denotes the metric on X. Multiplying (2.11) with
ξ(x) > 0 leads to∫

Y
(ξ(x)t+ g̃(x, y)− c̃(x, y))+ ν̃(dy) = 1 for t = f(x)

and then arguing as in the proof of Lemma 2.5 yields

f̃(x′) ∈ [f̃(x)−∆, f̃(x) + ∆] for ∆ = ∆(x, x′);

that is, |f̃(x) − f̃(x′)| ≤ LdX(x, x
′). Thus f̃ is bounded Lipschitz. As

ξ−1 = dµ
dµ̃ is also bounded Lipschitz, the product f = ξ−1f̃ is again bounded

Lipschitz. It follows that f admits a Lipschitz version on X0 and hence
on sptµ. If X is Hilbert, that version can again be extended to a Lipschitz
function on X.

3 Multiplicity of Potentials

In this section we study the multiplicity of the potentials (f, g). There
is always a trivial non-uniqueness, as (f + α, g − α) have the same sum
(f + α) ⊕ (g − α) = f ⊕ g for any α ∈ R. The main question is whether
the potentials are unique up to this additive constant, or if there are further
degrees of freedom in choosing the potentials.

3.1 Discrete Case

We shall describe the full family of potentials based on the geometry of the
support sptπ∗ of the optimal coupling. Uniqueness typically fails. Let us
first study a minimal example to obtain some guidance.

Example 3.1. Let X = Y = {0, 1} and µ = µ̃ = ν = ν̃ = 1
2(δ0 + δ1). Let

c(x, y) = (2 + γ)1x ̸=y where γ ≥ 0. We claim that the optimal density is

Z∗(x, y) = 21x=y,
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meaning that the optimal coupling π∗ is the uniform measure on the diagonal,
and that (f, g) are potentials if and only if

f(0) = α, g(0) = 2− α,

f(1) = β, g(1) = 2− β

for some α, β ∈ R with |α− β| ≤ γ.
(3.1)

Indeed, for (f, g) as in (3.1), we have (f ⊕ g)(x, y) = 2 when x = y,
whereas (f⊕g)(0, 1) = 2+α−β and (f⊕g)(1, 0) = 2−α+β. In particular,
(f ⊕ g)(x, y) ≤ 2 + γ when x ̸= y. As a result, (f ⊕ g − c)+ = 21x=y =:
Z ∈ Z. Now Theorem 2.2 shows that Z is the primal optimizer and that
(f, g) are potentials. Conversely, let (f, g) be potentials. Define α := f(0)
and β := f(1). Then (f ⊕ g − c)+ = 21x=y implies that g and α, β must
satisfy the conditions in (3.1). In summary, (3.1) describes the family of all
potentials when γ ≥ 0.

Next, consider γ ∈ [−2, 0), or equivalently c(x, y) = η1x ̸=y with η ∈ [0, 2).
Direct calculation shows that Z∗ = (1 + η/2)1x=y + (1 − η/2)1x ̸=y with
constant potentials (f, g) ≡ (α, 1+η/2−α) for any α ∈ R. Here the optimal
support is the full space, sptπ∗ = X × Y, and correspondingly, the identity
Z∗ = (f⊕g−c)+ = f⊕g−c determines f⊕g everywhere. Let us summarize:

(i) For γ > 0, the potentials are non-unique beyond the trivial shift by
a constant. A second degree of freedom arises because the two points
(0, 0) and (1, 1) of the support sptπ∗ do not overlap in terms of X or Y
coordinates. In the language introduced below, the singletons {(0, 0)}
and {(1, 1)} are the two components of sptπ∗, and they are related
to the fact that the potentials are given by a two-parameter family
(indexed by α, β).

(ii) For −2 ≤ γ < 0, we have sptπ∗ = X×Y which has a single component.
The potentials span a one-parameter family (f +α, g−α)α∈R; i.e., are
as unique as can be.

(iii) In the boundary case γ = 0, the support still has two components as
in (i), but the two-parameter family degenerates to a one-parameter
family since the constraint |α−β| ≤ 0 pins down the second parameter
to a single value.

The following notion of connectedness is the key to generalizing the above
observations to arbitrary discrete problems. It was first introduced by [5] in
a different context.

12



Definition 3.2. Let E ⊂ X×Y be any subset. Two points (x, y), (x′, y′) ∈ E
are connected, denoted (x, y) ∼ (x′, y′), if there exist k ∈ N0 and (xi, yi)

k
i=1 ∈

Ek such that the points

(x, y), (x1, y), (x1, y1), (x2, y1), . . . , (xk, yk), (x
′, yk), (x

′, y′) (3.2)

all belong to E. In that case, (xi, yi)ki=1 is called a path (in E) from (x, y) to
(x′, y′). The relation ∼ is an equivalence relation on E. The corresponding
equivalence classes C are called the components of E, and we denote by C
the collection of all components. A set B ⊂ E is connected (in E) if any two
points in B are connected; thus, the components are the maximal connected
subsets of E.

Figure 1: Illustration of a subset E (colored area) of the square X×Y = [0, 1]2

with three components (color coding).

For the list (3.2), the crucial property is that only one coordinate is
changed in each step. In our notation, the first coordinate changes first, but
because a point can be repeated in the list, this entails no loss of generality.

The present notion of connectedness is graph-theoretic and quite different
from the topological one. For instance, two connected subsets are connected
to one another as soon as they have points with a common X-coordinate (or
Y-coordinate); cf. Fig. 1.

Remark 3.3. Denote by projX the canonical projection (x, y) 7→ x. It
follows from Definition 3.2 that for any (x, y) ∈ E, there is exactly one
component C with x ∈ projX(C). That is, {projX(C)}C∈C is a partition
of projX(E). The analogue holds for Y.

Lemma 3.4. Let C ⊂ E be connected. Let f, f ′ : projX(C) → R and
g, g′ : projY(C) → R be functions such that f ⊕g = f ′⊕g′ on C. Then there
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exists α ∈ R such that f = f ′ + α on projX(C) and g = g′ − α on projY(C).
In particular, the set of all functions f ′, g′ such that f ⊕ g = f ′ ⊕ g′ on C, is
the one-parameter family (f + α, g − α)α∈R.

Proof. Fix (x0, y0) ∈ C and define α := f(x0)− f ′(x0). Let (x′, y′) ∈ C. By
connectedness, there exists a path

(x0, y0), (x1, y0), (x1, y1), (x2, y1), . . . , (xk, yk), (x
′, yk), (x

′, y′)

in E. We have f(x0) = f ′(x0) + α. As f ⊕ g = f ′ ⊕ g′ holds at (x0, y0), it
follows that g(y0) = g′(y0) − α. Similarly, f ⊕ g = f ′ ⊕ g′ holds at (x1, y0),
hence it follows that f(x1) = f ′(x1) + α. Continuing inductively, we obtain
that f(x′) = f ′(x′) + α and g(y′) = g′(y′)− α.

We can now state the main result of this subsection.

Theorem 3.5. Let µ, ν be finitely supported. Without loss of generality, X =
sptµ and Y = spt ν. Let C1, . . . , CN be the components (cf. Definition 3.2)
of the optimal support sptπ∗ and fix arbitrary potentials (f, g). The family
of all potentials is given by(

f +
N∑
i=1

αi1projX(Ci), g −
N∑
i=1

αi1projY(Ci)

)
, (α1, · · · , αN ) ∈ T

where {0} ∈ T ⊂ RN is the closed convex polytope

T = {(α1, · · · , αN ) ∈ RN : αi − αj ≤ aij}

with aij ∈ R+ given by

aij := inf
(x,y)∈[projX(Ci)×projY(Cj)]\sptπ∗

c(x, y)− f(x)− g(y) ≥ 0. (3.3)

Proof. By definition, (f ′, g′) are potentials iff (f ′ ⊕ g′ − c)+ = (f ⊕ g − c)+
on sptµ × spt ν (which is the whole space X × Y by our assumption). This
identity amounts to two requirements:

(a) As sptπ∗ is the subset where the density is strictly positive, we see
that (f ′⊕g′− c)+ = (f ⊕g− c)+ on sptπ∗ is equivalent to f ′⊕g′ = f ⊕g on
sptπ∗. Using Lemma 3.4 and Remark 3.3, the family of all functions (f ′, g′)
satisfying f ′ ⊕ g′ = f ⊕ g on sptπ∗ is(

f +

N∑
i=1

αi1projX(Ci), g −
N∑
i=1

αi1projY(Ci)

)
, αi ∈ R, 1 ≤ i ≤ N.

14



(b) The complement of sptπ∗ is the set where the density is zero, hence
on that set, (f ′ ⊕ g′ − c)+ = (f ⊕ g − c)+ is equivalent to f ′ ⊕ g′ ≤ c. As
the sets projX(Ci) × projY(Cj) form a partition of X × Y, that is further
equivalent to (f + αi)⊕ (g − αj) ≤ c on [projX(Ci)× projY(Cj)] \ sptπ∗ for
all 1 ≤ i, j,≤ N . This is, in turn, equivalent to αi − αj ≤ aij where aij is
given by (3.3). We have aij ≥ 0 because (f ⊕ g − c)+ > 0 on sptπ∗.

Theorem 3.5 shows that the potentials form at most an N -parameter
family, where N is the number of components of the optimal support. We
expect in typical cases that they form a nondegenerate N -parameter fam-
ily. However, the boundary case γ = 2 in Example 3.1 illustrates that the
polytope can degenerate to a subset of dimension < N .

In the continuous case, on the other hand, it is rather intuitive that the
constraint f ′ ⊕ g′ ≤ c outside sptπ∗ becomes a severe restriction: if the
involved functions are continuous, then as f ′ ⊕ g′ = c on the boundary of
sptπ∗, |f ′ ⊕ g′ − c| can be arbitrarily small close to the boundary, leaving
no space to vary the αi (except for the trivial shift). This may serve as an
intuition for the situation in Section 3.2 below, where potentials are unique
up to the unavoidable additive constant.

3.1.1 Counterexample for Self-Transport

In Example 3.1, the potentials are unique if we impose the constraint f = g.
However, the following example shows that potentials need not be unique
even if the constraint f = g is imposed in a symmetric setting.

Example 3.6. Let X = Y = {0, 1} and µ = µ̃ = ν = ν̃ = 1
2(δ0 + δ1). Let

c(x, y) = (2+γ)1x=y where γ > 0. This setting is similar to Example 3.1, but
the roles of the diagonal and the off-diagonal are interchanged. In analogy
to Example 3.1, the optimal density is Z∗(x, y) = 21x ̸=y, meaning that the
optimal coupling π∗ is the uniform measure on the off -diagonal, and (f, g)
are potentials if and only if

f(0) = α, g(0) = 2− β,

f(1) = β, g(1) = 2− α,

for some α, β ∈ R with |α− β| ≤ γ.

Next, we impose the symmetry constraint f = g. This is equivalent to the
two equations α = 2−β and β = 2−α, which are however redundant. Then
|α− β| ≤ γ is equivalent to α ∈ [1− γ/2, 1 + γ/2] and we conclude that the
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family of all symmetric potentials (f, g) is
f(0) = g(0) = α,

f(1) = g(1) = 2− α,

for some α ∈ [1− γ/2, 1 + γ/2].

In particular, f is not unique.

3.2 Continuous Case

Denote by Ld the Lebesgue measure on Rd. We show that in a regular (yet
very standard) setting, the potentials (f, g) are a.s. unique up to an additive
constant.

Theorem 3.7. Let X = Y = Rd and µ ∼ Ld on sptµ, and assume that
int sptµ is connected.4 Moreover, let c be Lipschitz and differentiable on a
neighborhood of sptµ× spt ν. Let either5

(i) (µ̃, ν̃) = (µ, ν) or

(ii) dµ
dµ̃ , (

dµ
dµ̃)

−1, dνdν̃ , (
dν
dν̃ )

−1 be bounded and Lipschitz, and c be bounded.

Then the potential f is uniquely determined µ-a.s., up to an additive con-
stant.

We recall from Lemma 2.4 that g is then also uniquely determined ν-
a.s., up to constant. In Theorem 3.7, the crucial connectedness assumption
is imposed on µ, whereas ν can be quite general. In particular, the result
applies in the setting of semi-discrete optimal transport where, typically, µ
is given by a nice population density and ν is an empirical measure. The
condition on µ is satisfied, for instance, if µ admits a density wrt. Ld and
{dµ/dLd > 0} is convex.

Proof of Theorem 3.7. Let (f, g) be potentials. We can extend c to a Lips-
chitz function on X×Y. Recall from Lemma 2.5 (or Lemma 2.6) that f, g ad-
mit versions that are defined everywhere on Rd and Lipschitz. In the remain-
der of the proof, f and g denote those versions. Note that Z := (f ⊕ g− c)+
is a Lipschitz version of the density of the optimal coupling π∗. In particular,

4This refers to the usual topological connectedness, not Definition 3.2.
5The purpose of this condition is to ensure that any potential is Lipschitz. We could

instead assume the latter directly, or assert that uniqueness holds within the class of
Lipschitz potentials.
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the set E = {Z > 0} is open and satisfies π∗(E) = 1. Moreover, E ⊂ sptπ∗
and hence sptπ∗ = E = {Z ≥ 0}. Finally, it is not hard to check that the
open set projXE satisfies

µ(projXE) = 1 and sptµ = projXE. (3.4)

Let dom∇f denote the set where f is differentiable. By Rademacher’s
theorem, the complement of dom∇f is Ld-null. On the other hand, it follows
from (3.4) and µ ∼ Ld on sptµ that Ld(sptµ \ projXE) = 0. In summary,
Λ := dom∇f ∩ projXE ⊂ sptµ has full Ld-measure within sptµ

Next, we check that ∇f is uniquely determined on Λ. Indeed, let x0 ∈ Λ,
then (x0, y0) ∈ E for some y0. We have

Z(x, y) = f(x) + g(y)− c(x, y), (x, y) ∈ Br(x0, y0)

for small r > 0, due to the definition of E. (Here Br(z) denotes the
open ball of radius r around z.) Differentiation thus yields that ∇f(x0) =
∇xZ(x0, y0) +∇xc(x0, y0). The right-hand side is uniquely determined. In
summary, we have shown that f is a Lipschitz function with ∇f uniquely
determined Ld-a.e. on the open and connected set int sptµ. This implies that
f is uniquely determined up to additive constant on int sptµ (see, e.g., [30,
Formula 2]). As projXE is open, (3.4) implies µ(int sptµ) = 1, completing
the proof.

Remark 3.8. In Theorem 3.7, suppose that we are in the symmetric setting
of self-transport and we additionally impose that f = g. We readily see that
this constraint pins down the additive constant in Theorem 3.7 and hence
gives uniqueness for f µ-a.s.

Theorem 3.7 is a satisfactory result in a regular setting and covers most
applications of interest. In the remainder of the section, we comment briefly
on subtleties that occur in a possible extension of the analysis that we per-
formed in the discrete case to non-discrete (and irregular) cases. First, while
the definition of components applies to arbitrary sets, two almost-surely
equal sets may have substantially different components. Second, some com-
ponents may carry no mass, making them negligible. Next, we highlight the
first aspect by detailing a continuous version of Example 3.1 and comparing
with another version.

Example 3.9. Let X = Y = [0, 1] and µ = µ̃ = ν = ν̃ = L1|[0,1] the
uniform measure. Let E := [0, 1/2)2 ∪ (1/2, 1]2 be the “block diagonal” and
Ec = [0, 1]2 \ E. Let c(x, y) = (2 + γ)1Ec where γ > 0. We claim that

Z∗(x, y) = 21E
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is a version of the optimal density, meaning that the optimal coupling π∗
is the uniform measure on E, and that (f, g) are potentials if and only if
L1-a.s., 

f(x) = α, g(y) = 2− α, x, y ∈ [0, 1/2),

f(x) = β, g(y) = 2− β, x, y ∈ (1/2, 1],

for some α, β ∈ R with |α− β| ≤ γ.
(3.5)

Indeed, for such (f, g), we have f ⊕ g = 2 on E, whereas (f ⊕ g) ∈
{2 + α − β, 2 − α + β} on Ec. In particular, f ⊕ g ≤ 2 + γ on Ec. As
a result, (f ⊕ g − c)+ = 21E = Z∗. Now Theorem 2.2 shows that Z∗ is
the primal optimizer and that (f, g) are potentials. Conversely, let (f, g)
be potentials. As f(x) + g(y) = 2 for L2-a.e. (x, y) ∈ [0, 1/2)2, it follows
that f(x) = 2 − 2

∫ 1/2
0 g(y) dy =: α for µ-a.e. x ∈ [0, 1/2) and similarly

g(y) = 2− 2
∫ 1/2
0 f(x) dx = 2− α for ν-a.e. y ∈ [0, 1/2). Analogously, f = β

µ-a.s. on (1/2, 1] and g = 2− β ν-a.s. on (1/2, 1], for some β ∈ R. We then
have f ⊕ g = 2 + α − β P -a.s. on [0, 1/2) × (1/2, 1] and f ⊕ g = 2 − α + β
P -a.s. on (1/2, 1] × [0, 1/2). In order to satisfy (f ⊕ g − c)+ = Z∗ = 21E
P -a.s., we must have |α− β| ≤ γ.

In Example 3.9, the number of components of {Z∗ > 0} correctly de-
scribes the degrees of freedom in choosing potentials. To achieve this, we
picked a “good” version of Z∗—the following shows that the number of com-
ponents of {Z∗ > 0} can depend on the version of the density Z∗. While the
“support” of π∗ has a canonical definition in the discrete case, that is not the
case here (and the topological support is not a good choice).

Remark 3.10. In Example 3.9, the family in (3.5) are precisely the functions
f, g such that (f ⊕ g− c)+ = 21E everywhere on [0, 1]2 (without exceptional
nullsets). Next, consider the same example but define Ẽ = [0, 1/2]2∪[1/2, 1]2,
which is the topological support of π∗. Obviously Ẽ = E P -a.s., hence
Z∗(x, y) = 21Ẽ is another version of the optimal density. But by contrast
with the above, (f ⊕ g − c)+ = 21Ẽ everywhere on [0, 1]2 if and only if
f ≡ α and g ≡ 2 − α for some α ∈ R. To wit, the extra degree of freedom
represented by β has been eliminated, as f(1/2) = α and f(1/2) = β now
imply α = β (or similarly for g). The same happens if we replace Ẽ by
[0, 1/2]× [0, 1/2) ∪ [1/2, 1]× (1/2, 1] or the symmetric counterpart. Indeed,
Ẽ and the latter two sets have a single component.

Due to the closure in its definition, the topological support is a rather
large set carrying the measure, whereas for the current purpose we require a
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small set, or more precisely, a set with the maximum number of non-negligible
components.

4 Sparsity for Small Regularization

Let µ, ν be compactly supported probability measures on Rd. We specialize
our general setting to X = sptµ and Y = spt ν, with cost c(x, y) = ∥x− y∥2
the squared Euclidean distance. We further assume that µ ≪ Ld and that
int sptµ is connected, and choose (µ̃, ν̃) = (µ, ν) for simplicity (alternately,
we can impose the conditions of Lemma 2.6).

In this setting of quadratic cost, it is well known that the unregularized
transport problem

P0 = inf
π∈Π(µ,ν)

∫
c dπ (4.1)

has a unique optimal coupling π0, given by Brenier’s map. See, e.g., [34]
for background. In particular, π0 is concentrated on the graph of a function
T : Rd → Rd, and hence “sparse” (as sparse as a coupling can be). Regularity
results for T are known under conditions on the marginals.

Let πε ∈ Π(µ, ν) be the optimal coupling of the quadratically regularized
problem with regularization parameter ε > 0 (cf. Remark 2.3),

Pε = inf
π∈Π(µ,ν)

∫
c dπ +

ε

2
∥dπ/dP∥2L2(P ).

The next result formalizes and establishes that πε is sparse for small ε, by
showing that sptπε is contained in a small neighborhood of the sparse set
sptπ0. To the best of our knowledge, it is the first theoretical result showing
sparsity of quadratically regularized transport in a continuous setting.

Theorem 4.1 (Sparsity for quadratic cost). Let U be an open neighborhood
of sptπ0. Then sptπε ⊂ U for all sufficiently small ε > 0.

Proof. We recall that in the present setting, the unregularized transport
problem (4.1) admits a unique optimal coupling π0 and a unique (up to
constant) Kantorovich potential f : X → R that is Lipschitz continuous. Fix
x0 ∈ X; then we may normalize f(x0) = 0 to have uniqueness. Let g be the
c-concave conjugate of f , so that (f, g) is the solution of the dual optimal
transport problem

D0 = sup
(f,g)∈C(X)×C(Y): f⊕g≤c

∫
f dµ+

∫
g dν. (4.2)
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It is known that sptπ0 = {f ⊕ g = c}. Indeed, π0{f ⊕ g = c} = 1 holds
for general costs. The inclusion sptπ0 ⊃ {f ⊕ g = c}, which is crucial below,
follows because the section {f(x) + g(·) = c(x, ·)} ⊂ Y is a singleton for
µ-a.e. x ∈ X (as the subdifferential of an a.e. differentiable function).

Let (fε, gε) be the rescaled potentials as defined in Remark 2.3. By
Lemma 2.5 (iii), fε can be chosen to be L-Lipschitz, where L is the Lipschitz
constant of c on the compact set X × Y (note that fε/ε is the potential
for c/ε without rescaling). We may normalize fε(x0) = 0 and then fε is
also bounded uniformly in ε. The Arzela–Ascoli theorem shows that given
a sequence εn → 0, a subsequence of (fεn) converges uniformly to some
limit f∗. After passing to another subsequence (still denoted εn), we also
have uniform convergence gεn → g∗. We show below that (f∗, g∗) = (f, g).
In particular, the uniqueness of the Kantorovich potential then implies that
(fε, gε) → (f, g) uniformly for ε → 0.

Let U be an open neighborhood of sptπ0. As sptπ0 = {f ⊕ g = c} and
f, g, c are continuous and X × Y is compact, there exists δ > 0 such that
{f ⊕ g ≥ c− δ} ⊂ U . Recall that the density of πε has the form

Zε =

(
fε ⊕ gε − c

ε

)
+

. (4.3)

In view of the uniform convergence (fε, gε) → (f, g), there exists ε0 > 0 such
that for all ε ∈ (0, ε0),

sptπε = {Zε > 0} = {fε ⊕ gε > c} ⊂ {f ⊕ g ≥ c− δ} ⊂ U.

It remains to prove (f∗, g∗) = (f, g). To that end, we show that (f∗, g∗)
solves the dual problem (4.2). We first verify that (f∗, g∗) is in the dual
domain; i.e., that f∗ ⊕ g∗ ≤ c. Suppose that f∗(x) + g∗(y) > c(x, y) at
some (x, y) ∈ X× Y. Then by continuity, {f∗ ⊕ g∗ > c} includes a compact
neighborhood B of (x, y). In view of (4.3), it follows that Zε → ∞ uniformly
on B as ε → 0. As (µ⊗ ν)(B) > 0 due to (x, y) ∈ X× Y = spt(µ⊗ ν), this
contradicts the fact that

∫
Zε d(µ⊗ ν) = 1 for all ε > 0.

Second, we verify that (f∗, g∗) is optimal for (4.2). By duality we have
Dε = Pε and P0 = D0, and clearly P0 ≤ Pε as the quadratic penalty is
nonnegative. Thus also D0 ≤ Dε, which by (2.10) yields

D0 ≤ Dεn =

∫
fεn dµ+

∫
gεn dν − εn

2

∫ (
fεn ⊕ gεn − c

εn

)2

+

dP

≤
∫

fεn dµ+

∫
gεn dν →

∫
f∗ dµ+

∫
g∗ dν.

Hence (f∗, g∗) solves (4.2) and the proof is complete.
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Remark 4.2. (a) Theorem 4.1 has a trivial analogue in the discrete setting,
where it is known that πε = π0 for small ϵ > 0, for a certain optimal
transport π0. See, e.g., [8]. This observation goes back to [23] for more
general linear programs with quadratic regularization.

(b) As πε → µ ⊗ ν for ε → ∞, sparsity certainly requires ε to be small
in some sense. One can hope for a quantitative version of Theorem 4.1,
stating that sptπε is in a δ-neighborhood of sptπ0, where δ = δ(ε) has an
explicit dependence on ε. This problem is left for future research. The proof
given above merely uses the straightforward (qualitative) convergence of the
potentials; see also [17, 25] for related results on the convergence of potentials
for entropic regularization. The proof does extend to more general costs c:
the key property is that the Kantorovich dual f ⊕ g “detaches” from the
cost c outside the support of the optimal coupling π0. See [6, 22] for recent
developments in this direction.

5 Proof of Theorem 2.2(i)–(iii)

We first take care of generalities—primal existence, automatic integrability
and weak duality—which will reduce the proof of Theorem 2.2 to the main
task, namely to show that the optimal density is of the form Z∗ = (f⊕g−c)+.

5.1 Primal Existence

The existence and uniqueness of the primal optimizer is straightforward and
well known. We detail the argument for later use.

Proof of Theorem 2.2(ii). Recall (2.3). For any Z ∈ Z, clearly∫
cZ dP +

1

2
∥Z∥2L2(P ) =

∫
(cZ + 1

2Z
2) dP

= 1
2∥c+ Z∥2L2(P ) −

1
2∥c∥

2
L2(P ),

where the last term is a finite constant independent of Z. In particular,

P = inf
Z∈Z

1
2∥c+ Z∥2L2(P ) −

1
2∥c∥

2
L2(P ). (5.1)

The subset Z ⊂ L2(P ) is closed, convex, and nonempty as d(µ⊗ ν)/dP ∈ Z
due to (2.1). The claim thus follows from the existence, uniqueness and
characterization of the Hilbert space projection onto Z.
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5.2 Integrability Properties

This subsection establishes the automatic integrability of potentials. We first
derive a simple lower bound similar to a result in [21]; see (2.3) for notation.

Lemma 5.1 (Lower bound). Let (f ⊕ g− c)+ be the P -density of a coupling
π ∈ Π(µ, ν), for some measurable functions f : X → R and g : Y → R. Then

(f − c1)− ∈ L∞(µ̃), (g − c2)− ∈ L∞(ν̃).

In particular, f− ∈ L1(µ̃) ∩ L1(µ) and g− ∈ L1(ν̃) ∩ L1(ν). If c− ∈ L∞(P ),
then (f−, g−) ∈ L∞(µ̃)× L∞(ν̃).

Moreover, if c ∈ L∞(P ), then (f− dµ
dµ̃)+ ∈ L∞(µ̃) and (g− dµ

dµ̃)+ ∈ L∞(ν̃).

Proof. Recall (2.11) and (2.3). For µ̃-a.e. x ∈ X,

Fx(t) =

∫
(t+ g(y)− c(x, y))+ ν̃(dy)

≤
∫
((g(y)− c2(y))+ − (t− c1(x)−)+ ν̃(dy)

≤
∫

h(y)1h(y)>(t−c1(x))− ν̃(dy) = Φ((t− c1(x))−)

where h(y) := (g(y) − c2(y))+ and Φ(α) :=
∫
h(y)1h(y)>α ν̃(dy). As c2 ∈

L1(ν̃) and, necessarily, g+ ∈ L1(ν̃), we have h ∈ L1(ν̃). In particular, Φ is
a nonincreasing function with limα→∞Φ(α) = 0. Defining the generalized
inverse Φ−1(v) := sup{u : Φ(u) ≥ v}, it follows with dµ

dµ̃(x) = Fx(t) for
t = f(x) that

(f(x)− c1(x))− ≤ Φ−1

(
dµ

dµ̃
(x)

)
for µ̃-a.e. x ∈ X.

As we have assumed in (2.1) that dµ
dµ̃ is a.s. uniformly bounded away from

zero, this shows that (f − c1)− ∈ L∞(µ̃). The assertion on g− follows
similarly. Suppose that c ∈ L∞(P ). Then

dµ

dµ̃
(x) = Fx(t) =

∫
(t+ g(y)− c(x, y))+ ν̃(dy) ≥ t− ∥g−∥L∞(ν̃) − ∥c∥L∞(P )

for t = f(x) implies f(x)− dµ
dµ̃(x) ≤ ∥g−∥L∞(ν̃)+∥c∥L∞(P ), and it was shown

above that ∥g−∥L∞(ν̃) is finite when c ∈ L∞(P ).

The next lemma will entail in particular that the algebraic form (f ⊕
g − c)+ already identifies the optimal coupling, without any (a priori) inte-
grability condition on (f, g). As a consequence, the system of equations in
Theorem 2.2 (d) fully characterizes potentials, without a separate condition.
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Lemma 5.2 (Automatic integrability). Let Z = (f ⊕ g − c)+ be the P -
density of a coupling π ∈ Π(µ, ν), for some measurable functions f : X → R
and g : Y → R. Then

(i) (f+, g+) ∈ L2(µ̃)× L2(ν̃),

(ii) Z ∈ Z; i.e., Z ∈ L2(P ),

(iii) (f, g) ∈ L1(µ)× L1(ν).

Proof. Recall from (2.8) that for µ̃-a.e. x ∈ X,

dµ

dµ̃
(x) =

∫
(f(x) + g(y)− c(x, y))+ ν̃(dy)

≥ f(x)−
∫

g− dν̃ −
∫

c(x, y) ν̃(dy). (5.2)

We have
∫
g− dν̃ < ∞ by Lemma 5.1, and the last term is in L2(µ̃) by Jensen:∫ (∫

c(x, y) ν̃(dy)

)2

µ̃(dx) ≤
∫∫

c(x, y)2 ν̃(dy)µ̃(dx) = ∥c∥2L2(P ) < ∞.

Hence (5.2) and (2.1) establish that f is bounded from above by a function
in L2(µ̃); that is, f+ ∈ L2(µ̃). Analogously, g+ ∈ L2(ν̃), completing (i).

As c ∈ L2(P ), it follows that Z = (f(x)+g(y)−c(x, y))+ ∈ L2(P ), which
is (ii). The Cauchy–Schwarz inequality and (2.1) yield L2(µ̃) ⊂ L1(µ) and
L2(ν̃) ⊂ L1(ν). Hence (i) implies (f+, g+) ∈ L1(µ) × L1(ν). On the other
hand, (f−, g−) ∈ L1(µ)× L1(ν) by Lemma 5.1, showing (iii).

5.3 Weak Duality

The next lemma provides weak duality and reduces strong duality to exis-
tence of potentials.

Lemma 5.3. (i) For all Z ∈ Z and (f, g) ∈ L1(µ)× L1(ν),∫ (
cZ + 1

2Z
2
)
dP ≥

∫
f dµ+

∫
g dν − 1

2

∫
(f ⊕ g − c)2+ dP,

with equality holding iff Z = (f⊕g−c)+ P -a.s. In particular, P ≥ D .

(ii) Let f : X → R and g : Y → R be measurable and suppose that Z :=
(f ⊕ g − c)+ is the density of a coupling. Then

(a) Z ∈ Z and (f, g) ∈ L1(µ)× L1(ν),
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(b) there is no duality gap: P = D ,

(c) Z is optimal for the primal problem (2.5),

(d) (f, g) is optimal for the dual problem (2.6).

(iii) Conversely, suppose that P = D . If (f, g) ∈ L1(µ)× L1(ν) is optimal
for the dual problem (2.6), then (f ⊕ g − c)+ is in Z and optimal for
the primal problem (2.5).

Proof. Consider Z ∈ Z and (f, g) ∈ L1(µ)× L1(ν). Then∫ (
cZ + 1

2Z
2
)
dP =

∫
f ⊕ g d(µ⊗ ν)−

∫ (
(f ⊕ g − c)Z − 1

2Z
2
)
dP

as Z dP ∈ Π(µ, ν). Note that [0,∞) ∋ z 7→ az−z2/2 has a unique maximum
at z = a+ with maximum value a2+/2. Using this pointwise with a = f⊕g−c,
we deduce∫ (

cZ + 1
2Z

2
)
dP ≥

∫
f ⊕ g d(µ⊗ ν)− 1

2

∫
(f ⊕ g − c)2+ dP

with equality holding if and only if Z = (f⊕g−c)+ P -a.s. This shows (i). In
view of the automatic integrability shown in Lemma 5.2, (ii) follows from (i).
To see (iii), consider Z := Z∗ ∈ Z in the left-hand side of in (i) and dual
optimizers (f, g) on the right-hand side. As P = D was assumed, the
assertion of (i) on equality implies Z∗ = (f ⊕ g − c)+ P -a.s.

5.4 Construction of Potentials

In view of Lemma 5.3, our main task is to construct measurable functions
f : X → R and g : Y → R such that (f ⊕ g − c)+ ∈ Z. More precisely, we
shall show directly that the optimal density Z∗ is of that form.

From a convex programming point of view, the marginal constraints
µ, ν in the primal problem (2.5) correspond to infinitely many equality con-
straints; namely,

∫
ϕdπ =

∫
ϕdµ whenever ϕ is a bounded measurable func-

tion on X, and similarly for ν. As the spaces X,Y are separable, countably
many test functions ϕ are sufficient to encode the marginals. Our plan is
to approximate the primal problem (2.5) with auxiliary problems having
finitely many constraints (that can be solved by elementary arguments) and
then pass to the limit (which is more delicate).

The problems with finitely many constraints are described in the next
lemma. We emphasize that Zn consists of densities of measures that are not
necessarily probability measures.
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Lemma 5.4. Fix n ∈ N and bounded measurable functions ϕi : X× Y → R,
1 ≤ i ≤ n with

∫
ϕi d(µ⊗ ν) = 0. Let

Zn =

{
Z ∈ L2(P ) : Z ≥ 0,

∫
ϕiZ dP = 0, 1 ≤ i ≤ n

}
.

There is a unique solution Zn ∈ Zn of

inf
Z∈Zn

∫
cZ dP +

1

2
∥Z∥2L2(P ) (5.3)

and Zn is characterized within Zn by being of the form

Zn = (b1ϕ1 + · · ·+ bnϕn − c)+ for some bi ∈ R. (5.4)

Proof. As Zn ⊂ L2(P ) is convex, closed and nonempty, existence and unique-
ness of the minimizer Zn = argminZ∈Zn

∥Z+c∥L2(P ) follow by Hilbert space
projection as in the proof of Theorem 2.2 (ii). Next, we argue as in the proof
of Lemma 5.3 (i), with f ⊕ g replaced by b · Φ where b = (b1, . . . , bn) ∈ Rn

and Φ = (ϕ1, . . . , ϕn). Noting that
∫
b · Φ d(µ⊗ ν) = 0, we obtain∫ (

cZ + 1
2Z

2
)
dP ≥ 1

2

∫
(b · Φ− c)2+ dP for all b ∈ Rn,

with equality holding if and only if Z = (b ·Φ− c)+ P -a.s. for some b ∈ Rn.
As a result, we only need to prove that there exists Z ∈ Zn of the form
Z = (b · Φ− c)+. To that end, we first show that the problem

inf
b∈Rn

G(b), G(b) :=

∫
(b · Φ− c)2+ dP

admits a minimizer b∗. Note that G : Rn → R is convex and continuous. By
projecting onto the orthogonal complement of {b ∈ Rn : b · Φ = 0 P -a.s.},
we can reduce to a situation where b ·Φ = 0 P -a.s. only for b = 0. For b ̸= 0
we then have P{b · Φ ̸= 0} > 0.

We claim that this implies P{b ·Φ > 0} > 0. Indeed, if not, then b ·Φ ≤ 0
P -a.s. and P{b·Φ < 0} > 0. As µ⊗ν ∼ P , it follows that b·Φ ≤ 0 (µ⊗ν)-a.s.
and (µ ⊗ ν){b · Φ < 0} > 0. Thus

∫
b · Φ d(µ ⊗ ν) < 0, contradicting that∫

b · Φ d(µ⊗ ν) = 0.
Clearly P{b · Φ > 0} > 0 implies the radial coercivity condition

lim
α→∞

G(αb) = ∞, 0 ̸= b ∈ Rn.
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Any convex, lower semicontinuous function G : Rn → R satisfying this
condition attains its minimum [15, Lemma 3.5, p. 126].

Let b∗ be a minimizer. Note that z 7→ z2+ is continuously differentiable
with derivative 2z+, and recall that Φ is bounded. Differentiation under the
integral yields the first-order condition∫

ϕi(b∗ · Φ− c)+ dP = 0, 1 ≤ i ≤ n.

This shows that (b∗ · Φ− c)+ ∈ Zn, as desired.

Lemma 5.5. Let Z∗ ∈ Z be the primal optimizer. There exist bounded
measurable functions fn : X → R and gn : Y → R, n ≥ 1 such that

Z∗ = lim
n→∞

(fn ⊕ gn − c)+ P -a.s. and in L2(P ).

Proof. As L1(µ) is separable, there are bounded measurable functions ϕµ
k :

X → R, k ≥ 1 such that ρ ∈ P(X× Y) satisfies
∫
ϕµ
k(x) ρ(dx, dy) = 0 for all

k ≥ 1 if and only if the first marginal of ρ is µ. Similarly, there are functions
ϕν
k : Y → R for ν. Let ϕ2i−1(x, y) := ϕµ

i (x) and ϕ2i(x, y) := ϕν
i (x), so that

ρ ∈ Π(µ, ν) if and only if
∫
ϕi dρ = 0 for all i ≥ 1. Define Zn,Zn as in

Lemma 5.4 and note that Zn is of the desired form Zn = (fn ⊕ gn − c)+;
namely, fn is a linear combination of (ϕµ

k)k≤n and gn is a linear combination
of (ϕν

k)k≤n. Thus, it suffices to show that Zn → Z∗ in L2(P ).
Note that Zn,Z ⊂ L2(P ) are closed and convex, Zn ⊃ Zn+1, and Z =

∩n≥1Zn. Moreover, Zn and Z∗ are the projections of −c onto Zn and Z in
L2(P ), respectively:

Zn = argmin
Z∈Zn

∥Z + c∥, Z∗ = argmin
Z∈Z

∥Z + c∥,

where ∥ · ∥ = ∥ · ∥L2(P ). It is a general fact of Hilbert spaces that such nested
projections converge; i.e., Zn → Z∗ in L2(P ). One way of obtaining that
fact is to use the parallelogram law for Zm + c and Zn + c, giving

1
4∥Zm − Zn∥2 =

∥Zm + c∥2

2
+

∥Zn + c∥2

2
−
∥∥∥∥Zm + Zn

2
+ c

∥∥∥∥2 =: am,n.

As (Zm + Zn)/2 ∈ Zm∧n, we see that lim supm,n→∞ am,n ≤ 0, hence (Zn) is
a Cauchy sequence in L2(P ). Its limit Z must lie in Z and then ∥Z + c∥ =
limn ∥Zn + c∥ ≤ ∥Z∗ + c∥ shows Z = Z∗, where the inequality is due to
Zn ⊃ Z.
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To pass to the limit of fn ⊕ gn, we shall use the following result.

Lemma 5.6. Consider two sequences fn : X → R and gn : Y → R, n ≥ 1 of
measurable functions, and π ∈ P(µ, ν). Suppose that

lim
n→∞

fn ⊕ gn = h π-a.s.

for a measurable function h : X×Y → R. Then there are functions f : X → R
and g : Y → R such that h = f ⊕ g π-a.s. If π ≪ P , the functions f, g can
be chosen to be measurable.

The first part of Lemma 5.6 is [31, Proposition 2.1], the second is [14,
Proposition 3.19]. The latter assumes π ≪ πX ⊗ πY, where πX, πY are the
marginals of π, which is equivalent to π ≪ P .6 We comment briefly on the
proof of Lemma 5.6 in the subsequent remark, but give a detailed proof of
its (more difficult) symmetric version in Lemma 6.3 below.

Remark 5.7. Results like Lemma 5.6 are surprisingly subtle; the difficulty
is that the convergence of fn⊕gn only holds on a subset E ⊂ X×Y. First of
all, note that convergence of fn ⊕ gn does not imply a separate convergence
of fn and gn. If E = X × Y, the limits of fn and gn do exist after a single
normalization (e.g., fn(x0) = 0 for some fixed x0 ∈ X) to pin down the
familiar additive constant. But if E is sparse (as will typically be the case
in our application), we have seen in Section 3.1 that fn can be shifted by
a different constant on each component of E. While [31, 14] do not use
the concept of connectedness, their proofs roughly boil down to choosing
a normalization for each component of E. Because there are uncountably
many components in general, the measurability of the resulting function is
not guaranteed. In fact, a counterexample due to N. Gantert (reported in
[31]) shows that even when a limit f⊕g exists, it can happen that there is no
measurable choice of f and g. (See also [14] for further examples.) In the last
part of Lemma 5.6, the condition π ≪ P ensures that, after removing certain
nullsets from X and Y, only countably many normalizations are necessary.
See the proof of Lemma 6.3 for details.

We can now conclude the desired result on the shape of the optimal
density Z∗ ∈ Z, completing the proof of Theorem 2.2 (i)–(iii).

Proposition 5.8. There exist measurable f : X → R and g : Y → R such
that Z∗ = (f ⊕ g − c)+ P -a.s.

6In fact, it suffices to assume that π is absolutely continuous wrt. any product proba-
bility measure. See Step 4 in the proof of Lemma 6.3 below.
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Proof. By Lemma 5.5 we have Z∗ = limn→∞(fn ⊕ gn − c)+ P -a.s. for some
bounded measurable functions fn, gn. As π∗ is concentrated on {Z∗ > 0},
we also have

Z∗ = lim
n→∞

(fn ⊕ gn − c) =
(
lim
n→∞

fn ⊕ gn

)
− c π∗-a.s.,

showing that the limit h := Z∗ + c = limn→∞ fn ⊕ gn exists and is finite
π∗-a.s. Clearly π∗ ≪ P , hence the condition of Lemma 5.6 is satisfied and
the claim follows.

6 Self-Transport: Proof of Theorem 2.2(iv)

In this section we adapt the above arguments to the case of self-transport;
i.e., the marginals coincide and the cost is symmetric:

(X, µ, µ̃) = (Y, ν, ν̃) and c(x, y) = c(y, x). (6.1)

Note that P = µ̃⊗ µ̃ is then also symmetric.
In this setting we may expect that there exist symmetric potentials (f, g);

i.e., with f = g. (Of course, not all potentials will be symmetric; see, e.g.,
Example 3.6.) However, the proof of Lemma 5.6 above in general does
not produce symmetric potentials, even if the approximations fn, gn are
symmetric. This is due to the normalizations for fn that are made in the
proof. These normalizations are key to obtain convergence, but break the
symmetry between fn and gn.

Below, we first argue that the approximations can indeed be chosen to be
symmetric (Lemma 6.1 and Lemma 6.2). Then, we guarantee a symmetric
limit with a precise construction that avoids normalizations on certain com-
ponents and coordinates the normalizations between others (Lemma 6.3).

Lemma 6.1. Let (6.1) hold. Fix n ∈ N and bounded measurable functions
ϕi : X → R, 1 ≤ i ≤ n with

∫
ϕi dµ = 0. Let

Zsym
n =

{
Z ∈ L2(P ) : Z ≥ 0, Z(x, y) = Z(y, x),∫

ϕi(x)Z(x, y)P (dx, dy) = 0, 1 ≤ i ≤ n

}
.

There is a unique solution Zn ∈ Zsym
n of

inf
Z∈Zsym

n

∫
cZ dP +

1

2
∥Z∥2L2(P ) (6.2)
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and Zn is characterized within Zsym
n by being of the form

Zn(x, y) = (b · Φ(x) + b · Φ(y)− c(x, y))+ for some b ∈ Rn, (6.3)

where Φ := (ϕ1, . . . , ϕn).

Proof. Following the same arguments as in the proof of Lemma 5.4, it suffices
to show that there exists Z ∈ Zsym

n of the form (6.3). To that end, we now
show that the symmetric problem

inf
b∈Rn

G(b), G(b) :=

∫
(b · Φ(x) + b · Φ(y)− c(x, y))2+ P (dx, dy)

admits a minimizer b∗. As in the proof of Lemma 5.4, we may assume that
b·Φ = 0 µ̃-a.s. only for b = 0, and then existence of an optimizer b∗ follows by
the same coercivity argument. Set Zn(x, y) := (b∗ ·Φ(x)+b∗ ·Φ(y)−c(x, y))+.
The first-order condition at b∗ now gives∫

ϕi(x)Zn(x, y)P (dx, dy) +

∫
ϕi(y)Zn(x, y)P (dx, dy) = 0, 1 ≤ i ≤ n.

Because Zn and P are symmetric, both integrals must have the same value;
i.e., both vanish. This shows that Zn ∈ Zn, as desired.

Lemma 6.2. Let (6.1) hold. Let Z∗ ∈ Z be the primal optimizer. There
exist bounded measurable functions fn : X → R, n ≥ 1 such that

Z∗ = lim
n→∞

(fn ⊕ fn − c)+ P -a.s. and in L2(P ).

Proof. Using Lemma 6.1 instead of Lemma 5.4, the argument is analogous
to Lemma 5.5.

The following passage to the limit n → ∞ is the main step.

Lemma 6.3. Let (X, µ, µ̃) = (Y, ν, ν̃) and let π ∈ Π(µ, µ) be symmetric; i.e.,
π(dx, dy) = π(dy, dx). Consider a sequence fn : X → R, n ≥ 1 of measurable
functions such that

lim
n→∞

fn ⊕ fn = h π-a.s.

for a measurable function h : X×X → R. Then there is a function f : X → R
such that h = f ⊕ f π-a.s. If π ≪ P , then f can be chosen to be measurable.
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Proof. We give the proof in four steps. Steps 1 and 4 follow [14, 31] whereas
Steps 2 and 3 deal with the particular issue of constructing a symmetric limit.
In a quite different context, issues with a similar flavor recently appeared in
financial mathematics [26].

Step 1. Consider the measurable set

S =
{
lim
n→∞

(fn ⊕ fn) exists in R
}
⊂ X× X.

We denote by Sx = {y ∈ X : (x, y) ∈ S} and Sy = {x ∈ X : (x, y) ∈ S} its
sections, which are also measurable. For any x, x′ ∈ X, either

Sx = Sx′ or Sx ∩ Sx′ = ∅.

Indeed, suppose that there is a point z ∈ Sx ∩ Sx′ , and consider any y ∈ Sx.
Then y ∈ Sx′ as

fn(x
′) + fn(y) = [fn(x

′) + fn(z)]− [fn(x) + fn(z)] + [fn(x) + fn(y)]

and the terms on the right-hand side converge.
Fix a disintegration π(dx, dy) = µ(dx)⊗κ(x, dy). The set X0 = {x ∈ X :

κ(x, Sx) = 1} is measurable and has full µ-measure. For x ∈ X0 we have in
particular that Sx ̸= ∅. Moreover, any y ∈ X0 is contained in Sx for some
x ∈ X0. This follows by the symmetry of π, as otherwise µ(Sy) = 0. Define
the equivalence relation ∼ on X0 via

x ∼ x′ if Sx = Sx′ .

For any x ∈ X0, let A(x) ⊂ X0 be the equivalence class of x. This set is
measurable as it has the representation A(x) = {x′ ∈ X0 : lim(fn(x

′) +
fn(y)) exists in R} for any y ∈ Sx. Let (xλ)λ∈Λ be a system of representa-
tives containing exactly one member of each equivalence class.

Step 2. Define C(x) := A(x) × (Sx ∩ X0) for x ∈ X0, and write Cλ :=
C(xλ). Then (Cλ)λ∈Λ is a measurable partition of S ∩ (X0 ×X0). By defini-
tion, each Cλ is a measurable rectangle, denoted

Cλ = Aλ ×Bλ.

Both (Aλ)λ∈Λ and (Bλ)λ∈Λ are measurable partitions of X0. In fact, by
symmetry, {Aλ : λ ∈ Λ} = {Bλ : λ ∈ Λ}. In the language of Definition 3.2,
(Cλ)λ∈Λ are the connected components of S ∩ (X0 ×X0), seen as a subset of
X0 × X0. The geometry is special here as any two connected points can be
joined by a path with length k = 1.
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Define the reflection Ĉ = {(y, x) : (x, y) ∈ C} for any C ⊂ X × X.
By symmetry, Ĉλ = Cλ′ for some λ′. We need to distinguish two types of
components. On the one hand, we define

Λdiag = {λ ∈ Λ : Cλ = Ĉλ}.

For λ ∈ Λdiag, we observe that Aλ = Bλ; i.e., Cλ = Aλ ×Aλ is a square.
It is useful to visualize S∩(X0×X0) as a symmetric block matrix (Fig. 2).

Then Cλ, λ ∈ Λdiag are square blocks along the diagonal. Next, we describe
the off-diagonal blocks, for which there is a symmetry between the lower and
upper triangle matrices.

Figure 2: Example for X = [0, 1] with three components (the diagonal is
displayed top-left to bottom-right, as for matrices). Here Λlow, Λdiag, Λupp

each have one element.

Indeed, for each λ ∈ Λ \ Λdiag, there is exactly one λ′ ∈ Λ \ Λdiag such
that Cλ′ = Ĉλ. To avoid redundancy, we partition Λ \Λdiag into Λlow ∪Λupp

so that for each such unordered pair {λ, λ′}, one index (say λ) is in Λlow and
the other is in Λupp. We note that the collections (Aλ)λ∈Λlow

and (Bλ)λ∈Λupp

coincide. For the subsequent construction, it will be important that

(Aλ)λ∈Λdiag
∪ (Aλ)λ∈Λlow

∪ (Bλ)λ∈Λlow
is a partition of X0. (6.4)

Step 3. We define the function f separately on each set of the partition (6.4).
(i) Let λ ∈ Λdiag. As Cλ = Aλ × Aλ is a square, we see that (x, y) ∈ Cλ

implies (x, x) ∈ Cλ (and similarly for y). The property (x, x) ∈ Cλ ⊂ S
means that fn(x)+ fn(x) is convergent, which of course means that fn(x) is
convergent. In brief, fn(x) is convergent for all x ∈ Aλ. We thus define

f(x) := lim
n

fn(x) for x ∈ Aλ.
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Clearly f ⊕ f = limn(fn ⊕ fn) on Cλ.
(ii) Let λ ∈ Λlow and (x, y) ∈ Cλ. In this case, fn(xλ) need not be

convergent. Define

f ′
n(x) := fn(x)− fn(xλ), f ′′

n(y) := fn(y) + fn(xλ). (6.5)

For (x, y) ∈ Cλ, we also have (xλ, y) ∈ Cλ, implying that f ′′
n(y) and f ′

n(x) =
[fn(x) + fn(y)]− [fn(y) + fn(xλ)] are both convergent. Define

f(x) := lim
n

f ′
n(x) for x ∈ Aλ, f(y) := lim

n
f ′′
n(y) for y ∈ Bλ.

These are well defined as Aλ ∩Bλ = ∅ for λ ∈ Λlow. Moreover,

f ⊕ f = lim
n
(f ′

n ⊕ f ′′
n) = lim

n
(fn ⊕ fn) on Cλ.

By (6.4), the combination of (i) and (ii) defines f : X0 → R. Crucially,
disjointness of the unions in (6.4) ensures that there is no contradiction
between our definitions of f for different λ within (i) and (ii), and also not
between (i) and (ii).

We have f ⊕ f = limn(fn ⊕ fn) on Cλ for λ ∈ Λdiag ∪ Λlow. If f ⊕ f =

limn(fn ⊕ fn) on Cλ, the same holds on Ĉλ. Thus, we also have f ⊕ f =
limn(fn ⊕ fn) on Cλ for λ ∈ Λupp. In summary, f ⊕ f = limn(fn ⊕ fn)
on X0 × X0. Finally, we set f := 0 on the µ-nullset X \ X0 and note that
µ(X0) = 1 implies π(X0 × X0) = 1 as π ∈ Π(µ, µ). This gives the desired
conclusion f ⊕ f = limn(fn ⊕ fn) π-a.s. We remark that in general, the
function f need not be measurable, as it may incorporate uncountably many
normalizations (6.5) with arbitrary choice of xλ. The next step removes that
issue.

Step 4. Under the condition π ≪ P = µ̃⊗ µ̃, we must have κ(x, dy) ≪ µ̃
for µ-a.e. x ∈ X by Fubini’s theorem for kernels (or by Remark B.2), and we
may choose κ so that this holds without exceptional set. Then κ(xλ, Sxλ

) = 1
implies µ̃(Sxλ

) > 0. As the sets Sxλ
are disjoint and µ̃ is a finite measure,

µ̃(Sxλ
) > 0 can hold for at most countably many λ. Thus there is a countable

set Λ∗ ⊂ Λ such that P (∪λ∈Λ∗Cλ) = 1 and P (Cλ) > 0 for λ ∈ Λ∗. The set
X1 := ∪λ∈Λ∗Aλ is measurable and satisfies µ̃(X1) = 1. We may redefine
f := 0 outside X1 and still have f ⊕ f = limn(fn ⊕ fn) π-a.s. This modified
function f is then a countable sum of the form f =

∑
λ∈Λ∗

fλ1Dλ
where Dλ

runs over elements of (6.4) and each fλ is defined explicitly in (i) or (ii). In
particular, f is measurable.

In the symmetric setting (6.1), the optimal coupling π∗ must be symmet-
ric: if π∗(dx, dy) is an optimizer, then so is π∗(dy, dx), hence both coincide,
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by uniqueness. Combining Lemmas 6.2 and 6.3, we can now conclude as in
Proposition 5.8, completing the proof of Theorem 2.2.

Proposition 6.4. Let (6.1) hold. There exists a measurable f : X → R such
that Z∗ = (f ⊕ f − c)+ P -a.s.

A Examples with Constant Cost

If c ≡ 0 and (µ, ν) = (µ̃, ν̃), then clearly π∗ = P . In particular, π∗ has full
support. The next example illustrates that when (µ, ν) ̸= (µ̃, ν̃) are different
(but still equivalent), the optimal coupling and even the optimal support can
change.

Example A.1 (Reference can change optimal support). Let X = Y = {0, 1}
and c ≡ 0. Let

µ̃ = ν̃ =
1

2
(δ0 + δ1), µ = ν = (1− λ)δ0 + λδ1, λ ∈ (0, 1/4].

We claim that the optimal density is

Z∗ := (f ⊕ f)+, f(0) = 2− 4λ, f(1) = −2 + 8λ

and in particular that the optimal support is sptπ∗ = {(0, 0), (0, 1), (1, 0)}.
By Theorem 2.2, it suffices to check that (f ⊕ f)+ is the P -density of a

coupling. Indeed, dπ := (f ⊕ f)+ dP has weights

π{0, 0} = [f(0) + f(0)]/4 = 1− 2λ,

π{0, 1} = π{1, 0} = [f(0) + f(1)]/4 = λ,

π{1, 1} = [f(1) + f(1)]+/4 = 0,

showing that π ∈ Π(µ, ν).

Stated for general marginal spaces, the next proposition elaborates on
Example A.1 by giving a sharp condition for π∗ to have (or not have) full
support, or more precisely, to be equivalent to P .

Proposition A.2. Let c ≡ 0. Then

π∗ ∼ P ⇐⇒ dµ

dµ̃
+

dν

dν̃
> 1 P -a.s.

In that case, dπ∗/dP = dµ
dµ̃+

dν
dν̃−1 and (f, g) = (dµdµ̃−

1
2 ,

dν
dν̃−

1
2) are potentials.

In particular, if ν = ν̃, the optimal coupling is π∗ = µ⊗ ν for any µ ∼ µ̃.
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Proof. Suppose that π∗ ∼ P . By Theorem 2.2, 0 < Z∗ = (f⊕g−c)+ = f⊕g
P -a.s. for some potentials f, g. Then (2.7) and (2.8) become f = dµ

dµ̃ −
∫
g dν̃

and g = dν
dν̃ −

∫
f dµ̃, which amounts to

f ⊕ g =
dµ

dµ̃
⊕ dν

dν̃
− 1 P -a.s.

In particular, Z∗ > 0 yields dµ
dµ̃ + dν

dν̃ > 1 P -a.s.
Conversely, let dµ

dµ̃ + dν
dν̃ > 1 P -a.s. and define (f, g) := (dµdµ̃ − 1

2 ,
dν
dν̃ − 1

2).
Going backwards, (f, g) solve (2.7) and (2.8), hence Theorem 2.2 shows that
Z∗ = (f ⊕ g − c)+ = f ⊕ g > 0. In particular, π∗ ∼ P .

If ν = ν̃, then dµ
dµ̃ + dν

dν̃ = dµ
dµ̃ + 1 > 1 P -a.s. and the claim follows.

B Technical Remarks

For simplicity, we have assumed in the main text that the spaces X,Y are
Polish. In fact, we do not make direct use of the topology, and we can allow
much more general spaces.

Remark B.1 (General spaces). Our results on regularized optimal trans-
port hold for arbitrary separable probability spaces (X,FX, µ) and (Y,FY, ν),
not necessarily Polish. Separability is used for the finite-dimensional approx-
imations in the proofs of Lemmas 5.5 and 6.2.

A probability space (X,FX, µ) is called separable if there is a countable
family (An) ⊂ FX such that for every A ∈ FX and ε > 0, there exists n with
µ(A△An) < ε. This property holds if and only if L1(X,FX, µ) is separable;
i.e., has a dense countable subset (consider simple functions based on (An)
or see [3, Exercise 4.7.63, p. 306]). See [4, Section 7.14(iv), pp. 132–133]
for some very general sufficient conditions for separability; for instance, any
Radon measure on a metric space is separable.

The proofs of Lemmas 5.6 and 6.3 use the existence of disintegrations;
i.e., regular conditional distributions. However, we only apply those results
in the absolutely continuous case π ≪ P , and then that existence holds on
general spaces (Remark B.2 below).

The last remark recalls how to construct disintegrations from joint den-
sities, without need for Polish or Blackwell spaces.

Remark B.2 (Disintegration from density). Let µ, µ̃ ∈ P(X) and ν, ν̃ ∈
P(Y) be probability measures on arbitrary measurable spaces (X,FX) and
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(Y,FY), and let π ∈ Π(µ, ν) satisfy π ≪ µ̃⊗ ν̃. Then there is a disintegration
π(dx, dy) = µ(dx)⊗ κ(x, dy) with κ(x, dy) ≪ ν̃(dy) for all x ∈ X.

This is a standard fact from probability theory. Indeed, note that π ≪
µ̃ ⊗ ν̃ immediately implies µ ≪ µ̃. Let Dµ = dµ

dµ̃ and Dπ = dπ
d(µ̃⊗ν̃) , and

define κ(x, dy) := D(x,y)
Dµ(x)

1Dµ(x) ̸=0 ν̃(dy). Then κ is a Markov kernel and for
any A ∈ FX and B ∈ FY,

(µ⊗ κ)(A×B) =

∫
A

(∫
B

Dπ(x, y)

Dµ(x)
1Dµ(x) ̸=0 ν̃(dy)

)
µ(dx) = π(A×B).
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